1
|
Koyama M, Hill GR. Mouse Models of Antigen Presentation in Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:715893. [PMID: 34594330 PMCID: PMC8476754 DOI: 10.3389/fimmu.2021.715893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 02/02/2023] Open
Abstract
Allogeneic stem cell transplantation (alloSCT) is a curative therapy for hematopoietic malignancies. The therapeutic effect relies on donor T cells and NK cells to recognize and eliminate malignant cells, known as the graft-versus-leukemia (GVL) effect. However, off target immune pathology, known as graft-versus-host disease (GVHD) remains a major complication of alloSCT that limits the broad application of this therapy. The presentation of recipient-origin alloantigen to donor T cells is the primary process initiating GVHD and GVL. Therefore, the understanding of spatial and temporal characteristics of alloantigen presentation is pivotal to attempts to separate beneficial GVL effects from detrimental GVHD. In this review, we discuss mouse models and the tools therein, that permit the quantification of alloantigen presentation after alloSCT.
Collapse
Affiliation(s)
- Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Division of Medical Oncology, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Choi EY, Choi K, Nam G, Kim W, Chung M. H60: A Unique Murine Hematopoietic Cell-Restricted Minor Histocompatibility Antigen for Graft-versus-Leukemia Effect. Front Immunol 2020; 11:1163. [PMID: 32587590 PMCID: PMC7297985 DOI: 10.3389/fimmu.2020.01163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment for many types of hematological malignancies. Matching of donor and recipient for the major histocompatibility complex (MHC) improves the HSCT reconstitution, but donor-derived T cells reactive to non-MHC encoded minor histocompatibility antigens (MiHAs) can induce graft-versus-host disease (GVHD) while also being needed for graft-versus-leukemia (GVL) effects. MiHAs are allelically variant self-peptides presented conventionally on MHC molecules, but are alloantigenic in transplantation settings. Immunodominant MiHAs are most strongly associated with GVHD and GVL. There is need for mouse paradigms to understand these contradictory effects. H60 is a highly immunodominant mouse MiHA with hematopoietic cell-restricted expression. Immunodominance of H60 is tightly associated with its allelic nature (presence vs. absence of the transcripts), and the qualitative (TCR diversity) and quantitative (frequency) traits of the reactive T cells. The identity as a hematopoietic cell-restricted antigen (HRA) of H60 assists the appearance of the immunodominace in allo-HSCT circumstances, and generation of GVL effects without induction of serious GVHD after adoptive T cell transfer. Also it allows the low avidity T cells to escape thymic negative selection and exert GVL effect in the periphery, which is a previously unevaluated finding related to HRAs. In this review, we describe the molecular features and immunobiology in detail through which H60 selectively exerts its potent GVL effect. We further describe how lessons learned can be extrapolated to human allo-HCST.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyungho Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Giri Nam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Woojin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Minho Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Lee YK, Ju JM, Shon WJ, Oh S, Min CK, Kang MS, Shin DM, Choi EY. Skewed Dendritic Cell Differentiation of MyD88-Deficient Donor Bone Marrow Cells, Instead of Massive Expansion as Myeloid-Derived Suppressor Cells, Aggravates GVHD. Immune Netw 2018; 18:e44. [PMID: 30619630 PMCID: PMC6312895 DOI: 10.4110/in.2018.18.e44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Graft-versus-host disease (GVHD), a life-threatening complication after bone marrow transplantation (BMT), is induced by activation of alloreactive donor T cells. Our previous study demonstrated that transplantation of myeloid differentiation factor 88 (MyD88)-deficient knockout (KO) bone marrow (BM) resulted in aggravation of GVHD. Here, to understand the cellular mechanism, we performed longitudinal in vivo imaging and flow cytometric analyses followed by transcriptome and functional examination of donor MyD88-KO BM progenies in GVHD hosts, using a major histocompatibility complex-matched but minor histocompatibility antigen-mismatched C57BL/6→BALB.B model. In GVHD hosts with MyD88-KO BMT, donor BM-derived CD11b+Gr-1+ cells were found to undergo cell death, a fate significantly different from the explosive expansion shown by the wild type (WT) counterparts, and also from the moderate expansion of the WT or MyD88-KO BM-derived cells in non-GVHD hosts. It was also revealed that MyD88-KO CD11b+Gr-1+ cells preferred differentiation into CD11c+ dendritic cells (DCs) to expansion as myeloid-derived suppressor cells in GVHD hosts or in high inflammatory in vitro conditions. These CD11c+ DCs comprised the majority of MyD88-KO CD11b+Gr-1+ apoptotic cells in GVHD hosts. Their ability to cross-present alloantigens of host origin contributed to the enhancement of T cell alloreactivity, causing GVHD aggravation and eventually death through the killing function of activated T cells. These results provide insights into the roles of MyD88 in myelopoiesis of donor BM and the protective effects in GVHD hosts, helpful information for development of a strategy to control GVHD.
Collapse
Affiliation(s)
- Young-Kwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Ji-Min Ju
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Woo-Jeong Shon
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul 08826, Korea
| | - Sehwa Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chang-Ki Min
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06951, Korea
| | - Myung-Soo Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Seoul 08826, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
4
|
Escape from thymic deletion and anti-leukemic effects of T cells specific for hematopoietic cell-restricted antigen. Nat Commun 2018; 9:225. [PMID: 29335408 PMCID: PMC5768767 DOI: 10.1038/s41467-017-02665-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Whether hematopoietic cell-restricted distribution of antigens affects the degree of thymic negative selection has not been investigated in detail. Here, we show that T cells specific for hematopoietic cell-restricted antigens (HRA) are not completely deleted in the thymus, using the mouse minor histocompatibility antigen H60, the expression of which is restricted to hematopoietic cells. As a result, low avidity T cells escape from thymic deletion. This incomplete thymic deletion occurs to the T cells developing de novo in the thymus of H60-positive recipients in H60-mismatched bone marrow transplantation (BMT). H60-specific thymic deletion escapee CD8+ T cells exhibit effector differentiation potentials in the periphery and contribute to graft-versus-leukemia effects in the recipients of H60-mismatched BMT, regressing H60+ hematological tumors. These results provide information essential for understanding thymic negative selection and developing a strategy to treat hematological tumors.
Collapse
|
5
|
Ju JM, Kim MB, Ryu SJ, Kim JY, Chang J, Choi EY. Selection of Thymocytes Expressing Transgenic TCR Specific for a Minor Histocompatibility Antigen, H60. Immune Netw 2015; 15:222-31. [PMID: 26557806 PMCID: PMC4637343 DOI: 10.4110/in.2015.15.5.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 01/11/2023] Open
Abstract
Minor histocompatibility antigens are MHC-bound peptides and contribute to the generation of allo-responses after allogeneic transplantation. H60 is a dominant minor H antigen that induces a strong CD8 T-cell response in MHC-matched allogeneic transplantation settings. Here, we report establishment of a TCR transgenic mouse line named J15, wherein T cells express TCRs specific for H60 in complex with H-2K(b), and different fates of the thymocytes expressing J15 TCRs in various thymic antigenic environments. Thymocytes expressing the J15 TCRs were positively selected and differentiated into CD8(+) single positive (SP) cells in the thymus of C57BL/6 mice, wherein the cognate antigen H60 is not expressed. However, thymocytes were negatively selected in thymus tissue where H60 was transgenically expressed under the control of the actin promoter, with double-positive stages of cells being deleted. Despite the ability of the H60H peptide (LTFHYRNL) variant to induce cytotoxic activity from H60-specific CTL lines at ~50% of the activity induced by normal H60 peptides (LTFNYRNL), J15-expressing thymocytes were positively selected in the thymus where the variant H60H was transgenically expressed. These results demonstrate that a single amino-acid change in the H60 epitope peptide influences the fate of thymocytes expressing the cognate TCR.
Collapse
Affiliation(s)
- Ji-Min Ju
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Min Bum Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Su Jeong Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Joo Young Kim
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Jun Chang
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
6
|
Memory programming in CD8(+) T-cell differentiation is intrinsic and is not determined by CD4 help. Nat Commun 2015; 6:7994. [PMID: 26272364 PMCID: PMC4557278 DOI: 10.1038/ncomms8994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/06/2015] [Indexed: 12/03/2022] Open
Abstract
CD8+ T cells activated without CD4+ T-cell help are impaired in memory expansion. To understand the underlying cellular mechanism, here we track the dynamics of helper-deficient CD8+ T-cell response to a minor histocompatibility antigen by phenotypic and in vivo imaging analyses. Helper-deficient CD8+ T cells show reduced burst expansion, rapid peripheral egress, delayed antigen clearance and continuous activation, and are eventually exhausted. Contrary to the general consensus that CD4 help encodes memory programmes in CD8+ T cells and helper-deficient CD8+ T cells are abortive, these cells can differentiate into effectors and memory precursors. Importantly, accelerating antigen clearance or simply increasing the burst effector size enables generation of memory cells by CD8+ T cells, regardless of CD4 help. These results suggest that the memory programme is CD8+ T-cell-intrinsic, and provide insight into the role of CD4 help in CD8+ T-cell responses. Persistent antigen stimulation can cause exhaustion and unresponsiveness of CD8 cells, impairing the immune response. Here the authors show that increasing the number of CD8 cells, decreasing the antigen load or providing CD4 help can overcome the exhaustion and establish a memory response.
Collapse
|
7
|
Subdominant H60 antigen-specific CD8 T-cell response precedes dominant H4 antigen-specific response during the initial phase of allogenic skin graft rejection. Exp Mol Med 2015; 47:e140. [PMID: 25676063 PMCID: PMC4346485 DOI: 10.1038/emm.2014.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/22/2014] [Indexed: 11/12/2022] Open
Abstract
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.
Collapse
|
8
|
Ryu SJ, Jeon JY, Chang J, Sproule TJ, Roopenian DC, Choi EY. A single-amino-acid variant of the H60 CD8 epitope generates specific immunity with diverse TCR recruitment. Mol Cells 2012; 33:393-9. [PMID: 22441676 PMCID: PMC3887807 DOI: 10.1007/s10059-012-0008-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 01/23/2023] Open
Abstract
TCR of CD8 T cells recognizes peptides of 8-9 amino acids in length (epitope) complexed with MHC class I. Peptide ligands differing from an epitope by one or two amino acids are thought to modulate the immune response specific to that epitope. H60 is a minor histocompatibility antigen for which the specific CD8 T-cell response dominates during alloresponse after MHC-matched allogeneic transplantation. In the present study, we developed a transgenic mouse (designated H60H Tg) expressing a variant of H60, designated H60H, in which the arginine residue at position 4 of the H60 epitope sequence (LTFNYRNL) is replaced by a histidine residue (LTFHYRNL). Immunization of female C57BL/6 mice with splenocytes from male H60H Tg induced a CD8 T cell primary response and memory response after re-challenge. The response was CD4 help-dependent, demonstrating the potency of H60H as a cellular antigen. The response induced by the H60H cellular antigen was comparable to that induced by H60 in its peak magnitude and overall immune kinetics. H60H challenge recruited broadly diverse TCRs to the specific response, shaping a TCR repertoire different from that of the natural H60 epitope. However, some of the TCRs did overlap between the H60H- and H60-specific CD8 T cells, suggesting that H60H might modulate the H60-specific response. These results may provide a basis for the modulation of the H60-specific CD8 T-cell response.
Collapse
Affiliation(s)
- Su Jeong Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - Ji Yeong Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | | | | | | | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799,
Korea
| |
Collapse
|