1
|
Prada AM, Quintero F, Mendoza K, Galvis V, Tello A, Romero LA, Marrugo AG. Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images. Cornea 2024; 43:1080-1087. [PMID: 38334475 PMCID: PMC11296282 DOI: 10.1097/ico.0000000000003460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/01/2023] [Accepted: 11/23/2023] [Indexed: 02/10/2024]
Abstract
PURPOSE The aim of this study was to evaluate the efficacy of artificial intelligence-derived morphometric parameters in characterizing Fuchs corneal endothelial dystrophy (FECD) from specular microscopy images. METHODS This cross-sectional study recruited patients diagnosed with FECD, who underwent ophthalmologic evaluations, including slit-lamp examinations and corneal endothelial assessments using specular microscopy. The modified Krachmer grading scale was used for clinical FECD classification. The images were processed using a convolutional neural network for segmentation and morphometric parameter estimation, including effective endothelial cell density, guttae area ratio, coefficient of variation of size, and hexagonality. A mixed-effects model was used to assess relationships between the FECD clinical classification and measured parameters. RESULTS Of 52 patients (104 eyes) recruited, 76 eyes were analyzed because of the exclusion of 26 eyes for poor quality retroillumination photographs. The study revealed significant discrepancies between artificial intelligence-based and built-in microscope software cell density measurements (1322 ± 489 cells/mm 2 vs. 2216 ± 509 cells/mm 2 , P < 0.001). In the central region, guttae area ratio showed the strongest correlation with modified Krachmer grades (0.60, P < 0.001). In peripheral areas, only guttae area ratio in the inferior region exhibited a marginally significant positive correlation (0.29, P < 0.05). CONCLUSIONS This study confirms the utility of CNNs for precise FECD evaluation through specular microscopy. Guttae area ratio emerges as a compelling morphometric parameter aligning closely with modified Krachmer clinical grading. These findings set the stage for future large-scale studies, with potential applications in the assessment of irreversible corneal edema risk after phacoemulsification in FECD patients, as well as in monitoring novel FECD therapies.
Collapse
Affiliation(s)
- Angelica M. Prada
- Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia
- Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- Facultad de Salud, Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia
| | - Fernando Quintero
- Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena, Colombia
| | - Kevin Mendoza
- Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena, Colombia
| | - Virgilio Galvis
- Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia
- Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- Facultad de Salud, Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia
| | - Alejandro Tello
- Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia
- Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia
- Facultad de Salud, Universidad Autónoma de Bucaramanga UNAB, Bucaramanga, Colombia
- Facultad de Salud, Universidad Industrial de Santander UIS, Bucaramanga, Colombia; and
| | - Lenny A. Romero
- Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena, Colombia
| | - Andres G. Marrugo
- Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena, Colombia
| |
Collapse
|
2
|
Liu JX, Chiang TL, Hung KF, Sun YC. Therapeutic future of Fuchs endothelial corneal dystrophy: An ongoing way to explore. Taiwan J Ophthalmol 2024; 14:15-26. [PMID: 38654984 PMCID: PMC11034696 DOI: 10.4103/tjo.tjo-d-23-00115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 04/26/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is one of the most common corneal diseases that causes loss of visual acuity in the world. FECD is a genetically and pathogenetically heterogeneous disease that results in the failure of corneal endothelial cells to maintain fluid balance and functional homeostasis of the cornea. Corneal edema, central guttae formation, and bullae development are common corneal pathologies. Currently, the mainstay of FECD treatment is surgery. However, limited sources of corneal graft and postsurgical complications remain problematic. In recent years, with advances in medical science and technology, there have been a few promising trials of new treatment modalities for FECD. In addition to new surgical methods, novel modalities can be classified into pharmacological-associated treatment, cell therapy-associated treatment, and gene therapy-associated treatment. In this article, our primary focus is on the most recent clinical trials related to FECD, and we present a stepwise approach to enhance FECD management and ultimately improve patient outcomes. We thoroughly searched for FECD clinical trials and reviewed the study designs, methodologies, and outcomes of each trial conducted within the past decade. It is imperative for physicians to stay up-to-date with these cutting-edge treatment approaches.
Collapse
Affiliation(s)
- Jia-Xin Liu
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
| | - Tung-Lin Chiang
- College of Medicine, National Taiwan University, Taipei, Taiwan
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chen Sun
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| |
Collapse
|
3
|
Petrela RB, Patel SP. The soil and the seed: The relationship between Descemet's membrane and the corneal endothelium. Exp Eye Res 2023; 227:109376. [PMID: 36592681 DOI: 10.1016/j.exer.2022.109376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Descemet's membrane (DM), the basement membrane of the corneal endothelium, is formed from the extracellular matrix (ECM) secreted by corneal endothelial cells. The ECM supports the growth and function of the corneal endothelial cells. Changes to DM are central to the diagnosis of the most common corneal endothelial disease, Fuchs endothelial corneal dystrophy (FECD). Changes in DM are also noted in systemic diseases such as diabetes mellitus. In FECD, the DM progressively accumulates guttae, "drop-like deposits" that disrupt the corneal endothelial cell monolayer. While the pathophysiologic changes to corneal endothelial cells in the course of FECD have been well described and reviewed, the changes to DM have received limited attention. The reciprocity of influence between the corneal endothelial cells and DM demands full attention to the latter in our search for novel treatment and preventive strategies. In this review, we discuss what is known about the formation and composition of DM and how it changes in FECD and other conditions. We review characteristics of guttae and the interplay between corneal endothelial cells and guttae, particularly as it might apply to future cell-based and genetic therapies for FECD.
Collapse
Affiliation(s)
- Redion B Petrela
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 1176 Main Street, Buffalo, NY, 14209, USA; Norton College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY, 13210, USA.
| | - Sangita P Patel
- Ross Eye Institute, Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 1176 Main Street, Buffalo, NY, 14209, USA; Research and Ophthalmology Services, Veterans Administration of Western New York Healthcare System, 3495 Bailey Ave, Buffalo, NY, 14215, USA.
| |
Collapse
|
4
|
Li Z, Duan H, Jia Y, Zhao C, Li W, Wang X, Gong Y, Dong C, Ma B, Dou S, Zhang B, Li D, Cao Y, Xie L, Zhou Q, Shi W. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest 2022; 132:146658. [PMID: 34981789 PMCID: PMC8718141 DOI: 10.1172/jci146658] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) hold great promise for the treatment of various human diseases. However, their therapeutic benefits and mechanisms for treating corneal endothelial dysfunction remain undefined. Here, we developed a therapeutic regimen consisting of the combination of hPSC-derived corneal endothelial precursors (CEPs) with nicotinamide (NAM) for effective treatment of corneal endothelial dysfunction. In rabbit and nonhuman primate models, intracameral injection of CEPs and NAM achieved long-term recovery of corneal clarity and thickness, similar with the therapeutic outcome of cultured human corneal endothelial cells (CECs). The transplanted human CEPs exhibited structural and functional integration with host resident CECs. However, the long-term recovery relied on the stimulation of endogenous endothelial regeneration in rabbits, but predominantly on the replacing function of transplanted cells during the 3-year follow-up in nonhuman primates, which resemble human corneal endothelium with limited regenerative capacity. Mechanistically, NAM ensured in vivo proper maturation of transplanted CEPs into functional CECs by preventing premature senescence and endothelial-mesenchymal transition within the TGF-β–enriched aqueous humor. Together, we provide compelling experimental evidence and mechanistic insights of simultaneous delivery of CEPs and NAM as a potential approach for treating corneal endothelial dysfunction.
Collapse
Affiliation(s)
- Zongyi Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yanni Jia
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Can Zhao
- Eye Hospital of Shandong First Medical University, Jinan, China
| | - Wenjing Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| | - Yajie Gong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Chunxiao Dong
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| | - Bochao Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Bin Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Dongfang Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Yihai Cao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|