1
|
Ütük AE, Güven Gökmen T, Yazgan H, Eşki F, Turut N, Karahan Ş, Kıvrak İ, Sevin S, Sezer O. A potential antifungal bioproduct for Microsporum canis: Bee venom. Onderstepoort J Vet Res 2024; 91:e1-e6. [PMID: 39692341 PMCID: PMC11736513 DOI: 10.4102/ojvr.v91i1.2191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024] Open
Abstract
Natural treatment options for Microsporum canis dermatophytosis are being explored because of resistance to several antifungal medications. In this study, the potential antifungal effect of bee venom (BV), a natural antimicrobial agent, on M. canis was investigated. The antifungal effects of BV, fluconazole, itraconazole, amphotericin B and terbinafine were evaluated by the macrodilution method at various concentrations by modifying the microdilution method recommended by the European Committee on Antimicrobial Susceptibility Testing. All isolates were observed to be susceptible to terbinafine and fully resistant to fluconazole and amphotericin B. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of M. canis isolate 2 (Mc2) were determined as 8 µg/mL for itraconazole. The MIC and MFC values of BV were found to be 320 µg/mL for the Mc2 isolate and 640 µg/mL for the Mc6 isolate. The results showed that the isolates obtained from clinical samples in this study were highly resistant to all antifungal agents, except terbinafine. The increase in resistance indicates that antifungal drugs will become insufficient and ineffective over time and natural products such as BV should be evaluated as alternatives.Contribution: Although there are many drugs for the treatment of M. canis, the increase in resistance to antifungal agents reveals the need for the identification and development of new natural agents. Bee venom, which has been shown to have a safe and weak allergenic effect in various studies, can be tested for usability as a local antifungal drug when supported by in vivo studies.
Collapse
Affiliation(s)
- Armağan E Ütük
- Department of Parasitology, Ceyhan Veterinary Faculty, Cukurova University, Adana, Türkiye; and Department of Biotechnology, Institute of Natural and Applied Sciences, Cukurova University, Adana.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Jusuf S, Mansour MK. Catalase Deactivation Increases Dermatophyte Sensitivity to ROS Sources. J Fungi (Basel) 2024; 10:476. [PMID: 39057361 PMCID: PMC11277954 DOI: 10.3390/jof10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
As the leading cause of fungal skin infections around the globe, dermatophytes are responsible for a multitude of skin ailments, ranging from athlete's foot to ringworm. Due to the combination of its growing prevalence and antifungal misuse, antifungal-resistant dermatophyte strains like Trichophyton indotineae have begun to emerge, posing a significant global health risk. The emergence of these resistant dermatophytes highlights a critical need to identify alternative methods of treating dermatophyte infections. In our study, we utilized a 405 nm LED to establish that blue light can effectively inactivate catalase within a variety of both susceptible and resistant dermatophytes. Through this catalase inactivation process, light-treated dermatophytes were found to exhibit increased sensitivity to reactive oxygen species (ROS)-producing agents, improving the performance of antimicrobial agents such as H2O2 and amphotericin B. Our findings further demonstrate that light-induced catalase inactivation can inhibit the formation and polarized growth of hyphae from dermatophytes, suppressing biomass formation. Thus, by increasing ROS sensitization and inhibiting hyphal development, catalase-deactivating blue light offers a potential non-invasive and non-drug-reliant method of managing dermatophyte infections, opening new avenues for the potential treatment of these common infections in conjunction with existing treatments.
Collapse
Affiliation(s)
- Sebastian Jusuf
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
3
|
Das A, Praveen P, Khurana A, Sardana K. Red Flaging Unscientific Prescriptions in Dermatophytosis: An Overview. Indian J Dermatol 2023; 68:520-524. [PMID: 38099126 PMCID: PMC10718234 DOI: 10.4103/ijd.ijd_831_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Dermatophytosis has acquired an epidemic-like proportion, fuelling a wide gamut of irrational, unethical and unscientific prescriptions. The menace can be attributed to poorly regulated legislative laws controlling the approval of molecules, unscientific marketing gimmicks by the pharmaceutical industry, over-the-counter availability of drugs and lack of awareness and knowledge among the prescribing physicians. In this review, we have attempted to enlist the irrational and unethical prescription patterns for dermatophytosis.
Collapse
Affiliation(s)
- Anupam Das
- From the Department of Dermatology, KPC Medical College and Hospital, Kolkata, West Bengal, India
| | - Pranjal Praveen
- Department of Dermatology, IPGMER and SSKM, Kolkata, West Bengal, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, ABVIMS and Dr. RML Hospital, New Delhi, India
| |
Collapse
|
4
|
Vanitha PR, Somashekaraiah R, Divyashree S, Pan I, Sreenivasa MY. Antifungal activity of probiotic strain Lactiplantibacillus plantarum MYSN7 against Trichophyton tonsurans. Front Microbiol 2023; 14:1192449. [PMID: 37389341 PMCID: PMC10303898 DOI: 10.3389/fmicb.2023.1192449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
The primary objective of this study was to assess the probiotic attributes and antifungal activity of lactic acid bacteria (LAB) against the fungus, Trichophyton tonsurans. Among the 20 isolates screened for their antifungal attributes, isolate MYSN7 showed strong antifungal activity and was selected for further analysis. The isolate MYSN7 exhibited potential probiotic characteristics, having 75 and 70% survival percentages in pH3 and pH2, respectively, 68.73% tolerance to bile, a moderate cell surface hydrophobicity of 48.87%, and an auto-aggregation percentage of 80.62%. The cell-free supernatant (CFS) of MYSN7 also showed effective antibacterial activity against common pathogens. Furthermore, the isolate MYSN7 was identified as Lactiplantibacillus plantarum by 16S rRNA sequencing. Both L. plantarum MYSN7 and its CFS exhibited significant anti-Trichophyton activity in which the biomass of the fungal pathogen was negligible after 14 days of incubation with the active cells of probiotic culture (106 CFU/ml) and at 6% concentration of the CFS. In addition, the CFS inhibited the germination of conidia even after 72 h of incubation. The minimum inhibitory concentration of the lyophilized crude extract of the CFS was observed to be 8 mg/ml. Preliminary characterization of the CFS showed that the active component would be organic acids in nature responsible for antifungal activity. Organic acid profiling of the CFS using LC-MS revealed that it was a mixture of 11 different acids, and among these, succinic acid (9,793.60 μg/ml) and lactic acid (2,077.86 μg/ml) were predominant. Additionally, a scanning electron microscopic study revealed that CFS disrupted fungal hyphal structure significantly, which showed scanty branching and bulged terminus. The study indicates the potential of L. plantarum MYSN7 and its CFS to control the growth of T. tonsurans. Furthermore, in vivo studies need to be conducted to explore its possible applications on skin infections.
Collapse
Affiliation(s)
- P. R. Vanitha
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
- Maharani's Science College for Women, Mysuru, India
| | | | - S. Divyashree
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - Indranil Pan
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| |
Collapse
|
5
|
Agarwal A, Kar B. Amphotericin-B in dermatology. Indian Dermatol Online J 2022; 13:152-158. [PMID: 35198495 PMCID: PMC8809177 DOI: 10.4103/idoj.idoj_573_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022] Open
|
6
|
Ahmad Nasrollahi S, Fattahi A, Naeimifar A, Lotfali E, Firooz A, Khamesipoor A, Skandari SE, Miramin Mohammadi A. The in vitro effect of nanoliposomal amphotericin B against two clinically important dermatophytes. Int J Dermatol 2021; 61:383-389. [PMID: 34176127 DOI: 10.1111/ijd.15609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/23/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to investigate the antifungal activity of amphotericin B-loaded nanoliposomes against Trichophyton interdigitale and Trichophyton rubrum. Moreover, it was attempted to assess the obtained resistance in vitro. METHODS In total, 29 archived clinical strains, namely, T. interdigitale (n = 16) and T. rubrum (n = 13), were included in this study. These strains were determined using a previous ITS1-ITS2 region sequence. Moreover, a liposomal formulation of amphotericin B was formulated by a thin-film hydration method. Particle size, polydispersity index (PdI), and zeta potential (ZP) were measured by a Zetasizer. Furthermore, physicochemical properties, such as appearance, aggregation of particles, particle size, PdI, and ZP, were determined at 0-, 1-, and 3-month intervals. A scanning electron microscope (SEM) was also used to examine nanoparticles structure. The minimum inhibitory concentration (MIC) of amphotericin B-loaded nanoliposomes, itraconazole, efinaconazole, terbinafine, and ciclopirox was determined according to the protocol of the broth microdilution method of CLSI M38-A2. The morphological changes of T. interdigitale and T. rubrum strains exposed to the amphotericin B-loaded nanoliposomes were observed using SEM. RESULTS The amphotericin B-loaded nanoliposomes displayed a lower MIC compared to those of the amphotericin B and liposomes when used separately. Based on the results, amphotericin B-loaded nanoliposomes induced no drug resistance in any of the tested strains. CONCLUSION Accordingly, amphotericin B-loaded nanoliposomes can be a potent antifungal for the topical treatment of onychomycosis. There was no in vitro evidence regarding the resistance of the tested strains to amphotericin B-loaded nanoliposomes. This reflects that amphotericin B-loaded nanoliposomes have a low probability to induce drug resistance in dermatophyte species.
Collapse
Affiliation(s)
- Saman Ahmad Nasrollahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Naeimifar
- Pharmaceutical Department, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Firooz
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khamesipoor
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ebrahim Skandari
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Miramin Mohammadi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Danial AM, Medina A, Magan N. Lactobacillus plantarum strain HT-W104-B1: potential bacterium isolated from Malaysian fermented foods for control of the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol 2021; 37:57. [PMID: 33625606 PMCID: PMC7904726 DOI: 10.1007/s11274-021-03020-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 12/04/2022]
Abstract
The objective was to screen and evaluate the anti-fungal activity of lactic acid bacteria (LABs) isolated from Malaysian fermented foods against two Trichophyton species. A total of 66 LAB strains were screened using dual culture assays. This showed that four LAB strains were very effective in inhibiting growth of T. rubrum but not T. interdigitale. More detailed studies with Lactobacillus plantarum strain HT-W104-B1 showed that the supernatant was mainly responsible for inhibiting the growth of T. rubrum. The minimum inhibitory concentration (MIC), inhibitory concentration, the 50% growth inhibition (IC50) and minimum fungicide concentration (MFC) were 20 mg/mL, 14 mg/mL and 30 mg/mL, respectively. A total of six metabolites were found in the supernatant, with the two major metabolites being L-lactic acid (19.1 mg/g cell dry weight (CDW)) and acetic acid (2.2 mg/g CDW). A comparative study on keratin agar media showed that the natural mixture in the supernatants predominantly contained L-lactic and acetic acid, and this significantly controlled the growth of T. rubrum. The pure two individual compounds were less effective. Potential exists for application of the natural mixture of compounds for the treatment of skin infection by T. rubrum.
Collapse
Affiliation(s)
- Azlina Mohd Danial
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK.,Science and Food Technology Research Centre, Malaysian Agricultural and Research Institute, 43400, Serdang, Selangor, Malaysia
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
| | - Naresh Magan
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, Bedford, MK43 0AL, UK.
| |
Collapse
|
8
|
AL-Khikani F, Ayit A. Major challenges in dermatophytosis treatment: current options and future visions. EGYPTIAN JOURNAL OF DERMATOLOGY AND VENEROLOGY 2021. [DOI: 10.4103/ejdv.ejdv_23_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
de Abreu MH, Bitencourt TA, Franco ME, Moreli IS, Cantelli BAM, Komoto TT, Marins M, Fachin AL. Expression of genes containing tandem repeat patterns involved in the fungal-host interaction and in the response to antifungals in Trichophyton rubrum. Mycoses 2020; 63:610-616. [PMID: 32301521 DOI: 10.1111/myc.13088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Trichophyton rubrum is the most common aetiological agent of human dermatophytoses. These infections mainly occur in keratinised layers such as skin, hair and nails because the fungus uses keratin as a nutrient source. Fluconazole and amphotericin are antifungal agents most commonly used to treat dermatophytoses and acts on cell membrane ergosterol. Despite the clinical importance of T rubrum, the mechanisms underlying the fungal-host relationship have not yet been clarified. Tandem repeats (TRs) are short DNA sequences that are involved in a variety of adaptive functions, including the process of fungal infection. It is known that the larger the number of TRs in the genome, the greater the capacity of cell-cell junction and surface adhesion, especially when these repeats are present in regions encoding cell surface proteins. OBJECTIVES To identify in silico T rubrum genes containing TR patterns and to analyse the modulation of these genes in culture medium containing keratin (a model simulating skin infection) and antifungal drugs. METHODS The Dermatophyte Tandem Repeats Database (DTRDB) and the FaaPred tool were used to identify four T rubrum genes containing TR patterns. Quantitative real-time (RT) PCR was used to evaluate the gene expression during the growth of T rubrum on keratin and in the presence of fluconazole, amphotericin B and Congo red (acts in the cell wall). RESULTS The expression of these genes was found to be induced in culture medium containing keratin. In addition, these genes were induced in the presence of antifungal agents, especially fluconazole, indicating an adaptive response to the stress caused by this drug. CONCLUSION The results suggest an important role of genes containing TRs in the fungal-host interaction and in the susceptibility to inhibitory compounds, indicating these sequences as new potential targets for the development of antifungal agents.
Collapse
Affiliation(s)
| | | | | | - Igor Sawasaki Moreli
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | | | | | - Mozart Marins
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| | - Ana Lúcia Fachin
- Unidade de Biotecnologia, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
In Vitro Activity of Antifungal Drugs Against Trichophyton rubrum and Trichophyton mentagrophytes spp. by E-Test Method and Non-supplemented Mueller-Hinton Agar Plates. Mycopathologia 2019; 184:517-523. [PMID: 31297668 DOI: 10.1007/s11046-019-00360-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 11/27/2022]
Abstract
Trichophyton rubrum and Trichophyton mentagrophytes spp. are two of the most frequently isolated dermatophytes causing dermatophytosis worldwide. Since the incidence of resistance to antifungal agents is increasing, antifungal susceptibility tests are needed to successfully treat dermatophytoses. Most of the methods currently available are complicated, time-consuming and lack of reference procedures. The aim of this work was to establish a simple protocol to test the susceptibility of dermatophytes isolated from clinical samples against five antifungal drugs using E-test and disk diffusion methods. We used the E-test on non-supplemented Mueller-Hinton agar plates to determine the minimum inhibitory concentrations (MICs) of fluconazole, itraconazole, voriconazole and amphotericin B, and disk diffusion method to determine the interpretive MIC of terbinafine. Fifty dermatophytes-10 T. rubrum and 40 T. mentagrophytes spp.-were assessed after only 96 h of colony growth. Terbinafine was the most active antifungal agent with an inhibition diameter greater than 70 mm (sensitivity > 20 mm), followed by voriconazole, itraconazole and amphotericin B with MICs ranging from 0.032 to 0.38 µg/mL, from 0.006 to 0.125 µg/mL and from 0.5 to 1.5 µg/mL, respectively. All isolates were resistant to fluconazole. Collectively, the less laborious E-test and disk diffusion method were shown to be suitable and reliable to determine antifungal sensitivity of dermatophytes. This simple standard protocol could be employed in the routine of clinical laboratories.
Collapse
|