1
|
Cecilia PH, Narmada IB, Ridwan RD, Ernawati DS, Bramantoro T, Rianti D, Shariff KA, Riawan W, Situmorang PC, Nugraha AP. Adipose-Derived Mesenchymal Stem Cell Osteodifferentiation after Exposure to Beta-Tricalcium Phosphate Bioceramic Granules with 300 to 600 and 600 to 1,000 µm Sizes. Eur J Dent 2025. [PMID: 40334681 DOI: 10.1055/s-0045-1806964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Beta-tricalcium phosphate (β-TCP) is a synthetic graft material with excellent biocompatibility, osteoconductivity, and osteoinductivity. β-TCP may induce adipose-derived mesenchymal stem cells (ADMSCs) osteodifferentiation. This study aims to investigate the osteoinductivity of 300 to 600 and 600 to 1,000μm β-TCP in ADMSCs.ADMSCs were obtained from the visceral adipose tissue of young male rabbits. To determine the osteoinductive ability, bone morphogenic protein 2 (BMP-2), Osterix, runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteopontin, and osteonectin expression was examined using an immunochemical assay on ADMSCs conditioned with an osteogenic medium and a β-TCP bioceramic with granule sizes of 300 to 600 and 600 to 1,000 µm (100 ng diluted to 100 nmol as the final concentration). A 3,3'-diaminobenzidine staining kit was used for immunocytochemical staining. Anti-BMP-2, anti-Osterix, anti-Runx2, anti-ALP, anti-osteopontin, and anti-osteonectin monoclonal antibodies were employed at a 1:500 dilution. A light microscope with magnifications of 400× and 1,000× was used to manually observe and examine cultures in five different fields of view.BMP 2, Runx2, Osterix, and ALP expression was higher in ADMSCs + β-TCP 300 to 600 µm compared with the control group (p < 0.05). Osteonectin and osteopontin expression was higher in ADMSCs + 300 to 600 µm β-TCP compared with the control group (p < 0.05) and ADMSCs + 600 to 1,000 µm β-TCP (p < 0.05).ADMSC osteodifferentiation was influenced by β-TCP bioceramic granule size. The considerable difference in osteonectin and osteopontin expression supports the idea that 300 to 600 µm β-TCP induce ADMSCs osteodifferentiation than 600 to 1,000 µm β-TCP.
Collapse
Affiliation(s)
- Pamela Handy Cecilia
- Doctoral Program of Dental Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rini Devijanti Ridwan
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Taufan Bramantoro
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Devi Rianti
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Khairul Anuar Shariff
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Putri Cahaya Situmorang
- Biology Study Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
de Lima Barbosa R, Stellet Lourenço E, de Azevedo dos Santos JV, Rodrigues Santiago Rocha N, Mourão CF, Alves GG. The Effects of Platelet-Rich Fibrin in the Behavior of Mineralizing Cells Related to Bone Tissue Regeneration-A Scoping Review of In Vitro Evidence. J Funct Biomater 2023; 14:503. [PMID: 37888168 PMCID: PMC10607127 DOI: 10.3390/jfb14100503] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Platelet-rich fibrin (PRF) is a second-generation blood concentrate that serves as an autologous approach for both soft and hard tissue regeneration. It provides a scaffold for cell interaction and promotes the local release of growth factors. PRF has been investigated as an alternative to bone tissue therapy, with the potential to expedite wound healing and bone regeneration, though the mechanisms involved are not yet fully understood. This review aims to explore the in vitro evidence of PRF's effects on the behavior of mineralizing cells related to bone tissue regeneration. A systematic electronic search was conducted up to August 2023, utilizing three databases: PubMed, Web of Science, and Scopus. A total of 76 studies were selected, which presented in vitro evidence of PRF's usefulness, either alone or in conjunction with other biomaterials, for bone tissue treatment. PRF membranes' influence on the proliferation, differentiation, and mineralization of bone cells is linked to the constant release of growth factors, resulting in changes in crucial markers of bone cell metabolism and behavior. This further reinforces their therapeutic potential in wound healing and bone regeneration. While there are some notable differences among the studies, the overall results suggest a positive effect of PRF on cell proliferation, differentiation, mineralization, and a reduction in inflammation. This points to its therapeutic potential in the field of regenerative medicine. Collectively, these findings may help enhance our understanding of how PRF impacts basic physiological processes in bone and mineralized tissue.
Collapse
Affiliation(s)
- Renata de Lima Barbosa
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Emanuelle Stellet Lourenço
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
| | - Julya Vittoria de Azevedo dos Santos
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Neilane Rodrigues Santiago Rocha
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
| |
Collapse
|
3
|
Ali M, Lee Y, Ha B, Jung J, Lee BY, Kim DS, Lee MY, Kim YS. The bone-protective benefits of amino-conjugated calcium in an ovariectomized (OVX) rat model. Life Sci 2023; 328:121927. [PMID: 37437650 DOI: 10.1016/j.lfs.2023.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Low bone density, fragility, and microarchitectural disintegration are the symptoms of osteoporosis. An imbalance between bone growth and resorption can lead to osteoporosis. This study evaluated the effects of amino-calcium (AC) on bone protection in ovariectomized control group (NC) rats. Amino-calcium (AC) was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), and nuclear magnetic resonance spectroscopy analyses (NMR). After determining the biocompatibility of amino-calcium (AC) with MC3T3-E1 cells, alkaline phosphatase staining revealed significant changes on day 7. Three of the four groups underwent ovariectomy, whereas one group received a placebo. On micro-computed tomography, in vivo, data showed increased bone volume fraction in the femoral head and shaft areas in the amino-calcium (AC) group. Hematoxylin and eosin staining showed a bone mass and architectural protection in the amino-calcium (AC) group compared with the calcium carbonate and OVX control group. RNA sequencing analysis revealed high expression of osteogenesis-related genes in MC3T3-E1 cells. RNA sequencing revealed a significant fold change in the expression of integrin-binding sialoprotein (IBSP), bone gamma-carboxyglutamate proteins 1 and 2(BGLAP1 and BGLAP2), and periostin (POSTN). The study concluded that supplementing the OVX rats with calcium enhanced bone protection.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Youri Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Bin Ha
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Jaeeun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byung-Yeol Lee
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; BTN Co., Ltd., 407ho, Entrepreneurship Hall, 22 Soonchunhyang-ro, Asan, Chungnam 31538, Republic of Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
4
|
Nugraha AP, Ardani IGAW, Sitalaksmi RM, Ramadhani NF, Rachmayanti D, Kumala D, Kharisma VD, Rahmadani D, Puspitaningrum MS, Rizqianti Y, Ari MDA, Nugraha AP, Noor TNEBTA, Luthfi M. Anti-Peri-implantitis Bacteria's Ability of Robusta Green Coffee Bean (Coffea Canephora) Ethanol Extract: An In Silico and In Vitro Study. Eur J Dent 2023; 17:649-662. [PMID: 36075265 PMCID: PMC10569850 DOI: 10.1055/s-0042-1750803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVE This study was aimed to investigate RGCBE extract as antioxidant and anti-peri-implantitis bacteria through in vitro study and its potential as antioxidant, antibacterial, anti-inflammatory, antibone resorption, and proosteogenic through in silico study. MATERIALS AND METHODS: Absorption, distribution, metabolism, excretion and toxicity prediction, molecular docking simulation, and visualization of chlorogenic acid (CGA) and coumaric acid (CA) as anti-inflammatory, antioxidant, and antibacterial were investigated in silico. Inhibition zone by diffusion method, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of RGCBE extract against Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Fusobacterium nucleatum (Fn), and Prevotella intermedia (Pi) were done. STATISTICAL ANALYSIS the analysis of variance (ANOVA) difference test, and the post-hoc Tukey's Honest Significant Different (HSD) with a different significance value of p<0.05 RESULTS: GCA and CA compounds are good drug molecules and it has low toxicity. Chlorogenic acid have higher binding activity than coumaric acid to tumor necrosis factor (TNF)-α, nuclear factor (NF)-κB, receptor activation NF-κB (RANK) and its ligand (RANKL), interleukin (IL)-6, IL-10, runt related transcription factor (RUNX2), receptor activator nuclear Kappa beta Ligand-osteoprotegrin osteocalcin (RANKL-OPG), osteocalcin, nuclear factor associated T-cell 1 (NFATc1), tartate resistant acid phosphatase (TRAP), peptidoglycan, flagellin, dectin, Hsp70, and Hsp10 protein. RGCB ethanol extract has high antioxidant ability and it has MIC, MBC, and inhibit the growth of Aa, Pg, Fn, and Pi at 50% concentration with significantly different (p=0.0001 and<0.05). CONCLUSION RGCB ethanol extract has high antioxidant ability and 50% RGCB ethanol extract may act as strong anti-peri-implantitis bacteria in vitro. In addition, CGA in RGCB potential as antioxidant, antibacterial, anti-inflammatory, antibone resorption, and proosteogenic in silico.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Dental Implant Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Postgraduate Department of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - I Gusti Aju Wahju Ardani
- Dental Implant Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratri Maya Sitalaksmi
- Dental Implant Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nastiti Faradilla Ramadhani
- Dental Implant Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Postgraduate Department of Dental Health Science, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Desi Rachmayanti
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dina Kumala
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Viol Dhea Kharisma
- Department of Biology, Faculty of Mathematic and Natural Science, Universitas Brawijaya, Malang, Indonesia
| | | | | | - Yuniar Rizqianti
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Dimas Aditya Ari
- Dental Implant Group, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Tengku Natasha Eleena binti Tengku Ahmad Noor
- Membership of Faculty of Dental Surgery, Edinburgh University, United Kingdom
- Malaysian Armed Forces Dental Officer, 609 Armed Forces Dental Clinic, Kem Semenggo, Kuching, Sarawak, Malaysia.
| | - Muhammad Luthfi
- Oral Biology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Esmaeilnejad A, Talebi Ardakani M, Shokri M, Nima Hosseini Khou P, Kamani M. Comparative Evaluation of the Effect of Two Platelet Concentrates (a-PRF and L-PRF) on the Cellular Activity of Pre-osteoblastic MG-63 Cell Line: An in vitro Study. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2023; 24:235-244. [PMID: 37388198 PMCID: PMC10300147 DOI: 10.30476/dentjods.2022.93305.1709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/07/2022] [Accepted: 08/02/2022] [Indexed: 07/01/2023]
Abstract
Statement of the Problem Currently, the reconstruction of bone defects with new platelet concentrates is considered a significant challenge in periodontics. Purpose This study aimed to evaluate advanced- platelet rich fibrin (A-PRF) and leukocyte- and platelet rich fibrin's (L-PRF) effects on the proliferation and differentiation of MG-63 cells. Materials and Method In this in vitro study, blood samples of five healthy non-smoking volunteers were collected and immediately centrifuged according to the two protocols of Choukroun and Ghanaati, without adding any anticoagulants, to prepare L-PRF and A-PRF. After freezing the clots for one hour, they were crushed and centrifuged once more. After culturing MG-63 cells, the effects of 20%, 10%, 1%, and 0.5% concentrations of A-PRF and L-PRF extracts on cell proliferation and mineralization were evaluated by methyl thiazolyl tetrazolium (MTT) assay and Alizarin Red staining, respectively. Results Generally, survival and proliferation in the L-PRF group at both time intervals were higher than the A-PRF group and increased with increasing the extract concentration. However, in the A-PRF group, there were no significant differences between the different concentrations, and only the number of cells increased over time. After three days, in the study on mineralization, nodule formation was observed only in the positive control group (osteogenic). In seven days, mineralized nodules were formed in all groups with different concentrations of A-PRF, but not in any of the L-PRF groups. Conclusion According to the results, L-PRF increased proliferation, and A-PRF exerted a positive effect on the differentiation of MG-63 cells.
Collapse
Affiliation(s)
- Azadeh Esmaeilnejad
- Dept. of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Shokri
- Dept. of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mobina Kamani
- Postgraduate Student, Dept. of Periodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Narmada IB, Putri PD, Lucynda L, Triwardhani A, Ardani IGAW, Nugraha AP. Effect of Caffeic Acid Phenethyl Ester Provision on Fibroblast Growth Factor-2, Matrix Metalloproteinase-9 Expression, Osteoclast and Osteoblast Numbers during Experimental Tooth Movement in Wistar Rats (Rattus norvegicus). Eur J Dent 2021; 15:295-301. [PMID: 33511599 PMCID: PMC8184315 DOI: 10.1055/s-0040-1718640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objectives
To investigate the effect of caffeic acid phenethyl ester (CAPE) provision on matrix metalloproteinase-9 (MMP-9), fibroblast growth factor-2 (FGF-2) expression, osteoclast and osteoblast numbers during experimental orthodontic tooth movement (OTM) in male Wistar rats (
Rattus norvegicus
).
Materials and Methods
Forty-eight healthy male Wistar rats (
R. norvegicus
), 16 to 20 weeks old with 200 to 250 g body weight (bw) were divided into several groups as follows: K1: OTM for 3 days; K2: OTM for 7 days; K3: OTM for 14 days; KP1: OTM and CAPE for 3 days; KP2: OTM and CAPE for 7 days; and KP3: OTM and CAPE for 14 days. A nickel titanium closed coil spring 8.0 mm long with 10 g/mm
2
was installed between the upper left first molar and upper central incisor to move molar mesially. CAPE provision with a dose of 20 mg/kg bw of animal studies was done per orally. Immunohistochemistry was done to examine MMP-9 expression and osteoclast number in compression side as well as FGF-2 expression and osteoblast number in tensile side of the OTM.
Statistical Analysis
One-way analysis of variance test and Tukey’s honest significant difference test were performed to determine the difference between the groups (
p
< 0.05).
Results
MMP-9 expression and osteoclast numbers in the compression side were significantly different between the groups. Similarly, FGF-2 expression and osteoclast numbers in the tensile side were significantly different between the groups.
Conclusions
CAPE provision during OTM increases the number of osteoblasts and the FGF-2 expression significantly in the tensile side. Osteoclast numbers and MMP-9 expression significantly decrease in the compression side.
Collapse
Affiliation(s)
- Ida Bagus Narmada
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Paristyawati Dwi Putri
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Lucky Lucynda
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Triwardhani
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - I Gusti Aju Wahju Ardani
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
7
|
Chen Y, Guan Q, Han X, Bai D, Li D, Tian Y. Proteoglycans in the periodontium: A review with emphasis on specific distributions, functions, and potential applications. J Periodontal Res 2021; 56:617-632. [PMID: 33458817 DOI: 10.1111/jre.12847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
Proteoglycans (PGs) are largely glycosylated proteins, consisting of a linkage sugar, core proteins, and glycosaminoglycans (GAGs). To date, more than 40 kinds of PGs have been identified, and they can be classified as intracellular, cell surface, pericellular, and extracellular PGs according to cellular locations. To illustrate, extracellular PGs are known for regulating the homeostasis of the extracellular matrix; cell-surface PGs play a role in mediating cell adhesion and binding various growth factors. In the field of periodontology, PGs are implicated in cellular proliferation, migration, adhesion, contractility, and anoikis, thereby exerting a profound influence on periodontal tissue development, wound repair, the immune response, biomechanics, and pathological process. Additionally, the expression patterns of some PGs are dynamic and cell-specific. Therefore, determining the roles and spatial-temporal expression patterns of PGs in the periodontium could shed light on treatments for wound healing, tissue regeneration, periodontitis, and gingival overgrowth. In this review, close attention is paid to the distributions, functions, and potential applications of periodontal PGs. Related genetically modified animal experiments and involved signal transduction cascades are summarized for improved understanding of periodontal PGs. To date, however, there is a large amount of speculation on this topic that requires rigorous experiments for validation.
Collapse
Affiliation(s)
- Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuyue Guan
- Department of Geriatrics, People's Hospital of Sichuan Province, Chengdu, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Saskianti T, Nugraha AP, Prahasanti C, Ernawati DS, Suardita K, Riawan W. Immunohistochemical analysis of stem cells from human exfoliated deciduous teeth seeded in carbonate apatite scaffold for the alveolar bone defect in Wistar rats ( Rattus novergicus). F1000Res 2020; 9:1164. [PMID: 33335716 PMCID: PMC7721066 DOI: 10.12688/f1000research.25009.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Stem cells from human exfoliated deciduous teeth (SHED) seeded in carbonate apatite scaffold (CAS) may have multiple functions that could be used to regenerate the alveolar bone defects. The purpose of this study is to examine the ability of SHED and CAS in alveolar bone defects using an immunohistochemical analysis. Methods: ten three-month-old healthy male Wistar rats
(R. novergicus) that weighed between 150–250 grams (g) were used as animal models. A simple blind random sampling method was used to select the sample that was assigned to the study group for CAS and SHED seeded in CAS (n=5). The animal study model of the alveolar bone was established by extracting the anterior mandible teeth. Rodent anesthesia was applied to relieve the pain during the procedure for all test animals. Immunohistochemistry was performed after seven days to facilitate the examination of the receptor activator of NF-κβ ligand (RANKL), osteoprotegrin (OPG), transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin, and osteopontin expression. The data was analyzed using the unpaired t-test (p<0.01) and Pearson’s correlation test (p<0.05). Results: The OPG, RUNX2, TGF-β, VEGF, ALP, osteocalcin, and ostepontin expressions were higher in SHED seeded in CAS than CAS only with a significant difference between the groups (p<0.01). Furthermore, the RANKL expression was lower in SHED seeded in CAS compared to CAS only. There was a strong reverse significant correlation between OPG and RANKL expression (p<0.05). Conclusions: The number of osteogenic marker expressing cells, such as OPG, RUNX2, TGF-β, VEGF, ALP, osteocalcin, and ostepontin, increased. However, RANKL expression in the alveolar bone defects that were implanted with SHED seeded in CAS did not increase after seven days.
Collapse
Affiliation(s)
- Tania Saskianti
- Pediatric Dentistry Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Alexander Patera Nugraha
- Orthodontics Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Chiquita Prahasanti
- Periodontology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Diah Savitri Ernawati
- Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Ketut Suardita
- Conservative Dentistry Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Wibi Riawan
- Biomolecular Biochemistry, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| |
Collapse
|
9
|
Nugraha AP, Rantam FA, Narmada IB, Ernawati DS, Ihsan IS. Gingival-Derived Mesenchymal Stem Cell from Rabbit (Oryctolagus cuniculus): Isolation, Culture, and Characterization. Eur J Dent 2020; 15:332-339. [PMID: 33260232 PMCID: PMC8184309 DOI: 10.1055/s-0040-1719213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE This study aims to confirm whether the GDMSCs isolated from rabbit's (Oryctolagus cuniculus) gingiva are mesenchymal stem cells (MSCs). MATERIALS AND METHODS This study design was partly quasi-experimental with an observational design. GDMSCs were isolated from the gingiva of healthy male rabbits (O. cuniculus) (n = 2), 6 months old, and 3 to 5 kg of body weight. The specific cell surface markers of MSCs; clusters of differentiation (CD), namely, CD44, CD73, CD90, CD105, and CD200 expressions; and hematopoietic stem cell surface markers CD34 and CD45 were examined using flow cytometry and immunohistochemistry with immunofluorescence. The osteogenic differentiation of isolated GDMSCs was examined using alizarin red staining. RESULTS GDMSCs in the fourth passage showed a spindle-like formation and fibroblast-like cells that attached to the base of the culture plate. GDMSCs were MSCs that positively expressed CD44, CD73, CD90, CD105, and CD200 but did not express CD34 and CD45 when examined using flow cytometry and immunohistochemical analysis. GDMSCs had osteogenic differentiation confirmed by calcified deposits in vitro with a red-violet and brownish color after alizarin red staining. CONCLUSION GDMSCs isolated from the rabbits (O. cuniculus) were confirmed as MSCs in vitro documented using immunohistochemistry and flow cytometry. GDMSCs can differentiate into osteogenic lineage in vitro that may be suitable for regenerative dentistry.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Department of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.,Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Laboratory of Virology and Immunology, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ida Bagus Narmada
- Department of Orthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
10
|
Ihsan IS, Karsari D, Ertanti N, Dinaryanti A, Nugraha AP, Purwati P, Sudjarwo SA, Rantam FA. The distribution pattern and growth factor level in platelet-rich fibrin incorporated skin-derived mesenchymal stem cells: An in vitro study. Vet World 2020; 13:2097-2103. [PMID: 33281342 PMCID: PMC7704299 DOI: 10.14202/vetworld.2020.2097-2103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/31/2020] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: A skin wound in an animal must be cared for to prevent further health issues. Platelet-rich fibrin (PRF) and skin-derived mesenchymal stem cells (SMSCs) have been reported to have potential in increasing the rate of wound healing. This study aimed to analyze the distribution patterns and levels of platelet-derived growth factor (PDGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and transforming growth factor-β (TGF-β) in PRF incorporated with SMSCs. Materials and Methods: This study employed a true experiment (in vitro) design with post-test only performed in the control group alone. PRF and SMSCs were extracted from the blood and skin of 16 rabbits. SMSCs were characterized using immunocytochemistry to examine clusters of differentiation for 45, 73, 90, and 105. PRF was incorporated into the SMSCs and then divided into four groups (N=32/n=8): Group A (PRF only), Group B (PRF+SMSCs, incubated for 1 day), Group C (PRF+SMSCs, incubated for 3 days), and Group D (PRF+SMSCs, incubated for 5 days). Scanning electron microscopy was used to examine the distribution pattern of SMSCs between groups. The supernatant serum (Group A) and supernatant medium culture (Group D) were collected for the measurement of PDGF, IGF, VEGF, and TGF-β using an enzyme-linked immunosorbent assay sandwich kit. An unpaired t-test was conducted to analyze the differences between Groups A and D (p<0.01). Results: Group D had the most morphologically visible SMSCs attached to the PRF, with elongated and pseudopodia cells. There was a significant difference between the levels of growth factor in Groups A and D (p=0.0001; p<0.01). Conclusion: SMSCs were able to adhere to and distribute evenly on the surface of PRF after 5 days of incubation. The PRF incorporated SMSCs contained high levels of PDGF, IGF, VEGF, and TGF- β, which may prove to have potential in enhancing wound healing.
Collapse
Affiliation(s)
- Igo Syaiful Ihsan
- Master Student of Vaccinology and Immunotherapeutica, Veterinary Medicine Faculty, Airlangga University, Surabaya, Indonesia.,Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Deya Karsari
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Nora Ertanti
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Aristika Dinaryanti
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Alexander Patera Nugraha
- Doctoral Student of Medical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Purwati Purwati
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia.,Department of Health, Vocational Faculty, Airlangga University, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Pharmacology, Veterinary Medicine Faculty, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia.,Department of Microbiology, Virology Laboratory, Veterinary Medicine Faculty, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
11
|
Saskianti T, Nugraha AP, Prahasanti C, Ernawati DS, Suardita K, Riawan W. Immunohistochemical analysis of stem cells from human exfoliated deciduous teeth seeded in carbonate apatite scaffold for the alveolar bone defect in Wistar rats ( Rattus novergicus). F1000Res 2020; 9:1164. [PMID: 33335716 PMCID: PMC7721066 DOI: 10.12688/f1000research.25009.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/01/2023] Open
Abstract
Background: Stem cells from human exfoliated deciduous teeth (SHED) seeded in carbonate apatite scaffold (CAS) may have multiple functions that could be used to regenerate the alveolar bone defects. The purpose of this study is to examine the ability of SHED and CAS in alveolar bone defects using an immunohistochemical analysis. Methods: ten three-month-old healthy male Wistar rats (R. novergicus) that weighed between 150-250 grams (g) were used as animal models. A simple blind random sampling method was used to select the sample that was assigned to the study group for CAS and SHED seeded in CAS (n=5). The animal study model of the alveolar bone was established by extracting the anterior mandible teeth. Rodent anesthesia was applied to relieve the pain during the procedure for all test animals. Immunohistochemistry was performed after seven days to facilitate the examination of the receptor activator of NF-κβ ligand (RANKL), osteoprotegrin (OPG), transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin, and osteopontin expression. The data was analyzed using the unpaired t-test (p<0.01) and Pearson's correlation test (p<0.05). Results: The OPG, RUNX2, TGF-β, VEGF, ALP, osteocalcin, and ostepontin expressions were higher in SHED seeded in CAS than CAS only with a significant difference between the groups (p<0.01). Furthermore, the RANKL expression was lower in SHED seeded in CAS compared to CAS only. There was a strong reverse significant correlation between OPG and RANKL expression (p<0.05). Conclusions: The number of osteogenic marker expressing cells, such as OPG, RUNX2, TGF-β, VEGF, ALP, osteocalcin, and ostepontin, increased. However, RANKL expression in the alveolar bone defects that were implanted with SHED seeded in CAS did not increase after seven days.
Collapse
Affiliation(s)
- Tania Saskianti
- Pediatric Dentistry Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Alexander Patera Nugraha
- Orthodontics Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Chiquita Prahasanti
- Periodontology Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Diah Savitri Ernawati
- Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Ketut Suardita
- Conservative Dentistry Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132, Indonesia
| | - Wibi Riawan
- Biomolecular Biochemistry, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| |
Collapse
|
12
|
Prahasanti C, Nugraha AP, Saskianti T, Suardita K, Riawan W, Ernawati DS. Exfoliated Human Deciduous Tooth Stem Cells Incorporating Carbonate Apatite Scaffold Enhance BMP-2, BMP-7 and Attenuate MMP-8 Expression During Initial Alveolar Bone Remodeling in Wistar Rats ( Rattus norvegicus). Clin Cosmet Investig Dent 2020; 12:79-85. [PMID: 32273773 PMCID: PMC7102906 DOI: 10.2147/ccide.s245678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Post-tooth extraction socket preservation is necessary due to alveolar bone resorptive patterns through regenerative dentistry approaches that involve the use of stem cells, scaffold and growth factor. Stem cells derived from human exfoliated deciduous teeth (SHED) are known to potentially possess the osteogenic ability. Meanwhile, carbonate apatite scaffold (CAS) can act as a biocompatible scaffold capable of supporting mesenchymal stem cells (MSCs) to proliferate and differentiate optimally. The aim of this study is to investigate the expression of bone morphogenic protein-2 and 7 (BMP2, BMP7) and Matrix Metalloproteinase-8 (MMP-8) after the transplantation of SHED-incorporated CAS during in vivo bone remodeling. Material and Methods A total of 14 healthy, male, Wistar rats, whose mandible anterior teeth were extracted by means of sterile needle holder clamps, constituted the subjects of this study of alveolar bone defects. Two research groups were created: a control group (CAS) as group I and an experimental group (CAS + SHED) as group II. SHED with a density of 106 cells were incorporated into CAS before being transplanted into the experimental group. After 7 days, all the animals were sacrificed and their mandible anterior region extracted. The BMP2, BMP7 and MMP-8 expression were subsequently analyzed by means of immunostaining. An unpaired t-test was conducted to analyze the treatment and control group (p<0.01) data. Results The expression of BMP-2 and BMP-7 was higher in group II compared to group I. Meanwhile, the level of MMP-8 was lower in group II than group I. There was greater significant increased expression of BMP-2 and BMP-7 expression in Group II compared to Group I. There was significant decreased expression of MMP-8 between group II than group I (p<0.01). Conclusion SHED-incorporated CAS can enhance BMP-2 and BMP-7 expression while attenuating MMP-8 expression during in vivo alveolar bone remodeling.
Collapse
Affiliation(s)
- Chiquita Prahasanti
- Department of Periodontology, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Alexander Patera Nugraha
- Department of Orthodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia.,Medical Science, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Tania Saskianti
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Ketut Suardita
- Department of Conservative Dentistry, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Biomolecular Biochemistry, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
13
|
Kresnoadi U, Rahayu RP, Ariani MD, Soesanto S. The Potential of Natural Propolis Extract Combined with Bovine Bone Graft in Increasing Heat Shock Protein 70 and Osteocalcin on Socket Preservation. Eur J Dent 2020; 14:31-37. [PMID: 32168530 PMCID: PMC7069740 DOI: 10.1055/s-0040-1701921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE This study aims to combine natural propolis with bovine bone graft (BBG) as a means of extraction socket preservation after 3 and 7 days toward expression of heat shock protein (HSP) 70 and osteocalcin to regenerate bone. MATERIALS AND METHODS The Cavia cobaya were divided into eight groups, each consisting of seven samples. Their lower left incisors were extracted and induced with PEG, propolis extract, BBG, and a combination of propolis extract BBG. The research subjects were terminated on days 3 and 7 postextraction. Immunohistochemical and histopathological examinations were subsequently performed to observe HSP 70 expression, osteocalcin expression, osteoblasts, and osteoclasts. STATISTICAL ANALYSIS Data obtained were then analyzed with one-way analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) tests. RESULTS Both the groups with the combination of propolis extract and BBG on days 3 and 7 were found to present the highest number of HSP70 expression, osteocalcin expression, and osteoblast cells as well as the lowest number of osteoclasts. CONCLUSION Both the groups with the combination of propolis extract and BBG on days 3 and 7 were found to present the highest number of HSP70 expression, osteocalcin expression, and osteoblast cells as well as the lowest number of osteoclasts.
Collapse
Affiliation(s)
- Utari Kresnoadi
- Department of Prosthodontic, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Department of Oral and Maxillofacial Pathology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Soesanto Soesanto
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
14
|
Awadeen MA, Al-Belasy FA, Ameen LE, Helal ME, Grawish ME. Early therapeutic effect of platelet-rich fibrin combined with allogeneic bone marrow-derived stem cells on rats' critical-sized mandibular defects. World J Stem Cells 2020; 12:55-69. [PMID: 32110275 PMCID: PMC7031757 DOI: 10.4252/wjsc.v12.i1.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Critically sized bone defects represent a significant challenge to orthopaedic surgeons worldwide. These defects generally result from severe trauma or resection of a whole large tumour. Autologous bone grafts are the current gold standard for the reconstruction of such defects. However, due to increased patient morbidity and the need for a second operative site, other lines of treatment should be introduced. To find alternative unconventional therapies to manage such defects, bone tissue engineering using a combination of suitable bioactive factors, cells, and biocompatible scaffolds offers a promising new approach for bone regeneration. AIM To evaluate the healing capacity of platelet-rich fibrin (PRF) membranes seeded with allogeneic mesenchymal bone marrow-derived stem cells (BMSCs) on critically sized mandibular defects in a rat model. METHODS Sixty-three Sprague Dawley rats were subjected to bilateral bone defects of critical size in the mandibles created by a 5-mm diameter trephine bur. Rats were allocated to three equal groups of 21 rats each. Group I bone defects were irrigated with normal saline and designed as negative controls. Defects of group II were grafted with PRF membranes and served as positive controls, while defects of group III were grafted with PRF membranes seeded with allogeneic BMSCs. Seven rats from each group were killed at 1, 2 and 4 wk. The mandibles were dissected and prepared for routine haematoxylin and eosin (HE) staining, Masson's trichrome staining and CD68 immunohistochemical staining. RESULTS Four weeks postoperatively, the percentage area of newly formed bone was significantly higher in group III (0.88 ± 0.02) than in groups I (0.02 ± 0.00) and II (0.60 ± 0.02). The amount of granulation tissue formation was lower in group III (0.12 ± 0.02) than in groups I (0.20 ± 0.02) and II (0.40 ± 0.02). The number of inflammatory cells was lower in group III (0.29 ± 0.03) than in groups I (4.82 ± 0.08) and II (3.09 ± 0.07). CONCLUSION Bone regenerative quality of critically sized mandibular bone defects in rats was better promoted by PRF membranes seeded with BMSCs than with PRF membranes alone.
Collapse
Affiliation(s)
- Muhammad A Awadeen
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Fouad A Al-Belasy
- Department of Oral Surgery and Anesthesia, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Laila E Ameen
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohamad E Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
15
|
Ghaznavi D, Babaloo A, Shirmohammadi A, Zamani ARN, Azizi M, Rahbarghazi R, Ghaznavi A. Advanced platelet-rich fibrin plus gold nanoparticles enhanced the osteogenic capacity of human mesenchymal stem cells. BMC Res Notes 2019; 12:721. [PMID: 31685012 PMCID: PMC6827227 DOI: 10.1186/s13104-019-4750-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/18/2019] [Indexed: 01/14/2023] Open
Abstract
Objectives There is still insufficient clinical evidence of platelet-rich fibrin beneficial effects on bone regeneration. Gold nanoparticles have been shown to enhance osteogenic differentiation and bone mineralization. The purpose of this study was to investigate the effect of advanced-platelet-rich fibrin modified by gold nanoparticles on the osteoblastic differentiation of human mesenchymal stem cells. Results MTT assay revealed 0.0125 mM gold nanoparticles had no cytotoxic effects on stem cells after 7 days. The addition of 0.0125 mM gold nanoparticle to advanced-platelet-rich fibrin clot increased cell viability compared to the non-treated control group (p < 0.05). 7-day incubation of stem cells with advanced-platelet-rich fibrin modified by gold nanoparticles conditioned media was shown to promote alkaline phosphatase activity compared to the control cells and group treated with advanced-platelet-rich fibrin condition media (p < 0.05). By using Alizarin Red S staining, red-colored calcium deposits were observed in the group treated with advanced-platelet-rich fibrin and gold nanoparticles conditioned media in comparison with non-treated cells (p < 0.05). Advanced-platelet-rich fibrin conditioned medium was unable to promote calcium deposition compared to the combination of advanced-platelet-rich fibrin and gold nanoparticles (p < 0.05). Adding gold nanoparticles to advanced-platelet-rich fibrin and fibrin and platelet byproducts could be an alternative strategy to improve osteogenic capacity of stem cells.
Collapse
Affiliation(s)
- Dara Ghaznavi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Periodontics, Dental Faculty, Tabriz University of Medical Sciences, Golgasht Ave, Tabriz, 5166/15731, Iran
| | - Amirreza Babaloo
- Department of Periodontics, Dental Faculty, Tabriz University of Medical Sciences, Golgasht Ave, Tabriz, 5166/15731, Iran.
| | - Adileh Shirmohammadi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Periodontics, Dental Faculty, Tabriz University of Medical Sciences, Golgasht Ave, Tabriz, 5166/15731, Iran
| | | | - Mehdi Azizi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Applied Cell Sciences Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aisan Ghaznavi
- Department of Oral and Maxillofacial Radiology, Dental Faculty, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
16
|
Nugraha AP, Susilowati H, Hendrianto E, Karsari D, Ertanti N, Dinaryanti A, Ihsan IS, Narmada IB, Ernawati DS, Rantam FA. Medicinal Signaling Cells Metabolite Oral Based as a Potential Biocompatible Biomaterial Accelerating Oral Ulcer Healing (In Vitro Study). Eur J Dent 2019; 13:432-436. [PMID: 31795007 PMCID: PMC6890501 DOI: 10.1055/s-0039-1693923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Medicinal signaling cells metabolite (MSCM) is often considered medical waste even though it contains abundant growth factors, and advantageous micro- and macromolecules that can accelerate healing in oral ulcer.The purpose of this experimental laboratory study was to analyze the biocompatibility and potential of MSCM, (oral based) to accelerate healing in oral ulcer (in vitro). MATERIALS AND METHODS MSCM (oral based) was obtained by mixing 10 mL of MSCM and 2% of carboxymethyl cellulose sodium. 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (or MTT assay) was obtained using human gingival somatic cell culture to examine cell viability treated with MSCM (oral based). Fourier transform infrared spectroscopy was performed to know the functional structure and composition of MSCM (oral based). To know the elemental composition of MSCM (oral based), energy-dispersive X-ray analysis was performed. Scratch test was performed to know the ability of MSCM (oral based) to increase human somatic cell proliferation. RESULTS MSCM (oral based) has good cell viability. MSCM (oral based) administration accelerated the proliferation of human somatic cell culture after 12-hours in vitro. MSCM (oral based) has carboxylic acids and derivatives chemical bond. MSCM (oral based) mostly contained carbon and potassium but did not contain heavy metal substances. CONCLUSIONS MSCM (oral based) has a biocompatible and potential ability to accelerate healing in oral ulcer in vitro. It would be useful in daily clinical practice in treating traumatic oral ulcer.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
- Orthodontics Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Doctoral Student of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Helen Susilowati
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
| | - Eryk Hendrianto
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
| | - Deya Karsari
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
| | - Nora Ertanti
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
| | - Aristika Dinaryanti
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
| | - Igo Syaiful Ihsan
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
| | - Ida Bagus Narmada
- Orthodontics Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Oral Medicine Department, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Research and Development Center, Universitas Airlangga Surabaya, Indonesia
- Virology and Immunology Laboratory, Department of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|