1
|
Shanbhag SS, Kate A, Ganguly S, Jakati S, Deshmukh R, Basu S. Five- to Twelve-Year Outcomes of Autologous Simple Limbal Epithelial Transplantation: Long-Term Corneal Epithelial Imaging and Phenotypic Analysis. Am J Ophthalmol 2025; 273:107-118. [PMID: 39924137 DOI: 10.1016/j.ajo.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE To objectively assess the long-term corneal epithelial recovery after autologous simple limbal epithelial transplantation (SLET) for ocular chemical burn (OCB)-induced unilateral limbal stem cell deficiency (LSCD). DESIGN Prospective, fellow-eye controlled, cross-sectional imaging and diagnostic study. SUBJECTS The study included 47 patients, who were 5 to 12 years postautologous SLET done for OCB-induced unilateral LSCD. METHODS The donor and recipient eyes of all patients were assessed at a single follow-up visit with slit-lamp biomicroscopy (SLB), in vivo confocal microscopy (IVCM), impression cytology (IC), anterior segment optical coherence tomography (ASOCT), and Scheimpflug imaging (SI). The objective parameters that were assessed were corneal epithelial phenotype (CEP), thickness (CET), reflectivity (CER), and densitometry (CED). Median values with inter-quartile ranges were assessed for all parameters and analyzed using non-parametric tests. MAIN OUTCOME MEASURES The primary outcome measure was successful restoration of normal CEP on SLB, IVCM, and IC. Secondary outcome measures were comparison of CET and CER on ASOCT, and CED on SI between the eyes with successful and failed CEP restoration, and donor eyes. RESULTS The study analyzed 94 eyes of 47 patients, with a median follow-up of 5.75 years post-SLET. Successful restoration of CEP on SLB, IVCM, and IC was observed in 32 (68%) recipient eyes, while failure was seen in 15 (32%) eyes. The CEP was normal in all 47 (100%) donor eyes. The median CET was similar in healthy donor eyes, eyes with successful CEP restoration (55.9 microns, 50.3-59.2 vs. 57.8, 49.9-63.1; P = .47) and eyes with failure (57.7 microns, 50.9-66.2; P ≥ .59). Although, the median CER (100.72, 89.9-111.2 vs. 121.6, 109.7-139.8; P = .001) and CED (14.7, 13.4-17.1 vs. 26.5, 20.1-30.2; P = .02) values were significantly lower in eyes with successful CEP restoration as compared to eyes with failure, they were still significantly greater than corresponding values in the healthy donor eyes for CER (90.33, 84.9-96.9; P = .02), and CED (13.5, 11.4-15.1; P = .03), respectively. CONCLUSIONS Long-term 5-12 year successful restoration of the corneal epithelial phenotype was seen in two-thirds of eyes postautologous SLET. While corneal epithelial reflectivity, and densitometry were relatively better in eyes with successful outcomes, corneal epithelial thickness was similar in all eyes.
Collapse
Affiliation(s)
- Swapna S Shanbhag
- From the Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute (S.S.S, S.G, S.B.), Hyderabad, Telangana, India
| | - Anahita Kate
- Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute (A.K.), Vijayawada, Andhra Pradesh, India
| | - Shayeri Ganguly
- From the Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute (S.S.S, S.G, S.B.), Hyderabad, Telangana, India
| | - Saumya Jakati
- Ophthalmic Pathology Laboratory, L V Prasad Eye Institute (S.J.), Hyderabad, Telangana, India
| | - Rashmi Deshmukh
- Department of Cataract and Refractive Surgery, L V Prasad Eye Institute (R.D.), Hyderabad, Telangana, India
| | - Sayan Basu
- From the Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute (S.S.S, S.G, S.B.), Hyderabad, Telangana, India.; Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute (S.B.), Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Bibak-Bejandi Z, Arabpour Z, Razavi A, Moghtader A, Shahjahan S, Alzein A, Kwon JE, Bibak-Bejandi R, Aly N, Djalilian A. Limbal stem cell deficiency approaches and limbal niche restoration. Indian J Ophthalmol 2025; 73:468-482. [PMID: 40146135 DOI: 10.4103/ijo.ijo_464_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Approaches to limbal stem cell deficiency remain challenging, especially in bilateral cases, where healthy limbal stem cells are not accessible. While living-related allogeneic and allogeneic limbal stem cell sources have been utilized, their dependence on immunosuppression and its associated side effects pose significant limitations. Mucosal and mesenchymal stem cells have shown potential for differentiation into limbal stem cells and promoting corneal healing, primarily when cultured on the amniotic membrane or fibrin. However, none can fully replicate the original limbus. Innovations in surgical techniques, such as simple oral mucosal transplantation and subconjunctival or intrastromal mesenchymal stem cell injections, are emerging approaches. For successful limbal regeneration, both appropriate cells and suitable scaffolds are essential. Recent studies on decellularized and acellularized limbus models have demonstrated the potential to provide a three-dimensional native structure for cell seeding, retention, and differentiation. Creating a thin, evenly decellularized scaffold is a critical step in ensuring proper corneo-limbal slope formation, facilitating cell migration to the ocular surface. Harvesting the limbus, decellularization, and cell seeding are the three main steps in limbal reconstruction. Recent studies focus on microkeratome-assisted limbal harvesting to create a thin, even, and 360-degree limbal graft. This technique helps form an attached corneo-limbal interface, facilitating limbal stem cell migration. In the second step, acellularization is performed to preserve the extracellular matrix as much as possible, maintaining hemostasis and supporting paracrine interactions. The final steps involve recellularization and transplantation onto the eye. We summarize various limbal decellularization methods, their outcomes, and their potential in limbal reconstruction. More clinical studies are needed to validate this phase of limbal deficiency treatment.
Collapse
Affiliation(s)
- Zahra Bibak-Bejandi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Zohre Arabpour
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Alireza Razavi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Moghtader
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sumaiya Shahjahan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahmad Alzein
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeonghyun Esther Kwon
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Nuran Aly
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Garg A, Goel K, Gour A, Sapra M, Sangwan VS, Tripathi R, Tiwari A. Unveiling the Molecular Mechanisms Underlying the Success of Simple Limbal Epithelial Transplantation (SLET). Cells 2025; 14:200. [PMID: 39936991 PMCID: PMC11817669 DOI: 10.3390/cells14030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Simple limbal epithelial transplantation (SLET) has emerged as an effective treatment option for limbal stem cell deficiency (LSCD). However, the precise molecular mechanisms underlying its success remain incompletely understood. This review delves into the proposed mechanisms involving the donor limbus, host microenvironment, and the amniotic membrane as a scaffold in SLET. The donor limbus contributes to SLET efficacy through various factors secreted by limbal epithelial stem cells, including hepatocyte growth factor (HGF), soluble Fms-like tyrosine kinase-1 (sFLT-1), and pigment epithelium-derived factor (PEDF), which support corneal healing and transparency. Additionally, the presence of melanocytes, immune cells, limbal fibroblasts, and adhesion molecules within the donor tissue helps preserve the integrity of the limbal niche. The host environment plays a critical role in supporting the transplanted stem cells, with mesenchymal stem cell-secreted factors promoting proliferation and differentiation. Although the amniotic membrane has traditionally been used as a scaffold, emerging evidence suggests that it may not always be necessary. Further studies are needed to validate this scaffold-free approach and to evaluate the vitality and functional contributions of individual components used in SLET. Understanding these complex interactions and molecular mechanisms sheds light on the importance of the donor tissue, host microenvironment, and scaffold in SLET, paving the way for the optimization of this technique for the effective treatment of LSCD.
Collapse
Affiliation(s)
- Aastha Garg
- Department of Cornea and Anterior Segment Services, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (A.G.); (A.G.); (V.S.S.)
- Department of Stem Cells Research, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (K.G.); (M.S.)
| | - Kartik Goel
- Department of Stem Cells Research, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (K.G.); (M.S.)
| | - Abha Gour
- Department of Cornea and Anterior Segment Services, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (A.G.); (A.G.); (V.S.S.)
- Department of Stem Cells Research, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (K.G.); (M.S.)
| | - Mehak Sapra
- Department of Stem Cells Research, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (K.G.); (M.S.)
| | - Virender Singh Sangwan
- Department of Cornea and Anterior Segment Services, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (A.G.); (A.G.); (V.S.S.)
- Department of Stem Cells Research, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (K.G.); (M.S.)
| | - Ratnakar Tripathi
- Department of Veterinary Medicine, University of Missouri, Columbia, MO 65201, USA
| | - Anil Tiwari
- Department of Stem Cells Research, Dr. Shroff’s Charity Eye Hospital, New Delhi 110002, India; (K.G.); (M.S.)
| |
Collapse
|
4
|
Musa M, Chukwuyem E, Enaholo E, Esekea I, Iyamu E, D'Esposito F, Tognetto D, Gagliano C, Zeppieri M. Amniotic Membrane Transplantation: Clinical Applications in Enhancing Wound Healing and Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:39-58. [PMID: 39514052 DOI: 10.1007/5584_2024_834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chronic wounds and non-healing tissue defects pose significant clinical challenges, necessitating innovative therapeutic approaches. A comprehensive literature review of amniotic membrane transplantation for wound healing and tissue repair evaluates the efficacy and safety of amniotic membrane transplantation in enhancing wound healing and tissue repair. Amniotic membranes promote wound closure and reduce inflammation and scarring via abundant growth factors, cytokines, and extracellular matrix components, which foster conducive environments for tissue regeneration. Amniotic membrane transplantation is effective in various medical disciplines, including ophthalmology, dermatology, and orthopedics. Low immunogenicity and anti-microbial properties ensure their safe application. Amniotic membrane transplantation offers a promising therapeutic approach for wound healing and tissue repair, and further research is warranted to explore its regenerative potential fully.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ekele Chukwuyem
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Nigeria
| | - Ifeoma Esekea
- Department of Optometry, University of Benin, Benin City, Nigeria
| | - Eghosasere Iyamu
- Department of Optometry, University of Benin, Benin City, Nigeria
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Daniele Tognetto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, Italy
- Mediterranean Foundation "G.B. Morgagni", Catania, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
5
|
A Decellularized Human Limbal Scaffold for Limbal Stem Cell Niche Reconstruction. Int J Mol Sci 2021; 22:ijms221810067. [PMID: 34576227 PMCID: PMC8471675 DOI: 10.3390/ijms221810067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
The transplantation of ex vivo expanded limbal epithelial progenitor cells (LEPCs) on amniotic membrane or fibrin gel is an established therapeutic strategy to regenerate the damaged corneal surface in patients with limbal stem cell deficiency (LSCD), but the long-term success rate is restricted. A scaffold with niche-specific structure and extracellular matrix (ECM) composition might have the advantage to improve long-term clinical outcomes, in particular for patients with severe damage or complete loss of the limbal niche tissue structure. Therefore, we evaluated the decellularized human limbus (DHL) as a biomimetic scaffold for the transplantation of LEPCs. Corneoscleral tissue was decellularized by sodium deoxycholate and deoxyribonuclease I in the presence or absence of dextran. We evaluated the efficiency of decellularization and its effects on the ultrastructure and ECM composition of the human corneal limbus. The recellularization of these scaffolds was studied by plating cultured LEPCs and limbal melanocytes (LMs) or by allowing cells to migrate from the host tissue following a lamellar transplantation ex vivo. Our decellularization protocol rapidly and effectively removed cellular and nuclear material while preserving the native ECM composition. In vitro recellularization by LEPCs and LMs demonstrated the good biocompatibility of the DHL and intrastromal invasion of LEPCs. Ex vivo transplantation of DHL revealed complete epithelialization as well as melanocytic and stromal repopulation from the host tissue. Thus, the generated DHL scaffold could be a promising biological material as a carrier for the transplantation of LEPCs to treat LSCD.
Collapse
|
6
|
Polisetti N, Gießl A, Zenkel M, Heger L, Dudziak D, Naschberger E, Stich L, Steinkasserer A, Kruse FE, Schlötzer-Schrehardt U. Melanocytes as emerging key players in niche regulation of limbal epithelial stem cells. Ocul Surf 2021; 22:172-189. [PMID: 34425298 DOI: 10.1016/j.jtos.2021.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 02/09/2023]
Abstract
PURPOSE Limbal melanocytes (LMel) represent essential components of the corneal epithelial stem cell niche and are known to protect limbal epithelial stem/progenitor cells (LEPCs) from UV damage by transfer of melanosomes. Here, we explored additional functional roles for LMel in niche homeostasis, immune regulation and angiostasis. METHODS Human corneoscleral tissues were morphologically analyzed in normal, inflammatory and wound healing conditions. The effects of LMel on LEPCs were analyzed in direct and indirect co-culture models using electron microscopy, immunocytochemistry, qRT-PCR, Western blotting and functional assays; limbal mesenchymal stromal cells and murine embryonic 3T3 fibroblasts served as controls. The immunophenotype of LMel was assessed by flow cytometry before and after interferon-γ stimulation, and their immunomodulatory properties were analyzed by mixed lymphocytes reaction, monocyte adhesion assays and cytometric bead arrays. Their angiostatic effects on human umbilical cord endothelial cells (HUVECs) were evaluated by proliferation, migration, and tube formation assays. RESULTS LMel and LEPCs formed structural units in the human limbal stem cell niche in situ, which could be functionally replicated, including melanosome transfer, by co-cultivation in vitro. LMel supported LEPCs during clonal expansion and during epithelial wound healing by stimulating proliferation and migration, and suppressed their differentiation through direct contact and paracrine effects. Under inflammatory conditions, LMel were increased in numbers and upregulated expression of ICAM-1 and MHC II molecules (HLA-DR), but lacked expression of HLA-G, -DP, -DQ and costimulatory molecules CD80 and CD86. They were also found to be potent suppressors of alloreactive T- cell proliferation and cytokine secretion, which largely depended on direct cell-cell interaction. Moreover, the LMel secretome exerted angiostatic activity by inhibiting vascular endothelial cell proliferation and capillary network formation. CONCLUSION These findings suggest that LMel are not only professional melanin-producing cells, but exert various non-canonical functions in limbal niche homeostasis by regulating LEPC maintenance, immune responses, and angiostasis. Their potent regulatory, immunomodulatory and anti-angiogenic properties may have important implications for future regenerative cell therapies.
Collapse
Affiliation(s)
- Naresh Polisetti
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; Eye Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Gießl
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Steinkasserer
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany; Medical Immunology Campus Erlangen, Erlangen, Germany; Department of Immune Modulation, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich E Kruse
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Prinz J, Mehta JS, Walter P, Fuest M. [Simple limbal epithelial transplantation (SLET) : A simple technique for the treatment of unilateral complete limbal stem cell deficiency. Video article]. Ophthalmologe 2021; 118:404-412. [PMID: 33683425 DOI: 10.1007/s00347-021-01346-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of simple limbal epithelial transplantation (SLET) is the regeneration of the corneal surface in unilateral complete limbal stem cell deficiency (LSCD). INDICATIONS SLET is indicated for unilateral complete LSCD. CONTRAINDICATIONS Contraindications include bilateral LSCD, severe corneal thinning, pronounced keratoconjunctivitis sicca, chronic inflammatory condition of the ocular surface, malposition of the eyelids and pronounced adhesions of the conjunctiva with trichiasis. SURGICAL TECHNIQUE A 1‑h biopsy is obtained from the superior limbus of the healthy donor eye. A 360° peritomy is performed on the LSCD eye and pannus tissue covering the cornea is removed. An amniotic membrane (AM) is glued to the corneal surface with fibrin. The donor tissue is then divided into 8-10 small pieces, which are placed on the AM sparing the visual axis and fixed by fibrin glue. A contact lens is placed on the eye. A surgical video, which is available online, shows the surgical technique in detail. FOLLOW-UP Examinations are necessary within the first postoperative week and 1 month after SLET, then every 3 months within the first postoperative year. Antibiotic eye drops should be applied 5 times daily until complete epithelialization. Topical steroids should be applied 6 times daily in the early postoperative period and can be tapered thereafter. Artificial tears can improve epithelial healing. Ideally, all eye drops should be preservative-free. The contact lens can be removed after 7-10 days. The AM dissolves within a few weeks. An epithelialization of the corneal surface can be observed by the second postoperative week. EVIDENCE A recent systematic review reported a stable epithelialized corneal surface in 78% of SLET cases after 1.5 years. An improvement of visual acuity of at least two lines was found in 69% of SLET cases.
Collapse
Affiliation(s)
- Julia Prinz
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Jodhbir S Mehta
- Singapore National Eye Centre, Singapur, Singapur
- Singapore Eye Research Institute, Singapur, Singapur
| | - Peter Walter
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland
| | - Matthias Fuest
- Klinik für Augenheilkunde, Uniklinik RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Deutschland.
| |
Collapse
|