1
|
Lin XC, Li CL, Zhang SY, Yang XF, Jiang M. The Global and Regional Prevalence of Hospital-Acquired Carbapenem-Resistant Klebsiella pneumoniae Infection: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2024; 11:ofad649. [PMID: 38312215 PMCID: PMC10836986 DOI: 10.1093/ofid/ofad649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024] Open
Abstract
Background Due to scarce therapeutic options, hospital-acquired infections caused by Klebsiella pneumoniae (KP), particularly carbapenem-resistant KP (CRKP), pose enormous threat to patients' health worldwide. This study aimed to characterize the epidemiology and risk factors of CRKP among nosocomial KP infections. Method MEDLINE, Embase, PubMed, and Google Scholar were searched for studies reporting CRKP prevalence from inception to 30 March 2023. Data from eligible publications were extracted and subjected to meta-analysis to obtain global, regional, and country-specific estimates. To determine the cause of heterogeneity among the selected studies, prespecified subgroup analyses and meta-regression were also performed. Odds ratios of CRKP-associated risk factors were pooled by a DerSimonian and Laird random-effects method. Results We retained 61 articles across 14 countries and territories. The global prevalence of CRKP among patients with KP infections was 28.69% (95% CI, 26.53%-30.86%). South Asia had the highest CRKP prevalence at 66.04% (95% CI, 54.22%-77.85%), while high-income North America had the lowest prevalence at 14.29% (95% CI, 6.50%-22.0%). In the country/territory level, Greece had the highest prevalence at 70.61% (95% CI, 56.77%-84.45%), followed by India at 67.62% (95% CI, 53.74%-81.79%) and Taiwan at 67.54% (95% CI, 58.65%-76.14%). Hospital-acquired CRKP infections were associated with the following factors: hematologic malignancies, corticosteroid therapies, intensive care unit stays, mechanical ventilations, central venous catheter implantations, previous hospitalization, and antibiotic-related exposures (antifungals, carbapenems, quinolones, and cephalosporins). Conclusions Study findings highlight the importance of routine surveillance to control carbapenem resistance and suggest that patients with nosocomial KP infection have a very high prevalence of CRKP.
Collapse
Affiliation(s)
- Xing-chen Lin
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang-li Li
- Department of FSTC Clinic, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shao-yang Zhang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-feng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Jiang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Sivaraman GK, Rajan V, Vijayan A, Elangovan R, Prendiville A, Bachmann TT. Antibiotic Resistance Profiles and Molecular Characteristics of Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella pneumoniae Isolated From Shrimp Aquaculture Farms in Kerala, India. Front Microbiol 2021; 12:622891. [PMID: 34489875 PMCID: PMC8417373 DOI: 10.3389/fmicb.2021.622891] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
This study was undertaken to evaluate the prevalence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in selected shrimp aquaculture farms (n = 37) in Kerala, South India and to characterize the isolates using molecular tools. Overall, a low prevalence of ESBL-producers was found in the farms, most likely due to the reduced antibiotic usage in the shrimp farming sector. Out of the 261 samples (77 shrimp and 92 each of water and sediment), 14 (5.4%) tested positive for ESBL-E. coli or ESBL-K. pneumoniae. A total of 32 ESBL-E. coli and 15 ESBL- K. pneumoniae were recovered from these samples. All ESBL isolates were cefotaxime-resistant with minimal inhibitory concentration (MIC) ≥32 μg/ml. Of all isolates, 9 (28.1%) E. coli and 13 (86.7%) K. pneumoniae showed simultaneous resistance to tetracycline, ciprofloxacin, and trimethoprim-sulfamethoxazole. PCR analysis identified CTX-M group 1 (bla CTX-M-15 ) as the predominant ESBL genotype in both E. coli (23, 71.9%) and K. pneumoniae (15, 100%). Other beta-lactamase genes detected were as follows: bla TEM and bla SHV (11 K. pneumoniae), bla CTX-M group 9 (9 E. coli), and bla CMY-2 (2 E. coli). Further screening for AMR genes identified tetA and tetB (13, 40.6%), sul1 (11, 34.4%), sul2 (9, 28.1%), catA and cmlA (11, 34.4%), qepA and aac(6')-Ib-cr (9, 28.1%) and strAB and aadA1 (2, 6.3%) in E. coli, and qnrB (13, 86.7%), qnrS (3, 20%), oqxB (13, 86.7%), tetA (13, 86.7%), and sul2 (13, 86.7%) in K. pneumoniae isolates. Phylogenetic groups identified among E. coli isolates included B1 (4, 12.5%), B2 (6, 18.8%), C (10, 31.3%), D (3, 9.4%), and E (9, 28.1%). PCR-based replicon typing (PBRT) showed the predominance of IncFIA and IncFIB plasmids in E. coli; however, in K. pneumoniae, the major replicon type detected was IncHI1. Invariably, all isolates of K. pneumoniae harbored virulence-associated genes viz., iutA, entB, and mrkD. Epidemiological typing by pulsed-field gel electrophoresis (PFGE) revealed that E. coli isolates recovered from different farms were genetically unrelated, whereas isolates of K. pneumoniae showed considerable genetic relatedness. In conclusion, our findings provide evidence that shrimp aquaculture environments can act as reservoirs of multi-drug resistant E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Gopalan Krishnan Sivaraman
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Vineeth Rajan
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Ardhra Vijayan
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Kochi, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Alison Prendiville
- London College of Communication, University of the Arts London, London, United Kingdom
| | - Till T. Bachmann
- Division of Infection and Pathway Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Shankar C, Jacob JJ, Sugumar SG, Natarajan L, Rodrigues C, Mathur P, Mukherjee DN, Sharma A, Chitnis DS, Bharagava A, Manesh A, Gunasekaran K, Veeraraghavan B. Distinctive Mobile Genetic Elements Observed in the Clonal Expansion of Carbapenem-Resistant Klebsiella pneumoniae in India. Microb Drug Resist 2021; 27:1096-1104. [PMID: 33720791 DOI: 10.1089/mdr.2020.0316] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Klebsiella pneumoniae (Kp), a common multidrug-resistant pathogen, causes a wide spectrum of nosocomial infections with high rates of morbidity and mortality. The emergence of pan drug-resistant international high-risk clones such as ST258, ST14, ST15, ST147, and ST101 is a global concern. This study was performed to investigate the carbapenemases, the plasmid profile, and the clonal relationship among Indian K. pneumoniae. Materials and Methods: A total of 290 K. pneumoniae isolates from seven centers in India were characterized to determine sequence types (STs) and carbapenemases. A subset of isolates was subjected to whole genome sequencing and hybrid genome assembly to obtain the complete genome. Plasmids carrying carbapenemases were characterized to determine the dissemination of carbapenem-resistant (CR) K. pneumoniae. Results: From this study, 75 different STs were observed with ST231 being predominant. About 79% of the analyzed isolates were CR with 59% (n = 136) producing OXA48-like carbapenemases. While ST231 was the predominant clone among the OXA48-like producers; NDM producers and NDM+OXA48-like producers were mostly associated with ST14. Interestingly, 61% (n = 138) of the total CR K. pneumoniae were colistin resistant, belonging to 22 different STs. Plasmid profiling shows that blaOXA48-like was exclusively carried by ColKP3, whereas blaNDM was associated with IncFII-like plasmids. Conclusion: The highly mosaic genome of K. pneumoniae coupled with the diverse ecological niches in India makes it a hotspot for antimicrobial resistance, leading to increased morbidity and mortality. Extensive molecular surveillance of the clonal spread of K. pneumoniae could help in understanding AMR dynamics and thus rework therapeutic management.
Collapse
Affiliation(s)
- Chaitra Shankar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Suganya Gopal Sugumar
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Lavanya Natarajan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Camilla Rodrigues
- Department of Laboratory Medicine, All India Institute of Medical Sciences Trauma Centre, New Delhi, India
| | - Purva Mathur
- Microbiology Section, Department of Laboratory Medicine, P.D. Hinduja Hospital and Research Centre, Mumbai, India
| | - Dip Narayan Mukherjee
- Department of Microbiology, Woodlands Multispeciality Hospital, Kolkata, West Bengal, India
| | - Anita Sharma
- Department of Laboratory Medicine, Fortis Hospital, Mohali, Chandigarh, India
| | - D S Chitnis
- Department of Microbiology and Immunology, Choithram Hospital, Indore, Madhya Pradesh, India
| | - Anudita Bharagava
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, India
| | - Abi Manesh
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Karthik Gunasekaran
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Wang Z, Yu F, Shen X, Li M. A Polyclonal Spread Emerged: Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Isolates from the Intensive Care Unit in a Chinese Tertiary Hospital. Pol J Microbiol 2021; 69:311-319. [PMID: 33574860 PMCID: PMC7810120 DOI: 10.33073/pjm-2020-034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates often cause nosocomial infections with limited therapeutic options and spread rapidly worldwide. In this study, we revealed a polyclonal emergence of CRKP isolates from the intensive care unit in a Chinese tertiary hospital. We applied a series of methods including automated screening, antimicrobial susceptibility testing, the modified carbapenem inacti vation method (mCIM), PCR amplification, DNA sequencing, and multilocus sequence typing (MLST) to characterize 30 non-duplicated CRKP isolates along with the collection of the related medical records. The results showed the polyclonal spread of CRKP isolates belonged to ST722, ST1446, ST111, ST896, ST290, and ST11. Among them, ST722 and ST1446 were two novel types of K. pneumoniae, and ST896 isolate harboring blaKPC-2 was also found for the first time. Since the polyclonal spread of CRKP in the same ward is rare, the silent clonal evolution with the switching genotypes prompts us to stay alert for outbreaks caused by novel subclones.
Collapse
Affiliation(s)
- Zhengzheng Wang
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China.,Ningbo Institute of Life and Health, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Fangyou Yu
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaofei Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meilan Li
- Emergency Intensive Care Unit, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|