1
|
Lee H, Kim JM, Cho AY, Oh JH, Lee KY, Lee CS, Sun IO. Circulating microRNAs as markers for scrub typhus-associated acute kidney injury. Kidney Res Clin Pract 2024; 43:797-806. [PMID: 39622274 PMCID: PMC11615441 DOI: 10.23876/j.krcp.23.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 06/09/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Circulating microRNAs (miRNAs) are potential biomarkers for various kidney diseases. In this study, we aimed to identify a circulating miRNA signature for detecting acute kidney injury (AKI) in scrub typhus. METHODS We prospectively enrolled 40 patients with scrub typhus (20 with AKI, AKI group; 20 without AKI, non-AKI group) and 20 healthy volunteers (the HV group). Thereafter, we performed microarray analysis to assess the serum miRNA profiles of all the participants. Then, to identify miRNAs predictive of scrub typhus-associated AKI, we compared miRNA profiles among these three groups. RESULTS The proportions of miRNAs, small nucleolar RNAs, and small Cajal body-specific ribonucleoproteins were higher in patients with scrub typhus than in the HVs. Further, relative to the HVs, we identified 120 upregulated and 449 downregulated miRNAs in the non-AKI group and 101 upregulated and 468 downregulated miRNAs in the AKI group. We also identified 11 and 110 upregulated and downregulated miRNAs, respectively, in the AKI group relative to the non-AKI group, and among these miRNAs, we noted 14 miRNAs whose levels were significantly upregulated or downregulated in the AKI group relative to their levels in the HV and non-AKI groups. Biological pathway analysis of these 14 miRNAs indicated their potential involvement in various pathways associated with tumor necrosis factor alpha. CONCLUSION We identified miRNAs associated with AKI in patients with scrub typhus that have predictive potential for AKI. Thus, they can be used as surrogate markers for the detection of scrub typhus-associated AKI.
Collapse
Affiliation(s)
- Haeun Lee
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Jung Min Kim
- Nucleic Acids Research Center, TS NEXGEN Co., Ltd., Seoul, Republic of Korea
| | - A Young Cho
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Ju Hwan Oh
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Kwang Young Lee
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Chang-Seop Lee
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - In O Sun
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Panda S, Swain SK, Sahu BP, Sarangi R. Gene expression and involvement of signaling pathways during host-pathogen interplay in Orientia tsutsugamushi infection. 3 Biotech 2022; 12:180. [PMID: 35860421 PMCID: PMC9295102 DOI: 10.1007/s13205-022-03239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Scrub typhus is a neglected tropical disease that affects one-third of the world’s population. The disease is caused by Orientia tsutsugamushi (OT), an obligate intracellular Gram-negative bacterium. OT efficiently escapes from the endosomal pathway after entering the host cell and replicates inside cytosol. OT infection promotes cellular autophagy, the autonomous defense mechanism unlike other bacteria. This study has discussed the bacterial invasion process through the extracellular matrix and the immune response activated by the bacterium within the hosts. Furthermore, we have emphasized the importance of extracellular matrix and their cross-talk with the immune cells, such as, macrophages, neutrophils, and dendritic cells followed by their inflammatory response. We have also put an insight into the host factors associated with signaling pathways during scrub typhus disease with a special focus on the OT-induced stress response, autophagy, apoptosis, and innate immunity. Multiple cytokines and chemokines play a significant role in activating different immune-related signaling pathways. Due to the presence of high antigenic diversity among strains, the signaling pathways during the host–pathogen interplay of OT with its host is very complicated. Thus, it hinders to mitigate the severity of the pandemic occurred by the respective pathogen. Our investigation will provide a useful guide to better understand the virulence and physiology of this intracellular pathogen which will lead towards a better therapeutic diagnosis and vaccine development.
Collapse
Affiliation(s)
- Subhasmita Panda
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| | - Subrat Kumar Swain
- Centre for Genomics and Biomedical Informatics, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| | - Basanta Pravas Sahu
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552 India
| | - Rachita Sarangi
- Department of Pediatrics, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, Odisha 751003 India
| |
Collapse
|
3
|
Genome-Wide Association Study Identifies Eight Novel Loci for Susceptibility of Scrub Typhus and Highlights Immune-Related Signaling Pathways in Its Pathogenesis. Cells 2021; 10:cells10030570. [PMID: 33807835 PMCID: PMC7999653 DOI: 10.3390/cells10030570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Scrub typhus is a fatal zoonotic disease caused by Orientia tsutsugamushi. This disease is accompanied by systemic vasculitis, lymphadenopathy, headache, myalgia, and eschar. In recent studies, a novel strain that is resistant to current medical treatment was identified in Thailand. Thus, the development of new specific drugs for scrub typhus is needed. However, the exact molecular mechanism governing the progression of scrub typhus has not been fully elucidated. To understand disease-related genetic factors and mechanisms associated with the progression of scrub typhus, we performed a genome-wide association study (GWAS) in scrub typhus-infected patients and found a scrub typhus-related signaling pathway by molecular interaction search tool (MIST) and PANTHER. We identified eight potent scrub typhus-related single nucleotide polymorphisms (SNPs) located on the PRMT6, PLGLB2, DTWD2, BATF, JDP2, ONECUT1, WDR72, KLK, MAP3K7, and TGFBR2 genes using a GWAS. We also identified 224 genes by analyzing protein-protein interactions among candidate genes of scrub typhus and identified 15 signaling pathways associated with over 10 genes by classifying these genes according to signaling pathways. The signaling pathway with the largest number of associated genes was the gonadotropin-releasing hormone receptor pathway, followed by the TGF-beta signaling pathway and the apoptosis signaling pathway. To the best of our knowledge, this report describes the first GWAS in scrub typhus.
Collapse
|
4
|
Liu X, Xia X, Wang X, Zhou J, Sung LA, Long J, Geng X, Zeng Z, Yao W. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Front Immunol 2021; 11:587441. [PMID: 33552047 PMCID: PMC7856346 DOI: 10.3389/fimmu.2020.587441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. Upon maturation, DCs express costimulatory molecules and migrate to the lymph nodes to present antigens to T cells. The actin cytoskeleton plays key roles in multiple aspects of DC functions. However, little is known about the mechanisms and identities of actin-binding proteins that control DC maturation and maturation-associated functional changes. Tropomodulin1 (Tmod1), an actin-capping protein, controls actin depolymerization and nucleation. We found that Tmod1 was expressed in bone marrow-derived immature DCs and was significantly upregulated upon lipopolysaccharide (LPS)-induced DC maturation. By characterizing LPS-induced mature DCs (mDCs) from Tmod1 knockout mice, we found that compared with Tmod1+/+ mDCs, Tmod1-deficient mDCs exhibited lower surface expression of costimulatory molecules and chemokine receptors and reduced secretion of inflammatory cytokines, suggesting that Tmod1 deficiency retarded DC maturation. Tmod1-deficient mDCs also showed impaired random and chemotactic migration, deteriorated T-cell stimulatory ability, and reduced F-actin content and cell stiffness. Furthermore, Tmod1-deficient mDCs secreted high levels of IFN-β and IL-10 and induced immune tolerance in an experimental autoimmune encephalomyelitis (EAE) mouse model. Mechanistically, Tmod1 deficiency affected TLR4 signaling transduction, resulting in the decreased activity of MyD88-dependent NFκB and MAPK pathways but the increased activity of the TRIF/IRF3 pathway. Rescue with exogenous Tmod1 reversed the effect of Tmod1 deficiency on TLR4 signaling. Therefore, Tmod1 is critical in regulating DC maturation and immune functions by regulating TLR4 signaling and the actin cytoskeleton. Tmod1 may be a potential target for modulating DC functions, a strategy that would be beneficial for immunotherapy for several diseases.
Collapse
Affiliation(s)
- Xianmei Liu
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Xia
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jinhua Long
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhu Zeng
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, China
| |
Collapse
|