1
|
Abavisani M, Hoseinzadeh M, Khayami R, Kodori M, Soleimanpour S, Sahebkar A. Statins, Allies against Antibiotic Resistance? Curr Med Chem 2025; 32:729-752. [PMID: 37644745 DOI: 10.2174/0929867331666230829141301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023]
Abstract
Due to the ever-increasing rate of antibacterial resistance, the search for effective antibacterial agents has become imperative. Researchers have investigated the potential antimicrobial properties of various classes of nonantibiotic drugs. Statins are a group of antihyperlipidemic drugs with several cholesterol-independent effects, including antiinflammatory, immune-modulating, antioxidant, and antibacterial effects. In vitro and in vivo studies have demonstrated the antibacterial properties of statins against various grampositive and gram-negative bacteria. Simvastatin and atorvastatin are the most potent members of the family. Their antibacterial effect can be attributed to several direct and indirect mechanisms. Bacterial invasion, growth, and virulence are affected by statins. However, since in vitro minimum inhibitory concentrations (MICs) are significantly higher than serum concentrations at the lipid-lowering dosage, indirect mechanisms have been suggested to explain the positive clinical results, including reducing inflammation and improving immune response capacity. Further, statins have shown promising results when combined with antibiotics and other antibacterial agents, such as triazenes and silver nanoparticles. Despite this, the controversial aspects of statins have cast doubt on their efficacy as a possible solution for antibacterial resistance, and further research is required. Consequently, this review will examine in detail the current clinical and in vitro findings and controversies regarding statins' antibacterial properties and their relevance to antibacterial resistance.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Melika Hoseinzadeh
- Dental Research Center, Mashhad Dental School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Khayami
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mansoor Kodori
- Non-communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Parolina de Carvalho RD, de Andrade Moreno J, Roque SM, Chan DCH, Torrez WB, Stipp RN, Bueno-Silva B, de Lima PO, Cogo-Müller K. Statins and oral biofilm: Simvastatin as a promising drug to control periodontal dysbiosis. Oral Dis 2024; 30:669-680. [PMID: 36416468 DOI: 10.1111/odi.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES This study evaluated antimicrobial activity of atorvastatin, pravastatin, rosuvastatin, and simvastatin against oral bacteria, and the interaction of simvastatin with standard antimicrobials (amoxicillin and metronidazole). METHODS Minimal inhibitory concentration assays were performed with Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Actinomyces odontolyticus, Streptococcus oralis, Streptococcus mitis, Streptococcus salivarius, Streptococcus sanguinis, and Streptococcus gordonii; checkerboard microdilution assays between simvastatin and standard antimicrobials; monospecies and multispecies biofilms. RESULTS Simvastatin showed the best antimicrobial activity against most species (MIC range from 3.12 to 25 μg/ml), highlighting the sensitivity of P. gingivalis. In the checkerboard assay, synergistic interaction was found between simvastatin and amoxicillin against S. oralis and S. sanguinis. P. gingivalis biofilm was inhibited by simvastatin at 10 and 50× Minimal inhibitory concentration, with similar effects to metronidazole. For multispecies biofilm, SMV reduced the biofilm metabolic activity (79%) and total counts (87%), comparable to amoxicillin. Simvastatin also reduced bacterial counts of Veilonnella parvula, P. gingivalis, Streptococcus mutans, Actinomyces naeslundii, P. intermedia, and Capnocytophaga ochracea in the multispecies biofilm. CONCLUSIONS Simvastatin showed antimicrobial and antibiofilm activity against oral bacteria and may contribute to the control of dysbiosis, and may be considered in clinical studies as an adjuvant in the treatment of periodontitis.
Collapse
Affiliation(s)
| | | | - Sindy Magri Roque
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Daniel Cheuk Hong Chan
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Willy Bustillos Torrez
- Dental Research Division, University of Guarulhos (UNG), Guarulhos, Brazil
- Research department, Universidad Franz Tamayo, Cochabamba, Bolivia
| | - Rafael Nóbrega Stipp
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, University of Guarulhos (UNG), Guarulhos, Brazil
| | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
3
|
Selvakumar G, Raveendran A, B S, S G, E PK, Sanyal GC. Evaluation of the Anti-microbial Efficacy of a Novel Endodontic Irrigant Against Enterococcus faecalis: An In Vitro Study. Cureus 2023; 15:e46410. [PMID: 37927708 PMCID: PMC10620624 DOI: 10.7759/cureus.46410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Enterococcus faecalis is a constant microbiome that plays an inevitable role in the etiology of peri radicular lesions after endodontic treatment, chronic and, apical periodontitis and, recently, in periimplantitis. The effective biomechanical preparation and the use of potent irrigating solutions will permit bacterial neutralization and toxin inactivation, leading to the success of endodontic treatment. This study aimed to evaluate the "anti-microbial" efficacy of simvastatin (SMV) against E. faecalis as an endodontic irrigant. MATERIALS AND METHODS In this invitro experimental study, the antimicrobial efficacy of SMV was evaluated against E. faecalis using the agar diffusion method. The samples were divided randomly into the following groups. GROUP 1: SMV solution 1 μM/L concentration, GROUP 2: SMV solution 5 μM/L concentration, GROUP 3: SMV solution 10 μM/L concentration, GROUP 4: 2% chlorhexidine gluconate (CHX) solution (positive control), and GROUP 5: normal saline (negative control). Linear measurement was done by measuring the zones of inhibition around the medicaments in the cavities in millimeters. Results were tabulated. RESULTS The results of the study have shown the zone of inhibition of Group 4 (2% CHX solution) is 19 mm, which demonstrated the best outcome. When comparing the test samples, Group 3 (SMV solution 10 M/L concentration) has the best zone of inhibition, measuring 14 mm, followed by Group 2 (SMV solution 5 M/L concentration), which is 9 mm. CONCLUSION The results of this in vitro study have proven that SMV's anti-microbial activity, albeit less potent than CHX in this in vitro investigation, has demonstrated that it can be utilized as an efficient endodontic irrigant.
Collapse
Affiliation(s)
- Gladson Selvakumar
- Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, IND
| | - Abinaya Raveendran
- Department of Pediatric and Preventive Dentistry, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, IND
| | - Swathika B
- Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, IND
| | - Ganesan S
- Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, IND
| | - Prem Kumar E
- Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, IND
| | - Gopal Chandra Sanyal
- Department of Conservative Dentistry and Endodontics, Mahatma Gandhi Postgraduate Institute of Dental Sciences, Puducherry, IND
| |
Collapse
|
4
|
Bagwe S, Mehta V, Mathur A, Kumbhalwar A, Bhati A. Role of various pharmacologic agents in alveolar bone regeneration: A review. Natl J Maxillofac Surg 2023; 14:190-197. [PMID: 37661974 PMCID: PMC10474547 DOI: 10.4103/njms.njms_436_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 09/05/2023] Open
Abstract
Alveolar bone and gingiva are components of the periodontium that house the tooth. It constantly adapts itself to the masticatory forces and position of the tooth. However, localized diseases like chronic periodontitis and certain systemic diseases destroy periodontal tissues, which include the alveolar bone. Various pharmacological agents are being explored for their pleiotropic properties to combat the destruction of alveolar bone. This review focuses on the role of pharmacological agents in alveolar bone regeneration.
Collapse
Affiliation(s)
| | - Vini Mehta
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Ankita Mathur
- Department of Periodontology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Abhishek Kumbhalwar
- Research Consultant, STAT SENSE, Srushti 10, Sector 1 D, Amba Township Pvt. Ltd., Trimandir, Adalaj, Gujarat, India
| | - Ashok Bhati
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, Saudi Arabia
| |
Collapse
|
5
|
Atia GAN, Shalaby HK, Zehravi M, Ghobashy MM, Attia HAN, Ahmad Z, Khan FS, Dey A, Mukerjee N, Alexiou A, Rahman MH, Klepacka J, Najda A. Drug-Loaded Chitosan Scaffolds for Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3192. [PMID: 35956708 PMCID: PMC9371089 DOI: 10.3390/polym14153192] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Chitosan is a natural anionic polysaccharide with a changeable architecture and an abundance of functional groups; in addition, it can be converted into various shapes and sizes, making it appropriate for a variety of applications. This article examined and summarized current developments in chitosan-based materials, with a focus on the modification of chitosan, and presented an abundance of information about the fabrication and use of chitosan-derived products in periodontal regeneration. Numerous preparation and modification techniques for enhancing chitosan performance, as well as the uses of chitosan and its metabolites, were reviewed critically and discussed in depth in this study. Chitosan-based products may be formed into different shapes and sizes, considering fibers, nanostructures, gels, membranes, and hydrogels. Various drug-loaded chitosan devices were discussed regarding periodontal regeneration.
Collapse
Affiliation(s)
- Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia P.O. Box 41522, Egypt
| | - Hany K. Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez P.O. Box 43512, Egypt
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo P.O. Box 13759, Egypt
| | - Hager Abdel Nasser Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21526, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Khardaha 700118, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland
| |
Collapse
|
6
|
Zhang H, Cao Z, Diao Q, Zhou Y, Ao J, Liu C, Sun Y. Antimicrobial activity and mechanisms of a derived antimicrobial peptide TroNKL-27 from golden pompano (Trachinotus ovatus) NK-lysin. FISH & SHELLFISH IMMUNOLOGY 2022; 126:357-369. [PMID: 35661768 DOI: 10.1016/j.fsi.2022.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
NK-lysin, a homologue of granulysin among human, is predominantly found in natural killer cells and cytotoxic T-lymphocytes, which plays a pivotal part in innate immune responses against diverse pathogenic bacteria. Nonetheless, in teleosts, the research on antimicrobial activity and mechanisms of NK-lysin are seldom reported. In this study, we determined the antimicrobial activity of the truncated peptide TroNKL-27 that derived from golden pompano (Trachinotus ovatus) NK-lysin, and investigated its antimicrobial mechanisms. The results showed that TroNKL-27 had considerable antimicrobial potency against both Gram-positive (Staphylococcus aureus, Streptococcus agalactiae) and Gram-negative bacteria (Vibrio harveyi, V. alginolyticus, Escherichia coli, Edwardsiella tarda). Cytoplasmic membrane depolarization and propidium iodide (PI) uptake assay manifested that TroNKL-27 could induce the bacterial membrane depolarization and change its membrane permeability, respectively. In the light of scanning electron microscopy (SEM) observation, TroNKL-27 was capable of altering morphological structures of bacteria and leading to leakage of cellular contents. Moreover, the results of gel retardation assay indicated TroNKL-27 had the ability to induce the degradation of bacterial genomic DNA. As regards in vivo assay, TroNKL-27 could reduce the replication of V. harveyi in tissues of golden pompano, protect the tissue from pathological changes. Moreover, TroNKL-27 in vivo could significantly increase the expression of the immune genes (such as IL1β, TNFα, IFN-γ, C3 and Mx) in presence or absence of V. harveyi infection. All of these results suggest that TroNKL-27 is a novel antimicrobial peptide possessing antibacterial and immunoregulatory function in vivo and in vitro, and the observed effects of TroNKL-27 will lay a solid foundation for the development of new antimicrobial agents used in aquaculture.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Qianying Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
7
|
Fling RR, Zacharewski TR. Aryl Hydrocarbon Receptor (AhR) Activation by 2,3,7,8-Tetrachlorodibenzo- p-Dioxin (TCDD) Dose-Dependently Shifts the Gut Microbiome Consistent with the Progression of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:12431. [PMID: 34830313 PMCID: PMC8625315 DOI: 10.3390/ijms222212431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Gut dysbiosis with disrupted enterohepatic bile acid metabolism is commonly associated with non-alcoholic fatty liver disease (NAFLD) and recapitulated in a NAFLD-phenotype elicited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice. TCDD induces hepatic fat accumulation and increases levels of secondary bile acids, including taurolithocholic acid and deoxycholic acid (microbial modified bile acids involved in host bile acid regulation signaling pathways). To investigate the effects of TCDD on the gut microbiota, the cecum contents of male C57BL/6 mice orally gavaged with sesame oil vehicle or 0.3, 3, or 30 µg/kg TCDD were examined using shotgun metagenomic sequencing. Taxonomic analysis identified dose-dependent increases in Lactobacillus species (i.e., Lactobacillus reuteri). Increased species were also associated with dose-dependent increases in bile salt hydrolase sequences, responsible for deconjugation reactions in secondary bile acid metabolism. Increased L. reuteri levels were further associated with mevalonate-dependent isopentenyl diphosphate (IPP) biosynthesis and o-succinylbenzoate synthase, a menaquinone biosynthesis associated gene. Analysis of the gut microbiomes from cirrhosis patients identified an increased abundance of genes from the mevalonate-dependent IPP biosynthesis as well as several other menaquinone biosynthesis genes, including o-succinylbenzoate synthase. These results extend the association of lactobacilli with the AhR/intestinal axis in NAFLD progression and highlight the similarities between TCDD-elicited phenotypes in mice to human NAFLD.
Collapse
Affiliation(s)
- Russell R. Fling
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy R. Zacharewski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Hussain M, Liaqat I, Ali NM, Arshad N, Hanif U, Sajjad S, Sardar AA, Awan UF, Khan FS, Slahuddin. Antibacterial and bacteriostatic potential of coelomic fluid and body paste of Pheretima posthuma (Vaillant, 1868) (Clitellata, Megascolecidae) against ampicillin resistant clinical bacterial isolates. BRAZ J BIOL 2021; 83:e247016. [PMID: 34495153 DOI: 10.1590/1519-6984.247016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/20/2021] [Indexed: 11/21/2022] Open
Abstract
Pheretima posthuma (Vaillant, 1868), a native earthworm of Pakistan and Southeast Asia, has wide utilization in vermicomposting and bioremediation process. In this study, P. posthuma coelomic fluid (PCF) and body paste (PBP) was evaluated as antibacterial agent against ampicillin (AMP) resistant five Gram positive and four Gram negative clinical isolates. The antibacterial effect of different doses (i.e. 25-100 µg/ml) of PCF and PBP along with AMP and azithromycin (AZM) (negative and positive controls, respectively) were observed through disc diffusion and micro-dilution methods. All nine clinical isolates were noticed as AMP resistant and AZM sensitive. Antibacterial effects of PCF and PBP were dose dependent and zone of inhibitions (ZI) against all clinical isolates were between 23.4 ± 0.92 to 0 ± 00 mm. The sensitivity profile of PCF and PBP against clinical isolates was noticed as 44.44 and 55.56%, respectively. Both PCF and PBP showed bacteriostatic (BTS) action against S. aureus, S. pyogenes, K. pneumonia, N. gonorrhoeae. Moreover, the cumulative BTS potential of PCF and PBP against all isolates was 66.67 and 55.56%, respectively. The MICs of PCF and PBP were ranged from 50-200 µg/ml against selected isolates. The bacterial growth curves indicated that PCF and PBP inhibited the growth of all isolates at their specific MIC concentrations. However, PBP has better antibacterial potential compared to PCF against selected isolates. Therefore, it is concluded that both PCF and PBP of P. posthuma possess antibacterial and BTS potential against ampicillin resistant clinical isolates. This organism might be considered as a second choice of antibacterial agents and can further be utilized in pharmaceutical industries for novel drug manufacturing by prospecting bioactive potential agents.
Collapse
Affiliation(s)
- M Hussain
- GC University, Department of Zoology, Microbiology Lab, Lahore, Pakistan
| | - I Liaqat
- GC University, Department of Zoology, Microbiology Lab, Lahore, Pakistan
| | - N M Ali
- GC University, Department of Zoology, Microbiology Lab, Lahore, Pakistan
| | - N Arshad
- University of Lahore, Institute of Molecular Biology and Biotechnology, Department of Zoology, Lahore, Pakistan
| | - U Hanif
- GC University, Department of Botany, Lahore, Pakistan
| | - S Sajjad
- Lahore College for Women University, Department of Zoology, Lahore, Pakistan
| | - A A Sardar
- GC University, Department of Botany, Lahore, Pakistan
| | - U F Awan
- GC University, Department of Botany, Lahore, Pakistan
| | - F S Khan
- University of Sialkot, Department of Biotechnology, Sialkot, Pakistan
| | - Slahuddin
- University of Gujrat, Department of Zoology, Gujrat, Pakistan
| |
Collapse
|
9
|
Performance of simvastatin microsponges as a local treatment for chronic periodontitis – Randomized clinical trial. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
de Carvalho RDP, Côrrea Viana Casarin R, Lima POD, Cogo-Müller K. STATINSWITH POTENTIAL TO CONTROL PERIODONTITIS: FROM BIOLOGICAL MECHANISMS TO CLINICAL STUDIES. J Oral Biosci 2021; 63:232-244. [PMID: 34146687 DOI: 10.1016/j.job.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Statins are widely used for the treatment of hyperlipidemia. However, these drugs have pleiotropic effects that can be promising for the prevention and treatment of oral diseases, such as periodontitis. HIGHLIGHT This review aimed to identify preclinical, observational, and clinical studies that evaluate the effects and biological mechanisms of statins on oral cells and tissues and those using these drugs to treat periodontitis. A LITERATURE SURVEY HAS BEEN CONDUCTED IN PUBMED USING COMBINATIONS OF THE UNITERMS: "statins," "dentistry," "periodontal disease," and "periodontal treatment." In vitro findings showed positive statin results in cell lines related to alveolar bone metabolism by altering the signaling pathway Osteoprotegerin/Receptor Activator of Nuclear Factor Kappa B/Receptor Activator of Nuclear Factor Kappa B Ligand (OPG/RANK/RANKL), stimulating the production of alkaline phosphatase and osteocalcin, and reducing the production of matrix metalloproteinases (MMPs). Animal studies have shown a reduction in alveolar bone loss and osteoclastic activity, in addition to a reduction in inflammatory markers, such as IL-1, IL-6, and TNF-α, when statins were used prophylactically. Clinical trials showed a positive impact on clinical parameters, leading to a higher reduction in probing depth and gain in clinical attachment when a local statin was adjunctively associated with mechanical therapy. CONCLUSION Statins were shown to be promising for regenerating and stimulating bone activity, with great potential for treating chronic periodontitis. However, further studies are required to confirm its effectiveness.
Collapse
Affiliation(s)
| | | | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
11
|
Li DQ, Lv FF, Li ZC, Dai ZY, Wang HX, Han Y. Anti-atherosclerotic effects between a combined treatment with simvastatin plus hirudin and single simvastatin therapy in patients with early type 2 diabetes mellitus. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:302. [PMID: 31475172 DOI: 10.21037/atm.2019.05.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background This study aimed to investigate the efficacy and safety of simvastatin plus hirudin in preventing atherosclerosis in the patients with early type 2 diabetes mellitus (T2DM). Methods This was a 24-week, randomized, open-label and controlled study in which 150 outpatients initially diagnosed with T2DM were randomly assigned into either simvastatin (40 mg daily at night) plus hirudin (3 g thrice daily) group [combined group (CG) n=75] or simvastatin (40 mg once daily) group [monotherapy group (MG) n=75]. The therapeutic efficacy was evaluated by the score of carotid artery atherosclerosis, plaque size, peak systolic velocity (PSV) and end-diastolic velocity (EDV) on carotid ultrasonography at three and six months after treatment. Logistic regression analysis was used to investigate the correlation between treatment and carotid atherosclerosis. Results One hundred and thirty-one patients completed this study, and there were no significant differences in the dropout rate in the CG (14.67%) and the MG (10.67%). Significant difference was found in the incidence of adverse events in the CG compared with the MG (37.50% vs. 17.91%, P<0.05) due to the higher risk of hemorrhage (12.50% vs. 1.49%, P<0.05), which did not affect the treatment compliance. The efficacy of combined treatment was better than monotherapy in the enhancement of carotid artery atherosclerosis scores (P<0.01), the plaque thickness (P<0.05) and the change of PSV (P<0.05) and EDV (P<0.05) since three months after treatment, which maintained to the end of observation. In addition, hirudin treatment was able to independently predict the carotid artery atherosclerosis scores (β=2.37, P<0.05), the plaque thickening (β=3.51, P<0.01) and the change of PSV (β=1.69, P<0.05) and EDV (β=1.79, P<0.05). Conclusions Combined use of simvastatin and hirudin is well tolerated and possesses better anti-atherosclerotic effects than simvastatin alone in patients with early T2DM.
Collapse
Affiliation(s)
- De-Qiang Li
- Department of Integrated Internal Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Fei-Fei Lv
- Department of Integrated Internal Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Zhong-Chun Li
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Zhi-Yuan Dai
- Department of Preventive Medicine, Xiaoying Street Community Health Center, Hangzhou 310002, China
| | - Hong-Xia Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| | - Yang Han
- Department of Integrated Internal Medicine, The First Affiliated Hospital of Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
12
|
Contribution of Statins towards Periodontal Treatment: A Review. Mediators Inflamm 2019; 2019:6367402. [PMID: 30936777 PMCID: PMC6415285 DOI: 10.1155/2019/6367402] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/23/2018] [Indexed: 01/09/2023] Open
Abstract
The pleiotropic effects of statins have been evaluated to assess their potential benefit in the treatment of various inflammatory and immune-mediated diseases including periodontitis. Herein, the adjunctive use of statins in periodontal therapy in vitro, in vivo, and in clinical trials was reviewed. Statins act through several pathways to modulate inflammation, immune response, bone metabolism, and bacterial clearance. They control periodontal inflammation through inhibition of proinflammatory cytokines and promotion of anti-inflammatory and/or proresolution molecule release, mainly, through the ERK, MAPK, PI3-Akt, and NF-κB pathways. Moreover, they are able to modulate the host response activated by bacterial challenge, to prevent inflammation-mediated bone resorption and to promote bone formation. Furthermore, they reduce bacterial growth, disrupt bacterial membrane stability, and increase bacterial clearance, thus averting the exacerbation of infection. Local statin delivery as adjunct to both nonsurgical and surgical periodontal therapies results in better periodontal treatment outcomes compared to systemic delivery. Moreover, combination of statin therapy with other regenerative agents improves periodontal healing response. Therefore, statins could be proposed as a potential adjuvant to periodontal therapy. However, optimization of the combination of their dose, type, and carrier could be instrumental in achieving the best treatment response.
Collapse
|