1
|
Dong Q, Wu W, Zhang R. Mechanistic insights into granulocyte-macrophage colony-stimulating factor in combating fungal infections: Diverse fungal pathogens. Med Mycol 2025; 63:myaf044. [PMID: 40328463 DOI: 10.1093/mmy/myaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/15/2025] [Accepted: 05/03/2025] [Indexed: 05/08/2025] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used for its immunomodulatory properties to enhance therapeutic outcomes and improve cure rates in fungal infections. However, the mechanisms of GM-CSF action in various fungal infections have not been systematically summarized in current literature, and the reliability and broad effectiveness of clinical data remain uncertain. This review provides a comprehensive analysis of how GM-CSF supports host defense against infections caused by specific fungal pathogens. These pathogens include yeasts (Candida spp., Cryptococcus spp.), filamentous fungi (Aspergillus spp., Mucorales, dematiaceous fungi), and thermally dimorphic fungi (Histoplasma capsulatum, Talaromyces marneffei, Paracoccidioides brasiliensis, and Blastomyces dermatitidis). These insights underscore the potential of GM-CSF as a promising adjunctive therapy in combating challenging fungal infections.
Collapse
Affiliation(s)
- Qi Dong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Weiwei Wu
- Department of Dermatology, Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Dermatology, the Fifth People's Hospital of Hainan Province, Haikou, Hainan, China
| | - Ruijun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Cheng X, Li Y, Wang H. Activation of Wnt/β-catenin signal induces DCs to differentiate into immune tolerant regDCs in septic mice. Mol Immunol 2024; 172:38-46. [PMID: 38870636 DOI: 10.1016/j.molimm.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 04/28/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Sepsis is a common complication among patients in intensive care units, and has a high mortality rate, with no effective therapies to date. As immunosuppression has become the research focus of sepsis, the regulatory role of dendritic cells (DCs) in the immune response to sepsis has received attention. OBJECTIVE To investigate the role of the Wnt/β-catenin signaling pathway in inducing the differentiation of splenic DCs in mice with sepsis caused by cecal ligation and puncture (CLP). METHODS C57bl/6 mice were randomly divided into three groups, namely the sham, 24 h post-CLP, and 72 h post-CLP groups. Levels of regulatory T cells (Tregs) among splenic mononuclear cells, suppressor T cells (TSs), and surface markers, such as major histocompatibility complex class II (MHC-II), co-stimulatory molecules (CD80 and CD86), negative co-stimulatory molecule death-ligand 1 (PD-L1), CC chemokine receptor-5 (CCR5), and CC chemokine receptor-7 (CCR7), were analyzed via flow cytometry for each group of mice post-surgery. CD11c+ DCs were purified from the splenic mononuclear cells of each group, and the expression of β-catenin, Wnt5a, and Wnt3a was detected using RT-PCR and western blotting.Each group of DCs was incubated with LPS-containing culture solution, and the supernatant of the culture solution was collected after 24 hours to detect the level of Tumor necrosis factor-α(TNF-α), interleukin (IL)-6, IL-12, and IL-10. RESULTS Compared with that in the sham group, the expression of β-catenin, Wnt5a, and Wnt3a in splenic DCs of the other two groups of mice increased with prolonged CLP exposure (P<0.05). Meanwhile, the proportion of Tregs and TSs increased in the mouse spleens after CLP, and levels of DC surface molecules, such as CCR5, CCR7, CD80, CD86, and MHC-II, decreased to different degrees, whereas those of PD-L1 increased. These results suggested that DCs differentiate towards regulatory DCs (regDCs) after CLP in mice. The results of ELISA showed that the longer the exposure time after CLP, the lower the ability of DCs to secrete TNF-α and IL-12, but the higher the level of IL-10 and IL-6. CONCLUSION The Wnt/β-catenin signaling pathway activates and induces regDCs differentiation in the splenic DCs of mice with sepsis and participates in the regulation of immune tolerance in the organism.
Collapse
Affiliation(s)
- Xia Cheng
- Graduate Training Base of Jinzhou Medical University (Department of Pathology, Fourth Medical Center, General Hospital of Chinese People's Liberation Army), Beijing 100048, China; Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yazhuo Li
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hongwei Wang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
3
|
Zhao Z, Sun Y, Li M, Yu Q. Construction of Candida albicans Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection. Vaccines (Basel) 2023; 11:1521. [PMID: 37896925 PMCID: PMC10611093 DOI: 10.3390/vaccines11101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient fungal vaccines is urgent for preventing life-threatening systemic fungal infections. In this study, we prepared a synthetic, cell-based fungal vaccine for preventing systemic fungal infections using synthetic biology techniques. The synthetic cell EmEAP1 was constructed by transforming the Escherichia coli chassis using a de novo synthetic fragment encoding the protein mChEap1 that was composed of the E. coli OmpA peptide, the fluorescence protein mCherry, the Candida albicans adhesin Eap1, and the C-terminally transmembrane region. The EmEAP1 cells highly exposed the mChEap1 on the cell surface under IPTG induction. The fungal vaccine was then prepared by mixing the EmEAP1 cells with aluminum hydroxide gel and CpG. Fluorescence quantification revealed that the fungal vaccine was stable even after 112 days of storage. After immunization in mice, the vaccine resided in the lymph nodes, inducing the recruitment of CD11c+ dendritic cells. Moreover, the vaccine strongly activated the CD4+ T splenocytes and elicited high levels of anti-Eap1 IgG. By the prime-boost immunization, the vaccine prolonged the survival time of the mice infected by the C. albicans cells and attenuated fungal colonization together with inflammation in the kidneys. This study sheds light on the development of synthetic biology-based fungal vaccines for the prevention of life-threatening fungal infections.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Tianjin 300350, China
| |
Collapse
|
4
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
5
|
Yu S, Luo F, Xu Y, Zhang Y, Jin LH. Drosophila Innate Immunity Involves Multiple Signaling Pathways and Coordinated Communication Between Different Tissues. Front Immunol 2022; 13:905370. [PMID: 35911716 PMCID: PMC9336466 DOI: 10.3389/fimmu.2022.905370] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
The innate immune response provides the first line of defense against invading pathogens, and immune disorders cause a variety of diseases. The fruit fly Drosophila melanogaster employs multiple innate immune reactions to resist infection. First, epithelial tissues function as physical barriers to prevent pathogen invasion. In addition, macrophage-like plasmatocytes eliminate intruders through phagocytosis, and lamellocytes encapsulate large particles, such as wasp eggs, that cannot be phagocytosed. Regarding humoral immune responses, the fat body, equivalent to the mammalian liver, secretes antimicrobial peptides into hemolymph, killing bacteria and fungi. Drosophila has been shown to be a powerful in vivo model for studying the mechanism of innate immunity and host-pathogen interactions because Drosophila and higher organisms share conserved signaling pathways and factors. Moreover, the ease with which Drosophila genetic and physiological characteristics can be manipulated prevents interference by adaptive immunity. In this review, we discuss the signaling pathways activated in Drosophila innate immunity, namely, the Toll, Imd, JNK, JAK/STAT pathways, and other factors, as well as relevant regulatory networks. We also review the mechanisms by which different tissues, including hemocytes, the fat body, the lymph gland, muscles, the gut and the brain coordinate innate immune responses. Furthermore, the latest studies in this field are outlined in this review. In summary, understanding the mechanism underlying innate immunity orchestration in Drosophila will help us better study human innate immunity-related diseases.
Collapse
|
6
|
Nguyen NZN, Tran VG, Baek J, Kim Y, Youn EH, Na SW, Park SJ, Seo SK, Kwon B. IL-33 Coordinates Innate Defense to Systemic Candida albicans Infection by Regulating IL-23 and IL-10 in an Opposite Way. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:660-671. [PMID: 35022276 DOI: 10.4049/jimmunol.2100495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Invasive candidiasis has high mortality rates in immunocompromised patients, causing serious health problems. In mouse models, innate immunity protects the host by rapidly mobilizing a variety of resistance and tolerance mechanisms to systemic Candida albicans infection. We have previously demonstrated that exogenous IL-33 regulates multiple steps of innate immunity involving resistance and tolerance processes. In this study, we systematically analyzed the in vivo functions of endogenous IL-33 using Il33 -/- mice and in vitro immune cell culture. Tubular epithelial cells mainly secreted IL-33 in response to systemic C. albicans infection. Il33 -/- mice showed increased mortality and morbidity, which were due to impaired fungal clearance. IL-33 initiated an innate defense mechanism by costimulating dendritic cells to produce IL-23 after systemic C. albicans infection, which in turn promoted the phagocytosis of neutrophils through secretion of GM-CSF by NK cells. The susceptibility of Il33 -/- mice was also associated with increased levels of IL-10, and neutralization of IL-10 resulted in enhanced fungal clearance in Il33 -/- mice. However, depletion of IL-10 overrode the effect of IL-33 on fungal clearance. In Il10 -/- mouse kidneys, MHC class II+F4/80+ macrophages were massively differentiated after C. albicans infection, and these cells were superior to MHC class II-F4/80+ macrophages that were preferentially differentiated in wild-type mouse kidneys in killing of extracellular hyphal C. albicans Taken together, our results identify IL-33 as critical early regulator controlling a serial downstream signaling events of innate defense to C. albicans infection.
Collapse
Affiliation(s)
- Nu Z N Nguyen
- BK21 Integrated Immunomodulation Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Vuvi G Tran
- Center for Immunology and Infectious Diseases, University of California at Davis, Davis, CA
| | - Jiyeon Baek
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Younghee Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Eun H Youn
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Seung W Na
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea.,Division of Pulmonology, Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea; and
| | - Sang J Park
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea.,Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea;
| | - Byungsuk Kwon
- BK21 Integrated Immunomodulation Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea; .,Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| |
Collapse
|
7
|
Kulmann-Leal B, Ellwanger JH, Chies JAB. CCR5Δ32 in Brazil: Impacts of a European Genetic Variant on a Highly Admixed Population. Front Immunol 2021; 12:758358. [PMID: 34956188 PMCID: PMC8703165 DOI: 10.3389/fimmu.2021.758358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
The genetic background of Brazilians encompasses Amerindian, African, and European components as a result of the colonization of an already Amerindian inhabited region by Europeans, associated to a massive influx of Africans. Other migratory flows introduced into the Brazilian population genetic components from Asia and the Middle East. Currently, Brazil has a highly admixed population and, therefore, the study of genetic factors in the context of health or disease in Brazil is a challenging and remarkably interesting subject. This phenomenon is exemplified by the genetic variant CCR5Δ32, a 32 base-pair deletion in the CCR5 gene. CCR5Δ32 originated in Europe, but the time of origin as well as the selective pressures that allowed the maintenance of this variant and the establishment of its current frequencies in the different human populations is still a field of debates. Due to its origin, the CCR5Δ32 allele frequency is high in European-derived populations (~10%) and low in Asian and African native human populations. In Brazil, the CCR5Δ32 allele frequency is intermediate (4-6%) and varies on the Brazilian States, depending on the migratory history of each region. CCR5 is a protein that regulates the activity of several immune cells, also acting as the main HIV-1 co-receptor. The CCR5 expression is influenced by CCR5Δ32 genotypes. No CCR5 expression is observed in CCR5Δ32 homozygous individuals. Thus, the CCR5Δ32 has particular effects on different diseases. At the population level, the effect that CCR5Δ32 has on European populations may be different than that observed in highly admixed populations. Besides less evident due to its low frequency in admixed groups, the effect of the CCR5Δ32 variant may be affected by other genetic traits. Understanding the effects of CCR5Δ32 on Brazilians is essential to predict the potential use of pharmacological CCR5 modulators in Brazil. Therefore, this study reviews the impacts of the CCR5Δ32 on the Brazilian population, considering infectious diseases, inflammatory conditions, and cancer. Finally, this article provides a general discussion concerning the impacts of a European-derived variant, the CCR5Δ32, on a highly admixed population.
Collapse
Affiliation(s)
| | | | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Abe M, Kinjo Y, Sadamoto S, Shinozaki M, Nagi M, Shibuya K, Miyazaki Y. α-galactosylceramide-stimulated invariant natural killer T-cells play a protective role in murine vulvovaginal candidiasis by Candida albicans. PLoS One 2021; 16:e0259306. [PMID: 34784362 PMCID: PMC8594805 DOI: 10.1371/journal.pone.0259306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vulvovaginal candidiasis is a common superficial candidiasis; however, a host's immunological mechanism against vaginal Candida infection remains unknown. OBJECTIVES In this study, we aimed to elucidate the effect of iNKT cell activation on vulvovaginal candidiasis. METHODS Using a vulvovaginal candidiasis model with estrogenized mice, we evaluated the fungal burden and number of leukocyte infiltrations in the vaginal lavage of wild-type C57BL/6J mice after Candida albicans inoculation. One day before C. albicans inoculation, α-galactosylceramide (the α-GalCer group) or sterile phosphate-buffered saline (the sham group) was intraperitoneally injected into the mice. We also evaluated the level of antimicrobial peptide S100A8 in the vaginal lavage and analyzed the correlation between S100A8 concentration and the number of vaginal leukocyte infiltrations. Moreover, the number of uterine and vaginal immune cells were evaluated using flow cytometry. RESULTS The number of vaginal leukocyte infiltrations was significantly higher in the α-GalCer group than in the sham group 3 days after C. albicans inoculation. In addition, the fungal burden was significantly lower in the α-GalCer group than the sham group at 7 days after inoculation. In the analysis of S100A8 concentration of vaginal lavage, there were no significant differences between these two groups, although S100A8 concentration and the number of vaginal leukocyte infiltrations were positively correlated in the α-GalCer group. Moreover, the number of vaginal iNKT cells, NK cells and CD8+ T-cells was significantly higher in the α-GalCer group 3 days after inoculation. CONCLUSIONS α-GalCer-stimulated iNKT cells likely play a protective role against vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Kinjo
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Sota Sadamoto
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Minoru Shinozaki
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Minoru Nagi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Tran VG, Nguyen NNZ, Kwon B. CD137 Signaling Is Critical in Fungal Clearance during Systemic Candida albicans Infection. J Fungi (Basel) 2021; 7:jof7050382. [PMID: 34068963 PMCID: PMC8156510 DOI: 10.3390/jof7050382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections by Candida albicans frequently cause mortality in immunocompromised patients. Neutrophils are particularly important for fungal clearance during systemic C. albican infection, yet little has been known regarding which surface receptor controls neutrophils’ antifungal activities. CD137, which is encoded by Tnfrsf9, belongs to the tumor necrosis receptor superfamily and has been shown to regulate neutrophils in Gram-positive bacterial infection. Here, we used genetic and immunological tools to probe the involvement of neutrophil CD137 signaling in innate defense mechanisms against systemic C. albicans infection. We first found that Tnfrsf9−/− mice were susceptible to C. albicans infection, whereas injection of anti-CD137 agonistic antibody protected the host from infection, suggesting that CD137 signaling is indispensable for innate immunity against C. albicans infection. Priming of isolated neutrophils with anti-CD137 antibody promoted their phagocytic and fungicidal activities through phospholipase C. In addition, injection of anti-CD137 antibody significantly augmented restriction of fungal growth in Tnfrsf9−/− mice that received wild-type (WT) neutrophils. In conclusion, our results demonstrate that CD137 signaling contributes to defense mechanisms against systemic C. albicans infection by promoting rapid fungal clearance.
Collapse
|