1
|
Pakmanesh H, Anvari O, Forey N, Weiderpass E, Malekpourafshar R, Iranpour M, Shahesmaeili A, Ahmadi N, Bazrafshan A, Zendehdel K, Kannengiesser C, Ba I, McKay J, Zvereva M, Hosen MI, Sheikh M, Calvez-Kelm FL. TERT Promoter Mutations as Simple and Non-Invasive Urinary Biomarkers for the Detection of Urothelial Bladder Cancer in a High-Risk Region. Int J Mol Sci 2022; 23:14319. [PMID: 36430798 PMCID: PMC9696845 DOI: 10.3390/ijms232214319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer in the world. While there are FDA-approved urinary assays to detect BC, none have demonstrated sufficient sensitivity and specificity to be integrated into clinical practice. Telomerase Reverse Transcriptase (TERT) gene mutations have been identified as the most common BC mutations that could potentially be used as non-invasive urinary biomarkers to detect BC. This study aims to evaluate the validity of these tests to detect BC in the Kerman province of Iran, where BC is the most common cancer in men. Urine samples of 31 patients with primary (n = 11) or recurrent (n = 20) bladder tumor and 50 controls were prospectively collected. Total urinary DNA was screened for the TERT promoter mutations (uTERTpm) by Droplet Digital PCR (ddPCR) assays. The performance characteristics of uTERTpm and the influence by disease stage and grade were compared to urine cytology results. The uTERTpm was 100% sensitive and 88% specific to detect primary BC, while it was 50% sensitive and 88% specific in detecting recurrent BC. The overall sensitivity and specificity of uTERTpm to detect bladder cancer were 67.7% and 88.0%, respectively, which were consistent across different tumor stages and grades. The most frequent uTERTpm mutations among BC cases were C228T (18/31), C250T (4/31), and C158A (1/31) with mutant allelic frequency (MAF) ranging from 0.2% to 63.3%. Urine cytology demonstrated a similar sensitivity (67.7%), but lower specificity (62.0%) than uTERTpm in detecting BC. Combined uTERTpm and urine cytology increased the sensitivity to 83.8%, but decreased the specificity to 52.0%. Our study demonstrated promising diagnostic accuracy for the uTERTpm as a non-invasive urinary biomarker to detect, in particular, primary BC in this population.
Collapse
Affiliation(s)
- Hamid Pakmanesh
- Department of Urology, School of Medicine, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Omid Anvari
- Department of Urology, School of Medicine, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Nathalie Forey
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Reza Malekpourafshar
- Department of Pathology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Maryam Iranpour
- Department of Pathology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Armita Shahesmaeili
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Nahid Ahmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Azam Bazrafshan
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 1419733133, Iran
| | | | - Ibrahima Ba
- Department of Genetics, Bichat Claude Bernard Hospital, 75108 Paris, France
| | - James McKay
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Maria Zvereva
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Md Ismail Hosen
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mahdi Sheikh
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| | - Florence Le Calvez-Kelm
- International Agency for Research on Cancer (IARC), Genomic Epidemiology Branch, 69008 Lyon, France
| |
Collapse
|
2
|
Oliveira LFS, Predes D, Borges HL, Abreu JG. Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14020403. [PMID: 35053565 PMCID: PMC8774030 DOI: 10.3390/cancers14020403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is an emerging public health problem and the second leading cause of death worldwide, with a significant socioeconomic impact in several countries. The 5-year survival rate is only 12% due to the lack of early diagnosis and resistance to available treatments, and the canonical Wnt signaling pathway is involved in this process. This review underlines the importance of understanding the fundamental roles of this pathway in physiological and pathological contexts and analyzes the use of naturally occurring small molecules that inhibits the Wnt/β-catenin pathway in experimental models of CRC. We also discuss the progress and challenges of moving these small molecules off the laboratory bench into the clinical platform. Abstract Colorectal cancer (CRC) ranks second in the number of cancer deaths worldwide, mainly due to late diagnoses, which restrict treatment in the potentially curable stages and decrease patient survival. The treatment of CRC involves surgery to remove the tumor tissue, in addition to radiotherapy and systemic chemotherapy sessions. However, almost half of patients are resistant to these treatments, especially in metastatic cases, where the 5-year survival rate is only 12%. This factor may be related to the intratumoral heterogeneity, tumor microenvironment (TME), and the presence of cancer stem cells (CSCs), which is impossible to resolve with the standard approaches currently available in clinical practice. CSCs are APC-deficient, and the search for alternative therapeutic agents such as small molecules from natural sources is a promising strategy, as these substances have several antitumor properties. Many of those interfere with the regulation of signaling pathways at the central core of CRC development, such as the Wnt/β-catenin, which plays a crucial role in the cell proliferation and stemness in the tumor. This review will discuss the use of naturally occurring small molecules inhibiting the Wnt/β-catenin pathway in experimental CRC models over the past decade, highlighting the molecular targets in the Wnt/β-catenin pathway and the mechanisms through which these molecules perform their antitumor activities.
Collapse
|
3
|
Siddiqui AJ, Khan MF, Hamadou WS, Goyal M, Jahan S, Jamal A, Ashraf SA, Sharma P, Sachidanandan M, Badraoui R, Chaubey KK, Snoussi M, Adnan M. Molecular Docking and Dynamics Simulation Revealed Ivermectin as Potential Drug against Schistosoma-Associated Bladder Cancer Targeting Protein Signaling: Computational Drug Repositioning Approach. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1058. [PMID: 34684095 PMCID: PMC8539496 DOI: 10.3390/medicina57101058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022]
Abstract
Urogenital schistosomiasis is caused by Schistosoma haematobium (S. haematobium) infection, which has been linked to the development of bladder cancer. In this study, three repurposing drugs, ivermectin, arteether and praziquantel, were screened to find the potent drug-repurposing candidate against the Schistosoma-associated bladder cancer (SABC) in humans by using computational methods. The biology of most glutathione S-transferases (GSTs) proteins and vascular endothelial growth factor (VEGF) is complex and multifaceted, according to recent evidence, and these proteins actively participate in many tumorigenic processes such as cell proliferation, cell survival and drug resistance. The VEGF and GSTs are now widely acknowledged as an important target for antitumor therapy. Thus, in this present study, ivermectin displayed promising inhibition of bladder cancer cells via targeting VEGF and GSTs signaling. Moreover, molecular docking and molecular dynamics (MD) simulation analysis revealed that ivermectin efficiently targeted the binding pockets of VEGF receptor proteins and possessed stable dynamics behavior at binding sites. Therefore, we proposed here that these compounds must be tested experimentally against VEGF and GST signaling in order to control SABC. Our study lies within the idea of discovering repurposing drugs as inhibitors against the different types of human cancers by targeting essential pathways in order to accelerate the drug development cycle.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era’s Lucknow Medical College, Era University, Lucknow 226003, India;
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (M.G.); (P.S.)
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail 2440, Saudi Arabia;
| | - Pankaj Sharma
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; (M.G.); (P.S.)
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail 2440, Saudi Arabia;
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1017, Tunisia
| | - Kundan Kumar Chaubey
- Department of Biotechnology, Academic Block VI, GLA University, Mathura 281406, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddas BP74, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail 2440, Saudi Arabia; (W.S.H.); (A.J.); (R.B.); (M.S.); (M.A.)
| |
Collapse
|
4
|
Khazaei Z, Goodarzi E, Borhaninejad V, Iranmanesh F, Mirshekarpour H, Mirzaei B, Naemi H, Bechashk SM, Darvishi I, Ershad Sarabi R, Naghibzadeh-Tahami A. The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study. BMC Public Health 2020; 20:1696. [PMID: 33183267 PMCID: PMC7664078 DOI: 10.1186/s12889-020-09838-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
Background Brain cancer is a rare and deadly malignancy with a low survival rate. The present study aims to evaluate the epidemiology of brain cancer and its relationship with the human development index (HDI) worldwide. Methods This is an ecological study. The data on cancer incidence and cancer mortality was extracted from the World Bank for Cancer in 2018 (GLOBOCAN 2018). The incidence, mortality rate, and brain cancer distribution maps were drawn for different countries. We used correlation and regression tests to examine the association of incidence and mortality rates of brain cancer with HDI. The statistical analysis was carried out by Stata-14 and a significance level of 0.05 was considered. Results According to the results of Global Cancer Registry in 2018, there were 18,078,957 registered cases of cancer in both sexes, of which 29,681 were related to brain cancer. The highest incidence (102,260 cases, 34.4%) and mortality (77,815 cases, 32.3%) belonged to very high HDI regions. Results showed that incidence (r = 0.690, P < 0.0001) and mortality rates (r = 0.629, P < 0.001) of brain cancer are significantly correlated with HDI. We also observed a positive correlation between brain cancer incidence and Gross National Income (GNI) (r = 0.346, P < 0.001), Mean Years of Schooling (MYS) (r = 0.64, P < 0.001), TABLE (LEB) (r = 0.66, P < 0.001) and Expected Years of Schooling (EYS) (r = 0.667, P < 0.001). Results also revealed that mortality rate was significantly correlated with GNI (r = 0.28, P < 0.01), MYS (r = 0.591, P < 0.01), LEB (r = 0.624, P < 0.01), and EYS (r = 0.605, P < 0.01). Conclusion The results of the study showed that the incidence and mortality of brain cancer in countries with higher HDI levels is higher than countries with lower HDI levels, so attention to risk factors and action to reduce it in countries with higher HDI levels in controlling this cancer in this Countries are effective.
Collapse
Affiliation(s)
- Zaher Khazaei
- Department of Public Health, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Goodarzi
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Vahidreza Borhaninejad
- Social Determinants of Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Iranmanesh
- Professor of Neurology, Stroke Fellowship, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hosein Mirshekarpour
- Clinical Research Unit, Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Batool Mirzaei
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Hasan Naemi
- Iranian Research Center on Healthy Aging, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sayeed Maryam Bechashk
- Epidemiology, Social Determinants of Health Research Center, Research institute for Health Development, Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Isan Darvishi
- Department Of Operating Room, Instructor Of Operating Room ,Shahrekord University Of Medical Sciences, Shahrekord, Iran
| | - Roghayeh Ershad Sarabi
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Naghibzadeh-Tahami
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|