1
|
Bashiri Z, Afzali A, Koruji M, Torkashvand H, Ghorbanlou M, Sheibak N, Zandieh Z, Amjadi F. Advanced strategies for single embryo selection in assisted human reproduction: A review of clinical practice and research methods. Clin Exp Reprod Med 2025; 52:8-29. [PMID: 38853126 PMCID: PMC11900676 DOI: 10.5653/cerm.2023.06478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 06/11/2024] Open
Abstract
Among the primary objectives of contemporary assisted reproductive technology research are achieving the births of healthy singletons and improving overall fertility outcomes. Substantial advances have been made in refining the selection of single embryos for transfer, with the aim of maximizing the likelihood of successful implantation. The principal criterion for this selection is embryo morphology. Morphological evaluation systems are based on traditional parameters, including cell count and fragmentation, pronuclear morphology, cleavage rate, blastocyst formation, and various sequential embryonic assessments. To reduce the incidence of multiple pregnancies and to identify the single embryo with the highest potential for growth, invasive techniques such as preimplantation genetic screening are employed in in vitro fertilization clinics. However, new approaches have been suggested for clinical application that do not harm the embryo and that provide consistent, accurate results. Noninvasive technologies, such as time-lapse imaging and omics, leverage morphokinetic parameters and the byproducts of embryo metabolism, respectively, to identify noninvasive prognostic markers for competent single embryo selection. While these technologies have garnered considerable interest in the research community, they are not incorporated into routine clinical practice and still have substantial room for improvement. Currently, the most promising strategies involve integrating multiple methodologies, which together are anticipated to increase the likelihood of successful pregnancy.
Collapse
Affiliation(s)
- Zahra Bashiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Azita Afzali
- Hazrat Zahra Infertility Center, Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Torkashvand
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ghorbanlou
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Sheibak
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Guo X, Wang X, Wei J, Ma Y, Wang F, Sun Q, Sun H, Zhu G. BMP2 is required for granulosa cell proliferation and primordial follicle activation in chicken. Poult Sci 2025; 104:104716. [PMID: 39731872 PMCID: PMC11743103 DOI: 10.1016/j.psj.2024.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
During ovary development, the dormant primordial follicles (PF) are stimulated and begin to develop into primary follicles (PrF), a process called follicle activation. Only activated follicles can continue to grow and release the eggs in the future, making the female animal fertile. The molecular events during PF activation are not fully understood. In this study, we analyzed the transcriptome of ovarian granulosa cells (GCs) before and after PF activation from 4- and 7-day-old chicks and identified that BMP signaling was induced during this process. Further, exogenous addition of Bone Morphogenetic Protein-2 (BMP2) protein significantly promotes the proliferation of GCs, thereby increasing the number of PrF in the in vitro ovary culture system. Conversely, when the BMP2 was blocked, the proliferation of GCs is inhibited, leading to a decrease in the number of PrF generated. These findings reveal the critical role of BMP2 in regulating the activation of chicken PF and provide new strategies for improving egg production performance.
Collapse
Affiliation(s)
- Xiaotong Guo
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Xuzhao Wang
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Jiahui Wei
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Yuxiao Ma
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Feiyi Wang
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Qing Sun
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Hongcai Sun
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China
| | - Guiyu Zhu
- Shandong Provincial Key laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Taian, China.
| |
Collapse
|
3
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
4
|
Imran FS, Al-Thuwaini TM. The novel C268A variant of BMP2 is linked to the reproductive performance of Awassi and Hamdani sheep. Mol Biol Rep 2024; 51:267. [PMID: 38302768 DOI: 10.1007/s11033-024-09274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Prolificacy-associated genetic markers can be utilized to enhance litter size in the sheep breeding industry. Sheep reproduction is influenced by a multitude of genes, including bone morphogenetic protein 2 (BMP2). This study aimed to explore the potential relationship between variability in the BMP2 gene and reproductive performance in Awassi and Hamdani ewes. METHODS AND RESULTS The genomic DNA was extracted from 99 single-progeny ewes and 101 twin ewes. Polymerase chain reaction (PCR) was employed to produce an amplicon consisting of four sequence fragments: 277 bp, 251 bp, 331 bp, and 340 bp, from exons 1, 2, 3, and 4 of the BMP2 gene, respectively. Three genotypes were identified for amplicons in exon 4 with 340-bp lengths: CC, CA, and AA. Upon analyzing the sequence of the CA genotype 382 C > A, a novel mutation was discovered in this genotype. A robust association was identified between the single nucleotide polymorphisms (SNP) 382 C > A and reproductive performance through statistical analysis. An important distinction was discovered between ewes carrying SNP 382 C > A and those carrying CC in terms of litter sizes, twinning rates, lambing rates, and days to lambing. An analysis of logistic regression revealed a significant association between litter size and the 382 C > A SNP. There was a decrease in lamb production among ewes with the CC genotype compared to those with the CA and AA genotypes. CONCLUSIONS These results indicate that the SNP variant 382 C > A has a positive influence on the reproductive performance of Awassi and Hamdani sheep. Sheep carrying the 382 C > A SNP exhibit increased litter size and overall productivity compared to those without the SNP.
Collapse
Affiliation(s)
- Faris S Imran
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al- Qasim, Babil, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Al- Qasim, Babil, Iraq.
| |
Collapse
|
5
|
Massoud G, Spann M, Vaught KC, Das S, Dow M, Cochran R, Baker V, Segars J, Singh B. Biomarkers Assessing the Role of Cumulus Cells on IVF Outcomes: A Systematic Review. J Assist Reprod Genet 2024; 41:253-275. [PMID: 37947940 PMCID: PMC10894783 DOI: 10.1007/s10815-023-02984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE Although significant improvements in assisted reproductive technology (ART) outcomes have been accomplished, a critical question remains: which embryo is most likely to result in a pregnancy? Embryo selection is currently based on morphological and genetic criteria; however, these criteria do not fully predict good-quality embryos and additional objective criteria are needed. The cumulus cells are critical for oocyte and embryo development. This systematic review assessed biomarkers in cumulus-oocyte complexes and their association with successful IVF outcomes. METHODS A comprehensive search was conducted using PubMed, Embase, Scopus, and Web of Science from inception until November 2022. Only English-language publications were included. Inclusion criteria consisted of papers that evaluated genetic biomarkers associated with the cumulus cells (CCs) in humans and the following three outcomes of interest: oocyte quality, embryo quality, and clinical outcomes, including fertilization, implantation, pregnancy, and live birth rates. RESULTS The search revealed 446 studies of which 42 met eligibility criteria. Nineteen studies correlated genetic and biochemical biomarkers in CCs with oocyte quality. A positive correlation was reported between oocyte quality and increased mRNA expression in CCs of genes encoding for calcium homeostasis (CAMK1D), glucose metabolism (PFKP), extracellular matrix (HAS2, VCAN), TGF-β family (GDF9, BMP15), and prostaglandin synthesis (PTGS2). Nineteen studies correlated genetic and biochemical biomarkers in CCs with embryo quality. A positive correlation was reported between embryo quality and increased mRNA expression in CCs of genes encoding for extracellular matrix (HAS2), prostaglandin synthesis (PTGS2), steroidogenesis (GREM1), and decreased expression of gene encoding for hormone receptor (AMHR2). Twenty-two studies assessed genetic and biochemical biomarkers in CCs with clinical outcomes. Increased expression of genes encoding for extracellular matrix (VCAN), and TGF-β family (GDF9, BMP15) were positively correlated with pregnancy rate. CONCLUSION Genetic biomarkers from cumulus cells were associated with oocyte quality (CAMK1D, PFKP, HAS2, VCAN, GDF-9, BMP-15, PTGS2), embryo quality (GREM1, PTGS2, HAS2), and pregnancy rate (GDF9, BMP15, VCAN). These results might help guide future studies directed at tests of cumulus cells to devise objective criteria to predict IVF outcomes.
Collapse
Affiliation(s)
- Gaelle Massoud
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Marcus Spann
- Informationist Services, Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamaria Cayton Vaught
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Samarjit Das
- Department of Pathology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark Dow
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Cochran
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Valerie Baker
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Segars
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Bhuchitra Singh
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Yu H, Xia L, Leng X, Chen Y, Zhang L, Ni X, Luo J, Leng W. Improved repair of rabbit calvarial defects with hydroxyapatite/chitosan/polycaprolactone composite scaffold-engrafted EPCs and BMSCs. Front Bioeng Biotechnol 2022; 10:928041. [PMID: 35992335 PMCID: PMC9382592 DOI: 10.3389/fbioe.2022.928041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) expressing vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) and bone marrow mesenchymal stem cells (BMSCs) expressing endogenous bone morphogenetic protein-2 (BMP-2) play the important role in new bone formation. This study investigated the effects of a porous hydroxyapatite (HA)/chitosan (CS)/polycaprolactone (PCL) composite scaffold-engrafted EPCs and BMSCs on the expression of BMP-2, VEGF, and PDGF in the calvarial defect rabbit model in vivo. It showed that a three-dimensional composite scaffold was successfully constructed by physical interaction with a pore size of 250 μm. The HA/CS/PCL scaffold degraded slowly within 10 weeks and showed non-cytotoxicity. By X-ray, micro-CT examination, and H&E staining, compared with the HA/CS/PCL group, HA/CS/PCL + EPCs, HA/CS/PCL + BMSCs, and HA/CS/PCL + EPCs + BMSCs groups performed a more obvious repair effect, and the dual factor group presented particularly significant improvement on the percentages of bone volume at week 4 and week 8, with evident bone growth. Osteogenesis marker (BMP-2) and vascularization marker (VEGF and PDGF) expression in the dual factor group were much better than those of the HA/CS/PCL control group and single factor groups. Collectively, the HA/CS/PCL composite scaffold-engrafting EPCs and BMSCs is effective to repair calvarial defects by regulating endogenous expression of BMP-2, VEGF, and PDGF. Thus, this study provides important implications for the potential clinical application of biomaterial composite scaffold-engrafted engineering cells.
Collapse
Affiliation(s)
- Hedong Yu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Xieyuan Leng
- The First Clinical College, Anhui Medical University, Hefei, China
| | - Yongji Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Li Zhang
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Xiaobing Ni
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Weidong Leng, ; Jie Luo,
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Dental Research, School of Dentistry, Hubei University of Medicine, Shiyan, China
- *Correspondence: Weidong Leng, ; Jie Luo,
| |
Collapse
|
7
|
Magro-Lopez E, Muñoz-Fernández MÁ. The Role of BMP Signaling in Female Reproductive System Development and Function. Int J Mol Sci 2021; 22:11927. [PMID: 34769360 PMCID: PMC8584982 DOI: 10.3390/ijms222111927] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a group of multifunctional growth factors that belong to the transforming growth factor-β (TGF-β) superfamily of proteins. Originally identified by their ability to induce bone formation, they are now known as essential signaling molecules that regulate the development and function of the female reproductive system (FRS). Several BMPs play key roles in aspects of reproductive system development. BMPs have also been described to be involved in the differentiation of human pluripotent stem cells (hPSCs) into reproductive system tissues or organoids. The role of BMPs in the reproductive system is still poorly understood and the use of FRS tissue or organoids generated from hPSCs would provide a powerful tool for the study of FRS development and the generation of new therapeutic perspectives for the treatment of FRS diseases. Therefore, the aim of this review is to summarize the current knowledge about BMP signaling in FRS development and function.
Collapse
Affiliation(s)
- Esmeralda Magro-Lopez
- Section Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Section Immunology, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), 28007 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain
- Spanish HIV-HGM BioBank, 28007 Madrid, Spain
| |
Collapse
|
8
|
Turathum B, Gao EM, Chian RC. The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells 2021; 10:cells10092292. [PMID: 34571941 PMCID: PMC8470117 DOI: 10.3390/cells10092292] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cumulus cells (CCs) originating from undifferentiated granulosa cells (GCs) differentiate in mural granulosa cells (MGCs) and CCs during antrum formation in the follicle by the distribution of location. CCs are supporting cells of the oocyte that protect the oocyte from the microenvironment, which helps oocyte growth and maturation in the follicles. Bi-directional communications between an oocyte and CCs are necessary for the oocyte for the acquisition of maturation and early embryonic developmental competence following fertilization. Follicle-stimulation hormone (FSH) and luteinizing hormone (LH) surges lead to the synthesis of an extracellular matrix in CCs, and CCs undergo expansion to assist meiotic resumption of the oocyte. The function of CCs is involved in the completion of oocyte meiotic maturation and ovulation, fertilization, and subsequent early embryo development. Therefore, understanding the function of CCs during follicular development may be helpful for predicting oocyte quality and subsequent embryonic development competence, as well as pregnancy outcomes in the field of reproductive medicine and assisted reproductive technology (ART) for infertility treatment.
Collapse
Affiliation(s)
- Bongkoch Turathum
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Er-Meng Gao
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
| | - Ri-Cheng Chian
- Centre for Reproductive Medicine, Shanghai 10th People Hospital of Tongji University, Shanghai 200072, China;
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, China;
- Correspondence: ; Tel.: +86-18917687092
| |
Collapse
|
9
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
10
|
Saleh AC, Sabry R, Mastromonaco GF, Favetta LA. BPA and BPS affect the expression of anti-Mullerian hormone (AMH) and its receptor during bovine oocyte maturation and early embryo development. Reprod Biol Endocrinol 2021; 19:119. [PMID: 34344364 PMCID: PMC8330045 DOI: 10.1186/s12958-021-00773-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/28/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Exposure to endocrine-disrupting chemicals, such as Bisphenol A (BPA) and Bisphenol S (BPS), is widespread and has negative implications on embryonic development. Preliminary evidence revealed that in women undergoing IVF treatment, urinary BPA levels were associated with low serum anti-Mullerian hormone, however a definitive relationship between the two has not yet been characterized. METHODS This study aimed to evaluate BPA and BPS effects on in vitro oocyte maturation and early preimplantation embryo development through i) analysis of anti-Mullerian hormone (AMH) and anti-Mullerian hormone receptor II (AMHRII), ii) investigation of developmental parameters, such as cleavage, blastocyst rates and developmental arrest, iii) detection of apoptosis and iv) assessment of possible sex ratio skew. An in vitro bovine model was used as a translational model for human early embryonic development. We first assessed AMH and AMHRII levels after bisphenol exposure during oocyte maturation. Zygotes were also analyzed during cleavage and blastocysts stages. Techniques used include in vitro fertilization, quantitative polymerase chain reaction (qPCR), western blotting, TUNEL and immunofluorescence. RESULTS Our findings show that BPA significantly decreased cleavage (p < 0.001), blastocyst (p < 0.005) and overall developmental rates as well as significantly increased embryonic arrest at the 2-4 cell stage (p < 0.05). Additionally, both BPA and BPS significantly increased DNA fragmentation in 2-4 cells, 8-16 cells and blastocyst embryos (p < 0.05). Furthermore, BPA and BPS alter AMH and AMHRII at the mRNA and protein level in both oocytes and blastocysts. BPA, but not BPS, also significantly skews sex ratios towards female blastocysts (p < 0.05). CONCLUSION This study shows that BPA affects AMH and AMHRII expression during oocyte maturation and that BPS exerts its effects to a greater extent after fertilization and therefore may not be a safer alternative to BPA. Our data lay the foundation for future functional studies, such as receptor kinetics, downstream effectors, and promoter activation/inhibition to prove a functional relationship between bisphenols and the AMH signalling system.
Collapse
Affiliation(s)
- Angela Christina Saleh
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Reem Sabry
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Gabriela Fabiana Mastromonaco
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
- grid.507770.20000 0001 0698 6008Reproductive Physiology, Toronto Zoo, Scarborough, Ontario Canada
| | - Laura Alessandra Favetta
- grid.34429.380000 0004 1936 8198Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| |
Collapse
|
11
|
Atkinson L, Martin F, Sturmey RG. Intraovarian injection of platelet-rich plasma in assisted reproduction: too much too soon? Hum Reprod 2021; 36:1737-1750. [PMID: 33963408 PMCID: PMC8366566 DOI: 10.1093/humrep/deab106] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The prospect of ovarian rejuvenation offers the tantalising prospect of treating age-related declines in fertility or in pathological conditions such as premature ovarian failure. The concept of ovarian rejuvenation was invigorated by the indication of the existence of oogonial stem cells (OSCs), which have been shown experimentally to have the ability to differentiate into functional follicles and generate oocytes; however, their clinical potential remains unknown. Furthermore, there is now growing interest in performing ovarian rejuvenation in situ. One proposed approach involves injecting the ovary with platelet rich plasma (PRP). PRP is a component of blood that remains after the in vitro removal of red and white blood cells. It contains blood platelets, tiny anucleate cells of the blood, which are responsible for forming athrombus to prevent bleeding. In addition, PRP contains an array of cytokines and growth factors, as well as a number of small molecules.The utility ofPRP has been investigatedin a range of regenerative medicine approaches and has been shown to induce differentiation of a range of cell types, presumably through the action of cytokines. A handful ofcasereports have described the use of PRP injections into the ovaryin the human, and while these clinical data report promising results, knowledge on the mechanisms and safety of PRP injections into the ovary remain limited.In this article, we summarise some of the physiological detail of platelets and PRP, before reviewing the existing emerging literature in this area. We then propose potential mechanisms by which PRP may be eliciting any effects before reflecting on some considerations for future studies in the area. Importantly, on the basis of our existing knowledge, we suggest that immediate use of PRP in clinical applications is perhaps premature and further fundamental and clinical research on the nature of ovarian insufficiency, as well as the mechanism by which PRP may act on the ovary, is needed to fully understand this promising development.
Collapse
Affiliation(s)
- Lloyd Atkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Francesca Martin
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Roger G Sturmey
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK.,Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, St Mary's Hospital, Manchester, UK
| |
Collapse
|
12
|
Luteinizing Hormone Action in Human Oocyte Maturation and Quality: Signaling Pathways, Regulation, and Clinical Impact. Reprod Sci 2020; 27:1223-1252. [PMID: 32046451 PMCID: PMC7190682 DOI: 10.1007/s43032-019-00137-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
The ovarian follicle luteinizing hormone (LH) signaling molecules that regulate oocyte meiotic maturation have recently been identified. The LH signal reduces preovulatory follicle cyclic nucleotide levels which releases oocytes from the first meiotic arrest. In the ovarian follicle, the LH signal reduces cyclic nucleotide levels via the CNP/NPR2 system, the EGF/EGF receptor network, and follicle/oocyte gap junctions. In the oocyte, reduced cyclic nucleotide levels activate the maturation promoting factor (MPF). The activated MPF induces chromosome segregation and completion of the first and second meiotic divisions. The purpose of this paper is to present an overview of the current understanding of human LH signaling regulation of oocyte meiotic maturation by identifying and integrating the human studies on this topic. We found 89 human studies in the literature that identified 24 LH follicle/oocyte signaling proteins. These studies show that human oocyte meiotic maturation is regulated by the same proteins that regulate animal oocyte meiotic maturation. We also found that these LH signaling pathway molecules regulate human oocyte quality and subsequent embryo quality. Remarkably, in vitro maturation (IVM) prematuration culture (PMC) protocols that manipulate the LH signaling pathway improve human oocyte quality of cultured human oocytes. This knowledge has improved clinical human IVM efficiency which may become a routine alternative ART for some infertile patients.
Collapse
|
13
|
The transcriptional regulator CBX2 and ovarian function: A whole genome and whole transcriptome approach. Sci Rep 2019; 9:17033. [PMID: 31745224 PMCID: PMC6864077 DOI: 10.1038/s41598-019-53370-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
The chromobox homolog 2 (CBX2) was found to be important for human testis development, but its role in the human ovary remains elusive. We conducted a genome-wide analysis based on DNA adenine methyltransferase identification (DamID) and RNA sequencing strategies to investigate CBX2 in the human granulosa cells. Functional analysis revealed that CBX2 was upstream of genes contributing to ovarian function like folliculogenesis and steroidogenesis (i.e. ESR1, NRG1, AKR1C1, PTGER2, BMP15, BMP2, FSHR and NTRK1/2). We identified CBX2 regulated genes associated with polycystic ovary syndrome (PCOS) such as TGFβ, MAP3K15 and DKK1, as well as genes implicated in premature ovarian failure (POF) (i.e. POF1B, BMP15 and HOXA13) and the pituitary deficiency (i.e. LHX4 and KISS1). Our study provided an excellent opportunity to identify genes surrounding CBX2 in the ovary and might contribute to the understanding of ovarian physiopathology causing infertility in women.
Collapse
|
14
|
Demiray SB, Goker ENT, Tavmergen E, Yilmaz O, Calimlioglu N, Soykam HO, Oktem G, Sezerman U. Differential gene expression analysis of human cumulus cells. Clin Exp Reprod Med 2019; 46:76-86. [PMID: 31181875 PMCID: PMC6572664 DOI: 10.5653/cerm.2019.46.2.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. Methods Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. Results Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p-value and highest number of times found count. Conclusion Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.
Collapse
Affiliation(s)
- Sirin Bakti Demiray
- Assisted Reproduction Unit, Tepecik Education and Research Hospital, Izmir, Turkey
| | | | - Erol Tavmergen
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ozlem Yilmaz
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nilufer Calimlioglu
- Department of Obstetrics and Gynecology, Ege University Faculty of Medicine, Izmir, Turkey
| | | | - Gulperi Oktem
- Department of Histology and Embryology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Ugur Sezerman
- Department of Biostatistics and Bioinformatics, Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Istanbul, Turkey
| |
Collapse
|
15
|
Analyzing the Transcriptome Profile of Human Cumulus Cells Related to Embryo Quality via RNA Sequencing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9846274. [PMID: 30155486 PMCID: PMC6093008 DOI: 10.1155/2018/9846274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/24/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Selecting excellent oocytes is required to improve the outcomes of in vitro fertilization (IVF). Cumulus cells (CCs) are an integral part of the oocyte maturation process. Therefore, we sought to identify differentially expressed genes in CCs to assess oocyte quality and embryo development potential. We divided the participants' embryos into the high-quality embryo group and low-quality embryo group by the information including age, body mass index, and the levels of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone. We analyzed a total of 7 CC samples after the quality control in RNA sequencing. We found that 2499 genes were unregulated and 5739 genes were downregulated in high-quality embryo group compared to the low-quality embryo group (Padj < 0.05). Interestingly, MSTN, CTGF, NDUFA1, VCAN, SCD5, and STAR were significantly associated with the quality of embryo. In accordance with the results of RNA sequencing, the association of the expression levels of MSTN, CTGF, NDUFA1, VCAN, SCD5, and STAR with the embryo quality was verified by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) in 50 CC samples. Despite the small sample size and lack of validation in animal models, our study supports the fact that differential gene expression profile of human CCs, including MSTN, CTGF, NDUFA1, VCAN, SCD5, and STAR, can serve as potential indicator for embryo quality.
Collapse
|