1
|
Palacino F, Manganotti P, Benussi A. Targeting Neural Oscillations for Cognitive Enhancement in Alzheimer's Disease. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:547. [PMID: 40142358 PMCID: PMC11943909 DOI: 10.3390/medicina61030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is marked by progressive cognitive decline, affecting memory, language, orientation, and behavior. Pathological hallmarks include extracellular amyloid plaques and intracellular tau tangles, which disrupt synaptic function and connectivity. Neural oscillations, the rhythmic synchronization of neuronal activity across frequency bands, are integral to cognitive processes but become dysregulated in AD, contributing to network dysfunction and memory impairments. Targeting these oscillations has emerged as a promising therapeutic strategy. Preclinical studies have demonstrated that specific frequency modulations can restore oscillatory balance, improve synaptic plasticity, and reduce amyloid and tau pathology. In animal models, interventions, such as gamma entrainment using sensory stimulation and transcranial alternating current stimulation (tACS), have shown efficacy in enhancing memory function and modulating neuroinflammatory responses. Clinical trials have reported promising cognitive improvements with repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), particularly when targeting key hubs in memory-related networks, such as the default mode network (DMN) and frontal-parietal network. Moreover, gamma-tACS has been linked to increased cholinergic activity and enhanced network connectivity, which are correlated with improved cognitive outcomes in AD patients. Despite these advancements, challenges remain in optimizing stimulation parameters, individualizing treatment protocols, and understanding long-term effects. Emerging approaches, including transcranial pulse stimulation (TPS) and closed-loop adaptive neuromodulation, hold promise for refining therapeutic strategies. Integrating neuromodulation with pharmacological and lifestyle interventions may maximize cognitive benefits. Continued interdisciplinary efforts are essential to refine these approaches and translate them into clinical practice, advancing the potential for neural oscillation-based therapies in AD.
Collapse
Affiliation(s)
| | | | - Alberto Benussi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.P.); (P.M.)
| |
Collapse
|
2
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Świetlik D. Deep Brain Stimulation Combined with NMDA Antagonist Therapy in the Treatment of Alzheimer's Disease: In Silico Trials. J Clin Med 2024; 13:7759. [PMID: 39768683 PMCID: PMC11728097 DOI: 10.3390/jcm13247759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Deep brain stimulation (DBS) is employed to adjust the activity of impaired brain circuits. The variability in clinical trial outcomes for treating Alzheimer's disease with memantine is not yet fully understood. We conducted a randomized in silico study comparing virtual DBS therapies with treatment involving an NMDA antagonist combined with DBS in patients with Alzheimer's disease. Methods: Neural network models representing Alzheimer's disease (AD) patients were randomly assigned to four groups: AD, memantine treatment, DBS, and DBS and memantine. Out of 100 unique neural networks created to model moderate and severe AD with varying hippocampal synaptic loss, 20 were randomly selected to represent AD patients. Virtual treatments-memantine, DBS, and DBS and memantine-were applied, resulting in a total of 80 simulations. Results: The normalized mean number of spikes in the CA1 region among the virtual AD hippocampi treated with memantine, DBS therapy, and DBS and memantine differed significantly (p < 0.0001). The normalized mean number of spikes in the virtual AD hippocampi was 0.33 (95% CI, 0.29-0.36) and was significantly lower compared to the number of spikes in the virtual AD hippocampi treated with memantine, which was 0.53 (95% CI, 0.48-0.59) (p = 0.0162), and in the DBS and memantine group, which was 0.67 (95% CI, 0.57-0.78) (p = 0.0001). Conclusions: Our simulation results indicate the effectiveness of virtual memantine and DBS therapy compared to memantine monotherapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Dariusz Świetlik
- Division of Biostatistics and Neural Networks, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| |
Collapse
|
4
|
Tinney EM, Warren AEL, Ai M, Morris TP, O'Brien A, Odom H, Sutton BP, Jain S, Kang C, Huang H, Wan L, Oberlin L, Burns JM, Vidoni ED, McAuley E, Kramer AF, Erickson KI, Hillman CH. Understanding Cognitive Aging Through White Matter: A Fixel-Based Analysis. Hum Brain Mapp 2024; 45:e70121. [PMID: 39720841 PMCID: PMC11669003 DOI: 10.1002/hbm.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Diffusion-weighted imaging (DWI) has been frequently used to examine age-related deterioration of white matter microstructure and its relationship to cognitive decline. However, typical tensor-based analytical approaches are often difficult to interpret due to the challenge of decomposing and (mis)interpreting the impact of crossing fibers within a voxel. We hypothesized that a novel analytical approach capable of resolving fiber-specific changes within each voxel (i.e., fixel-based analysis [FBA])-would show greater sensitivity relative to the traditional tensor-based approach for assessing relationships between white matter microstructure, age, and cognitive performance. To test our hypothesis, we studied 636 cognitively normal adults aged 65-80 years (mean age = 69.8 years; 71% female) using diffusion-weighted MRI. We analyzed fixels (i.e., fiber-bundle elements) to test our hypotheses. A fixel provides insight into the structural integrity of individual fiber populations in each voxel in the presence of multiple crossing fiber pathways, allowing for potentially increased specificity over other diffusion measures. Linear regression was used to investigate associations between each of three fixel metrics (fiber density, cross-section, and density × cross-section) with age and cognitive performance. We then compared and contrasted the FBA results to a traditional tensor-based approach examining voxel-wise fractional anisotropy. In a whole-brain analysis, significant associations were found between fixel-based metrics and age after adjustments for sex, education, total brain volume, site, and race. We found that increasing age was associated with decreased fiber density and cross-section, namely in the fornix, striatal, and thalamic pathways. Further analysis revealed that lower fiber density and cross-section were associated with poorer performance in measuring processing speed and attentional control. In contrast, the tensor-based analysis failed to detect any white matter tracts significantly associated with age or cognition. Taken together, these results suggest that FBAs of DWI data may be more sensitive for detecting age-related white matter changes in an older adult population and can uncover potentially clinically important associations with cognitive performance.
Collapse
Affiliation(s)
- Emma M. Tinney
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Aaron E. L. Warren
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Meishan Ai
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Timothy P. Morris
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
- Department of Applied PsychologyNortheastern UniversityBostonMassachusettsUSA
| | - Amanda O'Brien
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Hannah Odom
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Bradley P. Sutton
- Beckman InstituteUniversity of IllinoisUrbanaIllinoisUSA
- Department of BioengineeringUniversity of IllinoisUrbanaIllinoisUSA
| | - Shivangi Jain
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
| | - Chaeryon Kang
- Department of BiostatisticsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Haiqing Huang
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
| | - Lu Wan
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
| | - Lauren Oberlin
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
- Weill Cornell Institute of Geriatric PsychiatryWeill Cornell MedicineWhite PlainsNew YorkUSA
| | | | | | - Edward McAuley
- Beckman InstituteUniversity of IllinoisUrbanaIllinoisUSA
- Department of Health and KinesiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Arthur F. Kramer
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Beckman InstituteUniversity of IllinoisUrbanaIllinoisUSA
| | | | - Charles H. Hillman
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
5
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
6
|
Benussi A, Borroni B. Brain Stimulation in Alzheimer's Disease Trials. J Alzheimers Dis 2024; 101:S545-S565. [PMID: 39422933 DOI: 10.3233/jad-230535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) continues to lack definitive curative therapies, necessitating an urgent exploration of innovative approaches. This review provides a comprehensive analysis of recent clinical trials focusing on invasive and non-invasive brain stimulation techniques as potential interventions for AD. Deep brain stimulation (DBS), repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS), and transcranial alternating current stimulation (tACS) are evaluated for their therapeutic efficacy, safety, and applicability. DBS, though invasive, has shown promising results in mitigating cognitive decline, but concerns over surgical risks and long-term effects persist. On the other hand, non-invasive methods like rTMS, tDCS, and tACS have demonstrated potential in enhancing cognitive performance and delaying disease progression, with minimal side effects, but with varied consistency. The evidence hints towards an individualized, patient-centric approach to brain stimulation, considering factors such as disease stage, genetic traits, and stimulation parameters. The review also highlights emerging technologies and potential future directions, emphasizing the need for larger, multi-center trials to confirm preliminary findings and establish robust clinical guidelines. In conclusion, while brain stimulation techniques present a promising avenue in AD therapy, further research is imperative for more comprehensive understanding and successful clinical implementation. Through this review, we aim to catalyze the scientific discourse and stimulate further investigation into these novel interventions for AD.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
7
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
8
|
Senevirathne DKL, Mahboob A, Zhai K, Paul P, Kammen A, Lee DJ, Yousef MS, Chaari A. Deep Brain Stimulation beyond the Clinic: Navigating the Future of Parkinson's and Alzheimer's Disease Therapy. Cells 2023; 12:1478. [PMID: 37296599 PMCID: PMC10252401 DOI: 10.3390/cells12111478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical procedure that uses electrical neuromodulation to target specific regions of the brain, showing potential in the treatment of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Despite similarities in disease pathology, DBS is currently only approved for use in PD patients, with limited literature on its effectiveness in AD. While DBS has shown promise in ameliorating brain circuits in PD, further research is needed to determine the optimal parameters for DBS and address any potential side effects. This review emphasizes the need for foundational and clinical research on DBS in different brain regions to treat AD and recommends the development of a classification system for adverse effects. Furthermore, this review suggests the use of either a low-frequency system (LFS) or high-frequency system (HFS) depending on the specific symptoms of the patient for both PD and AD.
Collapse
Affiliation(s)
| | - Anns Mahboob
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Alexandra Kammen
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin Jason Lee
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Mohammad S. Yousef
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
9
|
Findlay MC, Khan M, Kundu M, Johansen CM, Lucke-Wold B. Innovative Discoveries in Neurosurgical Treatment of Neurodegenerative Diseases: A Narrative Review. Curr Alzheimer Res 2023; 20:394-402. [PMID: 37694797 DOI: 10.2174/1567205020666230911125646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/05/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Neurodegenerative diseases (NDDs) encapsulate conditions in which neural cell populations are perpetually degraded and nervous system function destroyed. Generally linked to increased age, the proportion of patients diagnosed with a NDD is growing as human life expectancies rise. Traditional NDD therapies and surgical interventions have been limited. However, recent breakthroughs in understanding disease pathophysiology, improved drug delivery systems, and targeted pharmacologic agents have allowed innovative treatment approaches to treat NDDs. A common denominator for administering these new treatment options is the requirement for neurosurgical skills. In the present narrative review, we highlight exciting and novel preclinical and clinical discoveries being integrated into NDD care. We also discuss the traditional role of neurosurgery in managing these neurodegenerative conditions and emphasize the critical role of neurosurgery in effectuating these newly developed treatments.
Collapse
Affiliation(s)
- Matthew C Findlay
- School of Medicine, University of Utah, Salt Lake City, Utah 84043, USA
| | - Majid Khan
- School of Medicine, University of Nevada, Reno, NV 89036, USA
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM hospital, Bhubaneswar, India
| | - Chase M Johansen
- Department of Neurosurgery, Albany Medical College, Albany, New York 10001, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32013, USA
| |
Collapse
|
10
|
Luo Y, Sun Y, Wen H, Wang X, Zheng X, Ge H, Yin Y, Wu X, Li W, Hou W. Deep brain stimulation of the entorhinal cortex modulates CA1 theta-gamma oscillations in mouse models of preclinical Alzheimer's disease. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Majdi A, Deng Z, Sadigh-Eteghad S, De Vloo P, Nuttin B, Mc Laughlin M. Deep brain stimulation for the treatment of Alzheimer's disease: A systematic review and meta-analysis. Front Neurosci 2023; 17:1154180. [PMID: 37123370 PMCID: PMC10133458 DOI: 10.3389/fnins.2023.1154180] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Background One of the experimental neuromodulation techniques being researched for the treatment of Alzheimer's disease (AD) is deep brain stimulation (DBS). To evaluate the effectiveness of DBS in AD, we performed a systematic review and meta-analysis of the available evidence. Methods From the inception through December 2021, the following databases were searched: Medline via PubMed, Scopus, Embase, Cochrane Library, and Web of Science. The search phrases used were "Alzheimer's disease," "AD," "deep brain stimulation," and "DBS." The information from the included articles was gathered using a standardized data-collecting form. In the included papers, the Cochrane Collaboration methodology was used to evaluate the risk of bias. A fixed-effects model was used to conduct the meta-analysis. Results Only five distinct publications and 6 different comparisons (one study consisted of two phases) were included out of the initial 524 papers that were recruited. DBS had no impact on the cognitive ability in patients with AD [0.116 SMD, 95% confidence interval (CI), -0.236 to 0.469, p = 0.518]. The studies' overall heterogeneity was not significant (κ2 = 6.23, T 2 = 0.053, df = 5, I 2 = 19.76%, p = 0.284). According to subgroup analysis, the fornix-DBS did not improve cognitive function in patients with AD (0.145 SMD, 95%CI, -0.246 to 0.537, p = 0.467). Unfavorable neurological and non-neurological outcomes were also reported. Conclusion The inconsistencies and heterogeneity of the included publications in various target and age groups of a small number of AD patients were brought to light by this meta-analysis. To determine if DBS is useful in the treatment of AD, further studies with larger sample sizes and randomized, double-blinded, sham-controlled designs are required.
Collapse
Affiliation(s)
- Alireza Majdi
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Zhengdao Deng
- Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Philippe De Vloo
- Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Bart Nuttin
- Research Group Experimental Neurosurgery and Neuroanatomy, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- *Correspondence: Myles Mc Laughlin
| |
Collapse
|
12
|
Vila-Solés L, García-Brito S, Aldavert-Vera L, Kádár E, Huguet G, Morgado-Bernal I, Segura-Torres P. Protocol to assess rewarding brain stimulation as a learning and memory modulating treatment: Comparison between self-administration and experimenter-administration. Front Behav Neurosci 2022; 16:1046259. [PMID: 36590922 PMCID: PMC9798322 DOI: 10.3389/fnbeh.2022.1046259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Intracranial electrical self-stimulation (ICSS) is a useful procedure in animal research. This form of administration ensures that areas of the brain reward system (BRS) are being functionally activated, since the animals must perform an operant response to self-administer an electrical stimulus. Rewarding post-training ICSS of the medial forebrain bundle (MFB), an important system of the BRS, has been shown to consistently improve rats' acquisition and retention in several learning tasks. In the clinical setting, deep brain stimulation (DBS) of different targets is currently being used to palliate the memory impairment that occurs in some neurodegenerative diseases. However, the stimulation of the MFB has only been used to treat emotional alterations, not memory disorders. Since DBS stimulation treatments in humans are exclusively administered by external sources, studies comparing the efficacy of that form of application to a self-administered stimulation are key to the translationality of ICSS. This protocol compares self-administered (ICSS) and experimenter-administered (EAS) stimulation of the MFB on the spatial Morris Water Maze task (MWM). c-Fos immunohistochemistry procedure was carried out to evaluate neural activation after retention. Results show that the stimulation of the MFB improves the MWM task regardless of the form of administration, although some differences in c-Fos expression were found. Present results suggest that MFB-ICSS is a valid animal model to study the effects of MFB electrical stimulation on memory, which could guide clinical applications of DBS. The present protocol is a useful guide for establishing ICSS behavior in rats, which could be used as a learning and memory-modulating treatment.
Collapse
Affiliation(s)
- Laia Vila-Solés
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soleil García-Brito
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Soleil García-Brito,
| | - Laura Aldavert-Vera
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabet Kádár
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Gemma Huguet
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Ignacio Morgado-Bernal
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pilar Segura-Torres
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Ríos AS, Oxenford S, Neudorfer C, Butenko K, Li N, Rajamani N, Boutet A, Elias GJB, Germann J, Loh A, Deeb W, Wang F, Setsompop K, Salvato B, Almeida LBD, Foote KD, Amaral R, Rosenberg PB, Tang-Wai DF, Wolk DA, Burke AD, Salloway S, Sabbagh MN, Chakravarty MM, Smith GS, Lyketsos CG, Okun MS, Anderson WS, Mari Z, Ponce FA, Lozano AM, Horn A. Optimal deep brain stimulation sites and networks for stimulation of the fornix in Alzheimer's disease. Nat Commun 2022; 13:7707. [PMID: 36517479 PMCID: PMC9751139 DOI: 10.1038/s41467-022-34510-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
Deep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer's Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others. This could be explained by variance in electrode placement leading to differential engagement of neural circuits. To investigate this, we performed a post-hoc analysis on a multi-center cohort of 46 patients with DBS to the fornix (NCT00658125, NCT01608061). Using normative structural and functional connectivity data, we found that stimulation of the circuit of Papez and stria terminalis robustly associated with cognitive improvement (R = 0.53, p < 0.001). On a local level, the optimal stimulation site resided at the direct interface between these structures (R = 0.48, p < 0.001). Finally, modulating specific distributed brain networks related to memory accounted for optimal outcomes (R = 0.48, p < 0.001). Findings were robust to multiple cross-validation designs and may define an optimal network target that could refine DBS surgery and programming.
Collapse
Grants
- P30 AG066507 NIA NIH HHS
- R01 NS127892 NINDS NIH HHS
- R01 MH113929 NIMH NIH HHS
- R01 MH130666 NIMH NIH HHS
- P30 AG072979 NIA NIH HHS
- Deutsche Forschungsgemeinschaft (German Research Foundation)
- Received grants and personal fees from Medtronic and Boston Scientific, grants from Abbott/St. Jude, and Functional Neuromodulation outside the submitted work.
- Received grants from Functional Neuromodulation during conduct of this study, grants and personal fees from Avid/Lily, and Merck, personal fees from Jannsen, GE Healthcare, Biogen and Neuronix outside the submitted work.
- Receives personal fees from Elsai, Lilly, Roche Novartis and Biogen outside the submitted work.
- Received personal fees from Allergan, Biogen, Roche-Genentech, Cortexyme, Bracket, Sanofi, and other type of support from Brain Health Inc and uMethod Health outside of the submitted work.
- Received grants from Functional Neuromodulation Inc. during conduct of this study, from Avanir and Eli Lily and NFL Benefits Office outside of the submitted work.
- Received grants from NIH, Tourette Association of America Grant, Parkinson’s Alliance, Smallwood Foundation, and personal fees from Parkinson’s Foundation Medical Director, Books4Patients, American Academy of Neurology, Peerview, WebMD/Medscape, Mededicus, Movement Disorders Society, Taylor and Francis, Demos, Robert Rose and non-financial support from Medtronic outside of the submitted work.
- Received grants from Medtronic and Functional Neuromodulation during conduct of this study, personal fees from Medtronic, St. Jude, Boston Scientific, and Functional Neuromodulation outside of submitted work
- Deutsches Zentrum für Luft- und Raumfahrt (German Centre for Air and Space Travel)
- National Institutes of Health (R01 13478451, 1R01NS127892-01 & 2R01 MH113929) New Venture Fund (FFOR Seed Grant).
Collapse
Affiliation(s)
- Ana Sofía Ríos
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simón Oxenford
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clemens Neudorfer
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Konstantin Butenko
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ningfei Li
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nanditha Rajamani
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, M5T1W7, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Jurgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Wissam Deeb
- UMass Chan Medical School, Department of Neurology, Worcester, MA, 01655, USA
- UMass Memorial Health, Department of Neurology, Worcester, MA, 01655, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Bryan Salvato
- University of Florida Health Jacksonville, Jacksonville, FL, USA
| | - Leonardo Brito de Almeida
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Robert Amaral
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David F Tang-Wai
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
- Department of Medicine, Division of Neurology, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Stephen Salloway
- Department of Psychiatry and Human Behavior and Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Memory & Aging Program, Butler Hospital, Providence, USA
| | | | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences and Richman Family Precision Medicine Center of Excellence, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| | | | - Zoltan Mari
- Johns Hopkins School of Medicine, Baltimore, MD, USA
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | | | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, M5T2S8, Canada
- Krembil Research Institute, University of Toronto, Toronto, ON, M5T2S8, Canada
| | - Andreas Horn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Departments of Neurology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Huynh QS, Elangovan S, Holsinger RMD. Non-Pharmacological Therapeutic Options for the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:11037. [PMID: 36232336 PMCID: PMC9570337 DOI: 10.3390/ijms231911037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is a growing global crisis in need of urgent diagnostic and therapeutic strategies. The current treatment strategy mostly involves immunotherapeutic medications that have had little success in halting disease progress. Hypotheses for pathogenesis and development of AD have been expanded to implicate both organ systems as well as cellular reactions. Non-pharmacologic interventions ranging from minimally to deeply invasive have attempted to address these diverse contributors to AD. In this review, we aim to delineate mechanisms underlying such interventions while attempting to provide explanatory links between the observed differences in disease states and postulated metabolic or structural mechanisms of change. The techniques discussed are not an exhaustive list of non-pharmacological interventions against AD but provide a foundation to facilitate a deeper understanding of the area of study.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shalini Elangovan
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
15
|
Yang X, Zhang R, Sun Z, Kurths J. Controlling Alzheimer's Disease Through the Deep Brain Stimulation to Thalamic Relay Cells. Front Comput Neurosci 2021; 15:636770. [PMID: 34819845 PMCID: PMC8606419 DOI: 10.3389/fncom.2021.636770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Experimental and clinical studies have shown that the technique of deep brain stimulation (DBS) plays a potential role in the regulation of Alzheimer’s disease (AD), yet it still desires for ongoing studies including clinical trials, theoretical approach and action mechanism. In this work, we develop a modified thalamo-cortico-thalamic (TCT) model associated with AD to explore the therapeutic effects of DBS on AD from the perspective of neurocomputation. First, the neuropathological state of AD resulting from synapse loss is mimicked by decreasing the synaptic connectivity strength from the Inter-Neurons (IN) neuron population to the Thalamic Relay Cells (TRC) neuron population. Under such AD condition, a specific deep brain stimulation voltage is then implanted into the neural nucleus of TRC in this TCT model. The symptom of AD is found significantly relieved by means of power spectrum analysis and nonlinear dynamical analysis. Furthermore, the therapeutic effects of DBS on AD are systematically examined in different parameter space of DBS. The results demonstrate that the controlling effect of DBS on AD can be efficient by appropriately tuning the key parameters of DBS including amplitude A, period P and duration D. This work highlights the critical role of thalamus stimulation for brain disease, and provides a theoretical basis for future experimental and clinical studies in treating AD.
Collapse
Affiliation(s)
- XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - RuiXi Zhang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - ZhongKui Sun
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University of Berlin, Berlin, Germany.,Centre for Analysis of Complex Systems, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Outram S, Muñoz KA, Kostick-Quenet K, Sanchez CE, Kalwani L, Lavingia R, Torgerson L, Sierra-Mercado D, Robinson JO, Pereira S, Koenig BA, Starr PA, Gunduz A, Foote KD, Okun MS, Goodman WK, McGuire AL, Zuk P, Lázaro-Muñoz G. Patient, Caregiver, and Decliner Perspectives on Whether to Enroll in Adaptive Deep Brain Stimulation Research. Front Neurosci 2021; 15:734182. [PMID: 34690676 PMCID: PMC8529029 DOI: 10.3389/fnins.2021.734182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
This research study provides patient and caregiver perspectives as to whether or not to undergo adaptive deep brain stimulation (aDBS) research. A total of 51 interviews were conducted in a multi-site study including patients undergoing aDBS and their respective caregivers along with persons declining aDBS. Reasons highlighted for undergoing aDBS included hopes for symptom alleviation, declining quality of life, desirability of being in research, and altruism. The primary reasons for not undergoing aDBS issues were practical rather than specific to aDBS technology, although some persons highlighted a desire to not be the first to trial the new technology. These themes are discussed in the context of "push" factors wherein any form of surgical intervention is preferable to none and "pull" factors wherein opportunities to contribute to science combine with hopes and/or expectations for the alleviation of symptoms. We highlight the significance of study design in decision making. aDBS is an innovative technology and not a completely new technology. Many participants expressed value in being part of research as an important consideration. We suggest that there are important implications when comparing patient perspectives vs. theoretical perspectives on the choice for or against aDBS. Additionally, it will be important how we communicate with patients especially in reference to the complexity of study design. Ultimately, this study reveals that there are benefits and potential risks when choosing a research study that involves implantation of a medical device.
Collapse
Affiliation(s)
- Simon Outram
- Program in Bioethics, University of California, San Francisco, San Francisco, CA, United States
| | - Katrina A. Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Kristin Kostick-Quenet
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Clarissa E. Sanchez
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Lavina Kalwani
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | | | - Laura Torgerson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Demetrio Sierra-Mercado
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jill O. Robinson
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Barbara A. Koenig
- Program in Bioethics, University of California, San Francisco, San Francisco, CA, United States
| | - Philip A. Starr
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Aysegul Gunduz
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Kelly D. Foote
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Michael S. Okun
- Fixel Institute for Neurological Diseases, Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Wayne K. Goodman
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Amy L. McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Peter Zuk
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Gabriel Lázaro-Muñoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Plocksties F, Kober M, Niemann C, Heller J, Fauser M, Nüssel M, Uster F, Franz D, Zwar M, Lüttig A, Kröger J, Harloff J, Schulz A, Richter A, Köhling R, Timmermann D, Storch A. The software defined implantable modular platform (STELLA) for preclinical deep brain stimulation research in rodents. J Neural Eng 2021; 18. [PMID: 34542029 DOI: 10.1088/1741-2552/ac23e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Context.Long-term deep brain stimulation (DBS) studies in rodents are of crucial importance for research progress in this field. However, most stimulation devices require jackets or large head-mounted systems which severely affect mobility and general welfare influencing animals' behavior.Objective.To develop a preclinical neurostimulation implant system for long-term DBS research in small animal models.Approach.We propose a low-cost dual-channel DBS implant called software defined implantable platform (STELLA) with a printed circuit board size of Ø13 × 3.3 mm, weight of 0.6 g and current consumption of 7.6µA/3.1 V combined with an epoxy resin-based encapsulation method.Main results.STELLA delivers charge-balanced and configurable current pulses with widely used commercial electrodes. Whilein vitrostudies demonstrate at least 12 weeks of error-free stimulation using a CR1225 battery, our calculations predict a battery lifetime of up to 3 years using a CR2032. Exemplary application for DBS of the subthalamic nucleus in adult rats demonstrates that fully-implanted STELLA neurostimulators are very well-tolerated over 42 days without relevant stress after the early postoperative phase resulting in normal animal behavior. Encapsulation, external control and monitoring of function proved to be feasible. Stimulation with standard parameters elicited c-Fos expression by subthalamic neurons demonstrating biologically active function of STELLA.Significance.We developed a fully implantable, scalable and reliable DBS device that meets the urgent need for reverse translational research on DBS in freely moving rodent disease models including sensitive behavioral experiments. We thus add an important technology for animal research according to 'The Principle of Humane Experimental Technique'-replacement, reduction and refinement (3R). All hardware, software and additional materials are available under an open source license.
Collapse
Affiliation(s)
- Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Jakob Heller
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Martin Nüssel
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Felix Uster
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Denise Franz
- Institute of Physiology, University of Rostock, 18057 Rostock, Germany
| | - Monique Zwar
- Institute of Physiology, University of Rostock, 18057 Rostock, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, 04103 Leipzig, Germany
| | - Justin Kröger
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Jörg Harloff
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, 04103 Leipzig, Germany
| | - Rüdiger Köhling
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, 18147 Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| |
Collapse
|
18
|
Chiang TI, Yu YH, Lin CH, Lane HY. Novel Biomarkers of Alzheimer's Disease: Based Upon N-methyl-D-aspartate Receptor Hypoactivation and Oxidative Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:423-433. [PMID: 34294612 PMCID: PMC8316669 DOI: 10.9758/cpn.2021.19.3.423] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Early detection and prevention of Alzheimer’s disease (AD) is important. The current treatment for early AD is acetylcholine esterase inhibitors (AChEIs); however, the efficacy is poor. Besides, AChEI did not show efficacy in mild cognitive impairment (MCI). Beta-amyloid (Aβ) deposits have been regarded to be highly related to the pathogenesis of AD. However, many clinical trials aiming at the clearance of Aβ deposits failed to improve the cognitive decline of AD, even at its early phase. There should be other important mechanisms unproven in the course of AD and MCI. Feasible biomarkers for the diagnosis and treatment response of AD are lacking to date. The N-methyl-D-aspartate receptor (NMDAR) activation plays an important role in learning and memory. On the other hand, oxidative stress has been regarded to contribute to aging with the assumption that free radicals damage cell constituents and connective tissues. Our recent study found that an NMDAR enhancer, sodium benzoate (the pivotal inhibitor of D-amino acid oxidase [DAAO]), improved the cognitive and global function of patients with early-phase AD. Further, we found that peripheral DAAO levels were higher in patients with MCI and AD than healthy controls. We also found that sodium benzoate was able to change the activity of antioxidant. These pieces of evidence suggest that the NMDAR function is associated with anti-oxidation, and have potential to be biomarkers for the diagnosis and treatment response of AD.
Collapse
Affiliation(s)
- Ting-I Chiang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Hsiang Yu
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Brown NJ, Lien BV, Wilson CM, Detchou DKE. Letter: A Novel Framework for Network-Targeted Neuropsychiatric Deep Brain Stimulation. Neurosurgery 2021; 89:E281-E282. [PMID: 34332510 DOI: 10.1093/neuros/nyab284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/27/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nolan J Brown
- Irvine Department of Neurological Surgery University of California Orange, California, USA
| | - Brian V Lien
- Irvine Department of Neurological Surgery University of California Orange, California, USA
| | - Chidinma M Wilson
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Donald K E Detchou
- Perelman School of Medicine University of Pennsylvania Philadelphia, Pennsylvania, USA.,Frazier Scholar Program Department of Neurosurgery Hospital of the University of Pennsylvania Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Slater C, Wang Q. Alzheimer's disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin Transl Med 2021; 11:e397. [PMID: 33931975 PMCID: PMC8087948 DOI: 10.1002/ctm2.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through β adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Qi Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
21
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
22
|
Ünsel-Bolat G, Baytunca MB, Kardaş B, İpçi M, İnci İzmir SB, Özyurt O, Çallı MC, Ercan ES. Diffusion tensor imaging findings in children with sluggish cognitive tempo comorbid Attention Deficit Hyperactivity Disorder. Nord J Psychiatry 2020; 74:620-626. [PMID: 32543999 DOI: 10.1080/08039488.2020.1772364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The construct of Sluggish Cognitive Tempo (SCT) is characterized by daydreaming, mental confusion, staring blankly and hypoactivity. Our main goal was to explore neuropsychological differences in Attention Deficit Hyperactivity Disorder-Inattentive presentation (ADHD-IA) groups with and without SCT symptoms compared to healthy controls. After detecting specific neuropsychological differences, we examined white matter microstructure using Diffusion Tensor Imaging (DTI) data obtained from 3.0 Tesla MRI scans of the cases with SCT symptoms comparing to Typically Developing (TD) controls.Method: In this study, we included 24 cases in the ADHD-IA group with SCT symptoms, 57 cases in the ADHD-IA group without SCT symptoms and, 24 children in the TD group. We applied tract-based spatial statistics to the DTI measures for obtaining fractional anisotropy (FA), axial, radial and mean diffusivity (AD, RD, MD) to explore white matter differences for the whole brain.Results: Omission error scores and longer reaction time scores were specifically associated with inattention symptoms. Commission error scores were significantly and specifically related to SCT symptoms. Cases with SCT symptoms presented increased FA in the bilateral anterior and posterior limb of the internal capsule, bilateral cerebral peduncle, and the fornix than TD group.Conclusions: Neurobiological differences in ADHD cases are still relatively unexplored. We suggest that including an assessment for SCT in the neuropsychological and neuroimaging studies of ADHD may provide more consistent results.
Collapse
Affiliation(s)
- Gül Ünsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University, Balıkesir, Turkey
| | | | - Burcu Kardaş
- Department of Child and Adolescent Psychiatry, Gazi Yaşargil Education and Research Hospital, Diyarbakır, Turkey
| | - Melis İpçi
- Department of Clinical Psychology, Hasan Kalyoncu University, Gaziantep, Turkey
| | | | - Onur Özyurt
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Mehmet Cem Çallı
- Department of Radiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Eyüp Sabri Ercan
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
23
|
Liu H, Temel Y, Boonstra J, Hescham S. The effect of fornix deep brain stimulation in brain diseases. Cell Mol Life Sci 2020; 77:3279-3291. [PMID: 31974655 PMCID: PMC7426306 DOI: 10.1007/s00018-020-03456-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/17/2019] [Accepted: 01/08/2020] [Indexed: 01/02/2023]
Abstract
Deep brain stimulation is used to alleviate symptoms of neurological and psychiatric disorders including Parkinson's disease, epilepsy, and obsessive-compulsive-disorder. Electrically stimulating limbic structures has been of great interest, and in particular, the region of the fornix. We conducted a systematic search for studies that reported clinical and preclinical outcomes of deep brain stimulation within the fornix up to July 2019. We identified 13 studies (7 clinical, 6 preclinical) that examined the effects of fornix stimulation in Alzheimer's disease (n = 9), traumatic brain injury (n = 2), Rett syndrome (n = 1), and temporal lobe epilepsy (n = 1). Overall, fornix stimulation can lead to decreased rates of cognitive decline (in humans), enhanced memory (in humans and animals), visuo-spatial memorization (in humans and animals), and improving verbal recollection (in humans). While the exact mechanisms of action are not completely understood, studies suggest fornix DBS to be involved with increased functional connectivity and neurotransmitter levels, as well as enhanced neuroplasticity.
Collapse
Affiliation(s)
- Huajie Liu
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Jackson Boonstra
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - Sarah Hescham
- Department of Neurosurgery, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Fagiolini M, Patrizi A, LeBlanc J, Jin LW, Maezawa I, Sinnett S, Gray SJ, Molholm S, Foxe JJ, Johnston MV, Naidu S, Blue M, Hossain A, Kadam S, Zhao X, Chang Q, Zhou Z, Zoghbi H. Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience 2020; 445:190-206. [PMID: 32360592 DOI: 10.1016/j.neuroscience.2020.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Disruptions in the gene encoding methyl-CpG binding protein 2 (MECP2) underlie complex neurodevelopmental disorders including Rett Syndrome (RTT), MECP2 duplication disorder, intellectual disabilities, and autism. Significant progress has been made on the molecular and cellular basis of MECP2-related disorders providing a new framework for understanding how altered epigenetic landscape can derail the formation and refinement of neuronal circuits in early postnatal life and proper neurological function. This review will summarize selected major findings from the past years and particularly highlight the integrated and multidisciplinary work done at eight NIH-funded Intellectual and Developmental Disabilities Research Centers (IDDRC) across the US. Finally, we will outline a path forward with identification of reliable biomarkers and outcome measures, longitudinal preclinical and clinical studies, reproducibility of results across centers as a synergistic effort to decode and treat the pathogenesis of the complex MeCP2 disorders.
Collapse
Affiliation(s)
- Michela Fagiolini
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Annarita Patrizi
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jocelyn LeBlanc
- Children's Hospital Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee-Way Jin
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Izumi Maezawa
- UC Davis MIND Institute, University of California, Sacramento, CA, USA
| | - Sarah Sinnett
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Steven J Gray
- UNC Intellectual and Developmental Disabilities Research Center, University of North Carolina, Gene Therapy Center and Dept. of Ophthalmology, Chapel Hill, NC, USA; Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, Departments of Pediatrics, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, Ernest J. Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael V Johnston
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Sakkubai Naidu
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Mary Blue
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Ahamed Hossain
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Shilpa Kadam
- Kennedy Krieger Institute Intellectual and Developmental Disabilities Research Center/Hugo Moser Research Institute at Kennedy Krieger and Johns Hopkins School of Medicine, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Quiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhaolan Zhou
- Department of Genetic, Epigenetic Institute, University of Pennsylvania Perelman School of Medicine, Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Huda Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
25
|
Intracranial Self-Stimulation Modulates Levels of SIRT1 Protein and Neural Plasticity-Related microRNAs. Mol Neurobiol 2020; 57:2551-2562. [PMID: 32219698 DOI: 10.1007/s12035-020-01901-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Deep brain stimulation (DBS) of reward system brain areas, such as the medial forebrain bundle (MFB), by means of intracranial self-stimulation (ICSS), facilitates learning and memory in rodents. MFB-ICSS has been found capable of modifying different plasticity-related proteins, but its underlying molecular mechanisms require further elucidation. MicroRNAs (miRNAs) and the longevity-associated SIRT1 protein have emerged as important regulatory molecules implicated in neural plasticity. Thus, we aimed to analyze the effects of MFB-ICSS on miRNAs expression and SIRT1 protein levels in hippocampal subfields and serum. We used OpenArray to select miRNA candidates differentially expressed in the dentate gyrus (DG) of ICSS-treated (3 sessions, 45' session/day) and sham rats. We further analyzed the expression of these miRNAs, together with candidates selected after bibliographic screening (miR-132-3p, miR-134-5p, miR-146a-5p, miR-181c-5p) in DG, CA1, and CA3, as well as in serum, by qRT-PCR. We also assessed tissue and serum SIRT1 protein levels by Western Blot and ELISA, respectively. Expression of miR-132-3p, miR-181c-5p, miR-495-3p, and SIRT1 protein was upregulated in DG of ICSS rats (P < 0.05). None of the analyzed molecules was regulated in CA3, while miR-132-3p was also increased in CA1 (P = 0.011) and serum (P = 0.048). This work shows for the first time that a DBS procedure, specifically MFB-ICSS, modulates the levels of plasticity-related miRNAs and SIRT1 in specific hippocampal subfields. The mechanistic role of these molecules could be key to the improvement of memory by MFB-ICSS. Moreover, regarding the proposed clinical applicability of DBS, serum miR-132 is suggested as a potential treatment biomarker.
Collapse
|
26
|
Nombela C, Lozano A, Villanueva C, Barcia JA. Simultaneous Stimulation of the Globus Pallidus Interna and the Nucleus Basalis of Meynert in the Parkinson-Dementia Syndrome. Dement Geriatr Cogn Disord 2019; 47:19-28. [PMID: 30630160 DOI: 10.1159/000493094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM The prevalence of cognitive symptoms in recently diagnosed Parkinson's disease (PD) patients may be as high as 60%. We report a novel deep brain stimulation (DBS) strategy targeting both motor and cognitive symptoms. METHODS A PD patient diagnosed with mild cognitive impairment underwent DBS surgery targeting the globus pallidus interna (GPi; to treat motor symptoms) and the nucleus basalis of Meynert (NBM; to treat cognitive symptoms) using a single electrode per hemisphere. RESULTS Compared to baseline, 2-month follow-up after GPi stimulation was associated with motor improvements, whereas partial improvements in cognitive functions were observed 3 months after the addition of NBM stimulation to GPi stimulation. CONCLUSION This case explores an available alternative for complete DBS treatment in PD, stimulating 2 targets at different frequencies with a single electrode lead.
Collapse
Affiliation(s)
- Cristina Nombela
- Department of Neurosurgery, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain,
| | - Andrés Lozano
- Toronto Western Research Institute, Krembil Discovery Tower, University Health Network, Toronto, Ontario, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Clara Villanueva
- Department of Neurology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Juan A Barcia
- Department of Neurosurgery, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
27
|
Khan S, Aziz T. Transcending the brain: is there a cost to hacking the nervous system? Brain Commun 2019; 1:fcz015. [PMID: 32954260 PMCID: PMC7425343 DOI: 10.1093/braincomms/fcz015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Great advancements have recently been made to understand the brain and the potential that we can extract out of it. Much of this has been centred on modifying electrical activity of the nervous system for improved physical and cognitive performance in those with clinical impairment. However, there is a risk of going beyond purely physiological performance improvements and striving for human enhancement beyond traditional human limits. Simple ethical guidelines and legal doctrine must be examined to keep ahead of technological advancement in light of the impending mergence between biology and machine. By understanding the role of modern ethics, this review aims to appreciate the fine boundary between what is considered ethically justified for current neurotechnology.
Collapse
Affiliation(s)
- Shujhat Khan
- School of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Tipu Aziz
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
28
|
Chen J, Duan Y, Li H, Lu L, Liu J, Tang C. Different durations of cognitive stimulation therapy for Alzheimer's disease: a systematic review and meta-analysis. Clin Interv Aging 2019; 14:1243-1254. [PMID: 31371930 PMCID: PMC6635834 DOI: 10.2147/cia.s210062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/15/2019] [Indexed: 11/23/2022] Open
Abstract
Objective We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy of cognitive stimulation therapy (CST) of different durations for Alzheimer’s disease (AD). Methods A comprehensive search was carried out in three databases. The primary outcome was Mini-Mental State Examination (MMSE) score. We conducted a meta-analysis with Review Manager, version 5.3 and assessed the methodological quality of the included studies using the Cochrane Collaboration Recommendations assessment tool. Results Treatment effects from the meta-analysis showed that CST plus acetylcholinesterase inhibitors (ChEIs) was better than the control assessed by MMSE. In addition, the meta-analysis indicated that long-term CST was better than short-term or maintenance CST. Conclusion Our study confirmed that the combination of CST and drug treatment for AD is effective in AD, regardless of whether short-term CST, maintenance CST, or long-term CST is used. The long-term CST appears to be more effective.
Collapse
Affiliation(s)
- Juexuan Chen
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yuting Duan
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Hong Kong Chinese Medicine Clinical Study Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, People's Republic of China
| | - Huanjie Li
- Foshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Foshan, People's Republic of China
| | - Liming Lu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jihong Liu
- Foshan Hospital of Traditional Chinese Medicine, Affiliated to Guangzhou University of Chinese Medicine, Foshan, People's Republic of China
| | - Chunzhi Tang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
29
|
Alpaugh M, Saint-Pierre M, Dubois M, Aubé B, Arsenault D, Kriz J, Cicchetti A, Cicchetti F. A novel wireless brain stimulation device for long-term use in freely moving mice. Sci Rep 2019; 9:6444. [PMID: 31015544 PMCID: PMC6478908 DOI: 10.1038/s41598-019-42910-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Deep brain stimulation (DBS) has been used in clinical settings for many years despite a paucity of knowledge related to the anatomical and functional substrates that lead to benefits and/or side-effects in various disease contexts. In order to maximize the potential of this approach in humans, a better understanding of its mechanisms of action is absolutely necessary. However, the existing micro-stimulators available for pre-clinical models, are limited by the lack of relevant small size devices. This absence prevents sustained chronic stimulation and real time monitoring of animals during stimulation, parameters that are critical for comparison to clinical findings. We therefore sought to develop and refine a novel small wireless micro-stimulator as a means by which to study consequent behavioural to molecular changes in experimental animals. Building on previous work from our group, we refined our implantable micro-stimulator prototype, to be easily combined with intravital 2-photon imaging. Using our prototype we were able to replicate the well described clinical benefits on motor impairment in a mouse model of Parkinson's disease in addition to capturing microglia dynamics live during stimulation. We believe this new device represents a useful tool for performing pre-clinical studies as well as dissecting brain circuitry and function.
Collapse
Affiliation(s)
- Melanie Alpaugh
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC, Canada
| | - Martine Saint-Pierre
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC, Canada
| | - Marilyn Dubois
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC, Canada
| | - Benoit Aubé
- CERVO Brain Research Center, Québec, QC, Canada
| | - Dany Arsenault
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC, Canada
| | - Jasna Kriz
- CERVO Brain Research Center, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| | - Antonio Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, 2705, Boulevard Laurier, Québec, QC, Canada. .,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada.
| |
Collapse
|
30
|
Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K. Deep Brain Stimulation Programming 2.0: Future Perspectives for Target Identification and Adaptive Closed Loop Stimulation. Front Neurol 2019; 10:314. [PMID: 31001196 PMCID: PMC6456744 DOI: 10.3389/fneur.2019.00314] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Deep brain stimulation has developed into an established treatment for movement disorders and is being actively investigated for numerous other neurological as well as psychiatric disorders. An accurate electrode placement in the target area and the effective programming of DBS devices are considered the most important factors for the individual outcome. Recent research in humans highlights the relevance of widespread networks connected to specific DBS targets. Improving the targeting of anatomical and functional networks involved in the generation of pathological neural activity will improve the clinical DBS effect and limit side-effects. Here, we offer a comprehensive overview over the latest research on target structures and targeting strategies in DBS. In addition, we provide a detailed synopsis of novel technologies that will support DBS programming and parameter selection in the future, with a particular focus on closed-loop stimulation and associated biofeedback signals.
Collapse
Affiliation(s)
- Franz Hell
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Munich, Germany
| | - Carla Palleis
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan H. Mehrkens
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany
| | - Thomas Koeglsperger
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|