1
|
Jacoba CMP, Salongcay RP, Aquino LAC, Salva CMG, Saunar AV, Alog GP, Peto T, Silva PS. Comparisons of handheld retinal imaging devices with ultrawide field images for determining diabetic retinopathy severity. Acta Ophthalmol 2023; 101:670-678. [PMID: 36847205 DOI: 10.1111/aos.15651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE To compare diabetic retinopathy (DR) severity identified on handheld retinal imaging with ultrawide field (UWF) images. METHODS Mydriatic images of 225 eyes of 118 diabetic patients were prospectively imaged with the Aurora (AU) handheld retinal camera [5-field protocol (macula-centred, disc-centred, temporal, superior, inferior)] and compared with UWF images. Images were classified based on the international classification for DR. Sensitivity, specificity, kappa statistics (K/Kw) were calculated on an eye and person-level. RESULTS Distribution of DR severity by AU/UWF images (%) by eye was no DR 41.3/36.0, mild non-proliferative DR (NPDR) 18.7/17.8, moderate 10.2/10.7, severe 16.4/15.1, proliferative DR (PDR) 13.3/20.4. Agreement between UWF and AU was exact in 64.4%, within 1-step 90.7%, k = 0.55 (95% CI:0.45-0.65), and kw = 0.79 (95% CI:0.73-0.85) by eye, and exact in 68%, within 1-step 92.9%, k = 0.58 (95% CI:0.50-0.66), and kw = 0.76 (95% CI:0.70-0.81) by person. Sensitivity/specificity for any DR, refDR, vtDR and PDR were as follows: 0.90/0.83, 0.90/0.97, 0.82/0.95 and 0.69/1.00 by person and 0.86/0.90, 0.84/0.98, 0.75/0.95 and 0.63/0.99 by eye. Handheld imaging missed 37% (17/46) eyes and 30.8% (8/26) persons with PDR. Only 3.9% (1/26) persons or 6.5% (3/46) eyes with PDR were missed if a referral threshold of moderate NPDR was used. CONCLUSIONS Data from this study show that comparing UWF and handheld images, when PDR was the referral threshold for handheld devices, 37.0% of eyes or 30.8% of patients with PDR were missed. Due to the identification of neovascular lesions outside of the handheld fields, lower referral thresholds are needed if handheld devices are used.
Collapse
Affiliation(s)
- Cris Martin P Jacoba
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Recivall P Salongcay
- Philippine Eye Research Institute, University of the Philippines, Manila, Philippines
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- Eye and Vision Institute, The Medical City, Metro Manila, Philippines
| | - Lizzie Anne C Aquino
- Philippine Eye Research Institute, University of the Philippines, Manila, Philippines
| | | | - Aileen V Saunar
- Philippine Eye Research Institute, University of the Philippines, Manila, Philippines
- Eye and Vision Institute, The Medical City, Metro Manila, Philippines
| | - Glenn P Alog
- Philippine Eye Research Institute, University of the Philippines, Manila, Philippines
- Eye and Vision Institute, The Medical City, Metro Manila, Philippines
| | - Tunde Peto
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Paolo S Silva
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- Eye and Vision Institute, The Medical City, Metro Manila, Philippines
| |
Collapse
|
2
|
Appukumran R, Shyamsundar K, Agrawal M, Khurana R, Pannu A, Kumar P. Eight years' experience in mobile teleophthalmology for diabetic retinopathy screening. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2023; 11:162-170. [PMID: 37641607 PMCID: PMC10460246 DOI: 10.51329/mehdiophthal1460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 08/31/2023]
Abstract
Background Screening for diabetic retinopathy in the community without compromising the routine work of ophthalmologists at hospitals is the essence of teleophthalmology. This study was aimed at investigating the efficacy of teleophthalmology practice for screening diabetic retinopathy from 2012 to 2020. It was also aimed at comparing the 2-year prevalence of camps organized by a district hospital in South India, as well as the footfall, reporting, follow-up, patient response, and diagnostic efficacy at these camps. Methods All patients with diabetes and unexplained vision deterioration attending the mobile camp units underwent non-dilated fundus photography. Patients underwent teleconsultation with the ophthalmologist at the district hospital, and those requiring intervention were called to the district hospital. Trends were studied for the number of patients reporting to the hospital. Patient satisfaction was recorded based on a questionnaire. Results A total of 682 camps were held over 8 years, and 30 230 patients were examined. Teleconsultation was done for 12 157 (40.21%) patients. Patients requiring further investigations, intervention for diabetic retinopathy, or further management of other ocular pathologies were urgently referred to the district hospital (n= 3293 [10.89%] of 30 230 examined patients). The severity and presence of clinically significant macular edema increased significantly with an increased duration of diabetes mellitus (P < 0.001). The percentage of teleconsultations showed an increasing trend over the years (P = 0.001). Similarly, considering trends of patients reporting to the hospital, the attrition rate decreased over the years (P < 0.05). A total of 10 974 of 12 157 (90.27%) patients who underwent teleophthalmic consultation were satisfied with the service. Conclusions Teleconsultations over the years showed an increasing trend, and the attrition rate decreased over the years. Teleophthalmology is achieving success in providing high-quality service, easy access to care, and in increasing patient satisfaction. Future studies on the role of teleophthalmology for other leading preventable causes of blindness seem possible and necessary.
Collapse
Affiliation(s)
| | | | - Mohini Agrawal
- Department of Ophthalmology, Military Hospital, Jalandhar, Punjab, India
| | - Rolli Khurana
- Department of Ophthalmology, Military Hospital, Ahmedabad, India
| | - Anju Pannu
- Department of Community Medicine, Armed Forces Medical College, Pune, India
| | - Praveen Kumar
- Department of Community Medicine, Armed Forces Medical College, Pune, India
| |
Collapse
|
3
|
Munjral S, Maindarkar M, Ahluwalia P, Puvvula A, Jamthikar A, Jujaray T, Suri N, Paul S, Pathak R, Saba L, Chalakkal RJ, Gupta S, Faa G, Singh IM, Chadha PS, Turk M, Johri AM, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Pareek G, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou A, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji J, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Viswanathan V, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Fouda MM, Suri JS. Cardiovascular Risk Stratification in Diabetic Retinopathy via Atherosclerotic Pathway in COVID-19/Non-COVID-19 Frameworks Using Artificial Intelligence Paradigm: A Narrative Review. Diagnostics (Basel) 2022; 12:1234. [PMID: 35626389 PMCID: PMC9140106 DOI: 10.3390/diagnostics12051234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is one of the main causes of the rising cases of blindness in adults. This microvascular complication of diabetes is termed diabetic retinopathy (DR) and is associated with an expanding risk of cardiovascular events in diabetes patients. DR, in its various forms, is seen to be a powerful indicator of atherosclerosis. Further, the macrovascular complication of diabetes leads to coronary artery disease (CAD). Thus, the timely identification of cardiovascular disease (CVD) complications in DR patients is of utmost importance. Since CAD risk assessment is expensive for low-income countries, it is important to look for surrogate biomarkers for risk stratification of CVD in DR patients. Due to the common genetic makeup between the coronary and carotid arteries, low-cost, high-resolution imaging such as carotid B-mode ultrasound (US) can be used for arterial tissue characterization and risk stratification in DR patients. The advent of artificial intelligence (AI) techniques has facilitated the handling of large cohorts in a big data framework to identify atherosclerotic plaque features in arterial ultrasound. This enables timely CVD risk assessment and risk stratification of patients with DR. Thus, this review focuses on understanding the pathophysiology of DR, retinal and CAD imaging, the role of surrogate markers for CVD, and finally, the CVD risk stratification of DR patients. The review shows a step-by-step cyclic activity of how diabetes and atherosclerotic disease cause DR, leading to the worsening of CVD. We propose a solution to how AI can help in the identification of CVD risk. Lastly, we analyze the role of DR/CVD in the COVID-19 framework.
Collapse
Affiliation(s)
- Smiksha Munjral
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Mahesh Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India;
| | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Ankush Jamthikar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Tanay Jujaray
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95616, USA
| | - Neha Suri
- Mira Loma High School, Sacramento, CA 95821, USA;
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India;
| | - Rajesh Pathak
- Department of Computer Science Engineering, Rawatpura Sarkar University, Raipur 492015, India;
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | | | - Suneet Gupta
- CSE Department, Bennett University, Greater Noida 201310, India;
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy;
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Paramjit S. Chadha
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany;
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10 000 Zagreb, Croatia;
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece;
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA 94574, USA;
| | - Gyan Pareek
- Minimally Invasive Urology Institute, Brown University, Providence, RI 02912, USA;
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA;
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy; (L.S.); (A.B.)
| | - Petros P. Sfikakis
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece; (D.W.S.); (P.P.S.)
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Durga Prasanna Misra
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - Vikas Agarwal
- Department of Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India; (D.P.M.); (V.A.)
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK;
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Raghu Kolluri
- OhioHealth Heart and Vascular, Columbus, OH 43214, USA;
| | - Jagjit Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada;
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| | | | - Ajit Saxena
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India; (N.N.K.); (A.S.)
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA;
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA 95119, USA;
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Vijay Viswanathan
- MV Hospital for Diabetes and Professor MVD Research Centre, Chennai 600013, India;
| | | | - Tomaz Omerzu
- Department of Neurology, University Medical Centre Maribor, 1262 Maribor, Slovenia;
| | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA;
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Nicosia 2408, Cyprus;
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA;
| | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA; (S.M.); (M.M.); (A.P.); (A.J.); (T.J.); (I.M.S.); (P.S.C.); (S.K.D.)
| |
Collapse
|