1
|
Rostamian M, Kadivarian S, Kooti S, Dashtbin S, Abiri R, Alvandi A. Prevalence of Extended-Spectrum Beta-Lactamase in Gram Negative Bacteria Isolated from Kermanshah Medical Centers:
A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Genetic Analysis, Population Structure, and Characterisation of Multidrug-Resistant Klebsiella pneumoniae from the Al-Hofuf Region of Saudi Arabia. Pathogens 2021; 10:pathogens10091097. [PMID: 34578130 PMCID: PMC8468815 DOI: 10.3390/pathogens10091097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae (MDR-KP) is a major public health problem that is globally associated with disease outbreaks and high mortality rates. As the world seeks solutions to such pathogens, global and regional surveillance is required. The aim of the present study was to examine the antimicrobial susceptibility pattern and clonal relatedness of Klebsiella pneumoniae isolates collected for a period of three years through pulse field gel electrophoresis (PFGE). Isolate IDs, antimicrobial assays, ESBL-production, and minimum inhibitory concentrations (MICs) were examined with the Vitek 2 Compact Automated System. IDs were confirmed by 16S rRNA gene sequencing, with the resulting sequences being deposited in NCBI databases. DNA was extracted and resistance genes were detected by PCR amplification with appropriate primers. Isolates were extensive (31%) and multidrug-resistant (65%). Pulsotype clusters grouped the isolates into 22 band profiles that showed no specific pattern with phenotypes. Of the isolates, 98% were ESBL-KP, 69% were carbapenem-resistant Enterobacteriaceae (CRE) strains, and 72.5% comprised the carriage of two MBLs (SIM and IMP). Integrons (ISAba1, ISAba2, and IS18) were detected in 69% of the MDR-KP. Additionally, OXA-23 was detected in 67% of the isolates. This study therefore demonstrates clonal diversity among clinical K. pneumoniae, confirming that this bacterium has access to an enormous pool of genes that confer high resistance-developing potential.
Collapse
|
3
|
Hassuna NA, AbdelAziz RA, Zakaria A, Abdelhakeem M. Extensively-Drug Resistant Klebsiella pneumoniae Recovered From Neonatal Sepsis Cases From a Major NICU in Egypt. Front Microbiol 2020; 11:1375. [PMID: 32636828 PMCID: PMC7317144 DOI: 10.3389/fmicb.2020.01375] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Neonatal sepsis is a nuisance to clinicians and medical microbiologists, particularly those cases caused by Klebsiella pneumoniae. Thus, we aimed at investigating the profile and mechanisms of antibiotic resistance and the clonal relationships between K. pneumoniae isolated from neonates at the largest tertiary care hospital’s neonatal intensive care units (NICUs) in Minia, Egypt. Methods This study comprised 156 neonates diagnosed with culture-proven sepsis from February 2019 to September 2019, at a major NICU of Minia City. All K. pneumoniae isolates were collected and characterized by antimicrobial profile, resistance genotype, and pulsed-field gel electrophoresis typing. Results Twenty-four K. pneumoniae isolates (15.3%) were collected out of the 156 sepsis diagnosed neonates. These samples showed extensive drug resistance (XDR) to most of the tested antimicrobials, except fluoroquinolones. All the K. pneumoniae isolates possessed blaVIM and blaNDM carbapenemase genes, while blaKPC gene was detected in 95.8%. Considering extended-spectrum β-lactamases genes, blaCTX–M was found in all the isolates and blaOXA–1 gene in 75% of them. The plasmid-mediated quinolone resistance gene qnrS, was predominantly found among our isolates in comparison to qnrB or qnrA. A moderate degree of clonal relatedness was observed between the isolates. Conclusion To the best of our knowledge, this the first report of an alarming occurrence of XDR among K. penumoniae isolates recovered from neonatal sepsis in Egypt. Our data necessitate proper antimicrobial stewardship as the choices will be very limited.
Collapse
Affiliation(s)
- Noha A Hassuna
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Reem A AbdelAziz
- Department of Pediatrics, Faculty of Medicine, Minia University, Minia, Egypt
| | - Amira Zakaria
- Biotechnology Institute, Suez Canal University, Ismaïlia, Egypt
| | - Mohammed Abdelhakeem
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
4
|
Malek Jamshidi MR, Zandi H, Eftekhar F. Correlation of quinolone-resistance, qnr genes and integron carriage in multidrug-resistant community isolates of Klebsiella spp. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1387-1391. [PMID: 32133055 DOI: 10.22038/ijbms.2019.13985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objectives Plasmid-mediated quinolone resistance (PMQR) determinants and integrons have a considerable contribution to bacterial drug resistance in Gram-negative pathogens. We studied the prevalence of PMQR genes and integron carriage in multidrug-resistant community isolates of Klebsiella spp. Materials and Methods Two hundred and fifty Klebsiella spp. isolates were collected from outpatient specimens between August 2015 and October 2017 in Yazd central Laboratory, Iran. Antibiotic susceptibility was determined against 17 antibiotics and minimum inhibitory concentration (MIC) of ciprofloxacin was measured by E-test. Polymerase chain reaction (PCR) was employed for detection of qnrA, qnrB, qnrS, aac(6')-Ib-cr, oqxAB and qepA genes. Results Disc diffusion results showed that 17 isolates (6.8%) were multidrug resistant (MDR), two of which were Klebsiella oxytoca and 15 were Klebsiella pneumoniae. MIC measurements revealed 11 ciprofloxacin-resistant isolates (including the two K. oxytoca), three intermediately-resistant and three ciprofloxacin-susceptible isolates. All ciprofloxacin-resistant and intermediately-resistant isolates carried at least one and up to four PMQR genes. The most prevalent PMQR gene was oqxAB (93.75%) followed by aac(6')-ib-cr (50.0%), qnrB (25.0%) and qnrS (18.75%) but qnrA and qepA were not detected. Class 1 integron was observed in 14 (82.3%) isolates including nine ciprofloxacin-resistant, two intermediately-resistant, and three susceptible isolates. Class 2 and 3 integrons were not observed. Conclusion Presence of MDR, multiple PMQR determinants as well as class 1 integron in community isolates of Klebsiella spp. can be an important source of transmission of these opportunistic pathogens.
Collapse
Affiliation(s)
| | - Hengameh Zandi
- Department of Microbiology, Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fereshteh Eftekhar
- Department of Microbiology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
5
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
6
|
Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-Drug Resistant Gram-Negative Bacilli in the Middle East Using a One Health Approach. Front Microbiol 2019; 10:1941. [PMID: 31507558 PMCID: PMC6716069 DOI: 10.3389/fmicb.2019.01941] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022] Open
Abstract
In the last decade, extended-spectrum cephalosporin and carbapenem resistant Gram-negative bacilli (GNB) have been extensively reported in the literature as being disseminated in humans but also in animals and the environment. These resistant organisms often cause treatment challenges due to their wide spectrum of antibiotic resistance. With the emergence of colistin resistance in animals and its subsequent detection in humans, the situation has worsened. Several studies reported the transmission of resistant organisms from animals to humans. Studies from the middle east highlight the spread of resistant organisms in hospitals and to a lesser extent in livestock and the environment. In view of the recent socio-economical conflicts that these countries are facing in addition to the constant population mobilization; we attempt in this review to highlight the gaps of the prevalence of resistance, antibiotic consumption reports, infection control measures and other risk factors contributing in particular to the spread of resistance in these countries. In hospitals, carbapenemases producers appear to be dominant. In contrast, extended spectrum beta lactamases (ESBL) and colistin resistance are becoming a serious problem in animals. This is mainly due to the continuous use of colistin in veterinary medicine even though it is now abandoned in the human sphere. In the environment, despite the small number of reports, ESBL and carbapenemases producers were both detected. This highlights the importance of the latter as a bridge between humans and animals in the transmission chain. In this review, we note that in the majority of the Middle Eastern area, little is known about the level of antibiotic consumption especially in the community and animal farms. Furthermore, some countries are currently facing issues with immigrants, poverty and poor living conditions which has been imposed by the civil war crisis. This all greatly facilitates the dissemination of resistance in all environments. In the one health concept, this work re-emphasizes the need to have global intervention measures to avoid dissemination of antibiotic resistance in humans, animals and the environment in Middle Eastern countries.
Collapse
Affiliation(s)
- Iman Dandachi
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Amer Chaddad
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jason Hanna
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Jessika Matta
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
| | - Ziad Daoud
- Faculty of Medicine and Medical Sciences, Clinical Microbiology Laboratory, University of Balamand, Beirut, Lebanon
- Division of Clinical Microbiology, Saint George Hospital University Medical Center, Beirut, Lebanon
| |
Collapse
|
7
|
Molecular Typing of Klebsiella pneumoniae Isolated from Medical Centers in Kermanshah Using Pulse Field Gel Electrophoresis. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2019. [DOI: 10.5812/pedinfect.84331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Amador P, Fernandes R, Prudêncio C, Duarte I. Prevalence of Antibiotic Resistance Genes in Multidrug-Resistant Enterobacteriaceae on Portuguese Livestock Manure. Antibiotics (Basel) 2019; 8:E23. [PMID: 30871244 PMCID: PMC6466527 DOI: 10.3390/antibiotics8010023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 01/03/2023] Open
Abstract
The exposure of both crop fields and humans to antibiotic-resistant bacteria in animal excreta is an emergent concern of the One Health initiative. This study assessed the contamination of livestock manure from poultry, pig, dairy farms and slaughterhouses in Portugal with resistance determinants. The resistance profiles of 331 Enterobacteriaceae isolates to eight β-lactam (amoxicillin, cefoxitin, cefotaxime, cefpirome, aztreonam, ceftazidime, imipenem and meropenem) and to five non-β-lactam antibiotics (tetracycline (TET), trimethoprim/sulfamethoxazole (SXT), ciprofloxacin (CIP), chloramphenicol (CHL) and gentamicin) was investigated. Forty-nine integron and non-β-lactam resistance genes were also screened for. Rates of resistance to the 13 antibiotics ranged from 80.8% to 0.6%. Multidrug resistance (MDR) rates were highest in pig farm samples (79%). Thirty different integron and resistance genes were identified. These were mainly associated with resistance to CHL (catI and catII), CIP (mainly, qnrS, qnrB and oqx), TET (mainly tet(A) and tet(M)) and SXT (mostly dfrIa group and sul3). In MDR isolates, integron presence and non-β-lactam resistance to TET, SXT and CHL were positively correlated. Overall, a high prevalence of MDR Enterobacteriaceae was found in livestock manure. The high gene diversity for antibiotic resistance identified in this study highlights the risk of MDR spread within the environment through manure use.
Collapse
Affiliation(s)
- Paula Amador
- Environment Department, Research Centre for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal.
| | - Ruben Fernandes
- Department Chemical Sciences and Biomolecules, School Allied Health Sciences, Polytechnic of Porto, 4200-072 Porto, Portugal.
| | - Cristina Prudêncio
- Department Chemical Sciences and Biomolecules, School Allied Health Sciences, Polytechnic of Porto, 4200-072 Porto, Portugal.
| | - Isabel Duarte
- Environment Department, Research Centre for Natural Resources, Environment and Society (CERNAS), College of Agriculture, Polytechnic of Coimbra, 3045-601 Coimbra, Portugal.
| |
Collapse
|