1
|
Emile MH, Emile SH, El-Karef AA, Ebrahim MA, Mohammed IE, Ibrahim DA. Association between the expression of epithelial-mesenchymal transition (EMT)-related markers and oncologic outcomes of colorectal cancer. Updates Surg 2024; 76:2181-2191. [PMID: 38762631 PMCID: PMC11541317 DOI: 10.1007/s13304-024-01865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a key step in the development of colorectal cancer (CRC) that confers metastatic capabilities to cancer cells. The present study aimed to assess the immunohistochemical (IHC) expression and impact of EMT markers, including E-cadherin, Vimentin, β-catenin, and SMAD4, on the oncologic outcomes of CRC. METHODS This was a retrospective review of 118 CRC patients. Tissue slides were retrieved from the slide archive and five tissue microarray construction blocks were constructed. IHC for E-cadherin, Vimentin, β-catenin, and SMAD4 was done. The main outcome was the association between abnormal marker expression and overall survival (OS), and disease-free survival (DFS). RESULTS Adenocarcinomas accounted for 71.2% of tumors, whereas 25.4% and 3.4% were mucinous and signet ring cell carcinomas. The rates of lymphovascular invasion and perineural invasion were 72.9% and 20.3%, respectively. There was a positive, significant correlation, and association between the four markers. Abnormal expression of E-cadherin was associated with significantly lower OS (p < 0.0001) and similar DFS (p = 0.06). Abnormal Vimentin expression was associated with a significantly higher rate of distant metastasis (p = 0.005) and significantly lower OS and DFS (p < 0.0001). Abnormal expression of β-catenin was associated with significantly lower OS (p < 0.0001) and similar DFS (p = 0.15). Abnormal expression of SMAD4 was associated with significantly lower OS and DFS (p < 0.0001). Abnormal expression of all four markers was associated with a higher disease recurrence, lower OS, and lower DFS. CONCLUSION Abnormal expression of each marker was associated with lower OS, whereas abnormal expression of Vimentin and SMAD4 only was associated with lower DFS.
Collapse
Affiliation(s)
- Mona Hany Emile
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Hany Emile
- Colorectal Surgery Unit, General Surgery Department, Mansoura University Hospitals, Mansoura University, 60 El-Gomhouria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Amr Awad El-Karef
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Awad Ebrahim
- Medical Oncology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
2
|
Mardiah A, Susanto H, Lestari SR. TGF-β and SMAD2/4 Expression in Nonmetastatic and Metastatic Colorectal Cancer Patients. BIO WEB OF CONFERENCES 2024; 117:01001. [DOI: 10.1051/bioconf/202411701001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Colorectal cancer (CRC) is the third most common and second cancer with the highest mortality rate in the world. The leading cause of death in colorectal cancer patients is cancer that has metastasized, with the most common site of metastasis being the liver. One of the signaling that regulates malignancy of cancer cells is TGF-β/Smad. Through activation of the Smad2/3/4, TGF-β regulates the EMT Transcription factors to activate Epithelial Mesenchymal Transition (EMT) program. Tumor cells that have undergone EMT have migratory, invasive, and metastatic phenotypes. This study aims to know the differences mRNA expression of TGF-β, Smad2, and Smad4 in metastatic colorectal cancer and non-metastatic groups using real time PCR method. The results showed TGF-β and Smad2 expression in metastatic CRC was higher in the metastatic group than in the non-metastatic group. In contrast, Smad4 expression was found to be higher in the nonmetastatic group. The results suggest that TGF-β/Smad signaling pathway has a role in promoting metastasis and severity in CRC patients.
Collapse
|
3
|
Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R, Weiss L. Unraveling Resistance to Immunotherapy in MSI-High Colorectal Cancer. Cancers (Basel) 2023; 15:5090. [PMID: 37894457 PMCID: PMC10605634 DOI: 10.3390/cancers15205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths. Incidences of early CRC cases are increasing annually in high-income countries, necessitating effective treatment strategies. Immune checkpoint inhibitors (ICIs) have shown significant clinical efficacy in various cancers, including CRC. However, their effectiveness in CRC is limited to patients with mismatch-repair-deficient (dMMR)/microsatellite instability high (MSI-H) disease, which accounts for about 15% of all localized CRC cases and only 3% to 5% of metastatic CRC cases. However, the varied response among patients, with some showing resistance or primary tumor progression, highlights the need for a deeper understanding of the underlying mechanisms. Elements involved in shaping the response to ICIs, such as tumor microenvironment, immune cells, genetic changes, and the influence of gut microbiota, are not fully understood thus far. This review aims to explore potential resistance or immune-evasion mechanisms to ICIs in dMMR/MSI-H CRC and the cell types involved, as well as possible pitfalls in the diagnosis of this particular subtype.
Collapse
Affiliation(s)
- Ronald Heregger
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Florian Huemer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Markus Steiner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alejandra Gonzalez-Martinez
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Lukas Weiss
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
4
|
Association of β-Catenin, APC, SMAD3/4, Tp53, and Cyclin D1 Genes in Colorectal Cancer: A Systematic Review and Meta-Analysis. Genet Res (Camb) 2022; 2022:5338956. [PMID: 36072013 PMCID: PMC9402361 DOI: 10.1155/2022/5338956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Accumulating evidence indicates that the expression and/or variants of several genes play an essential role in the progress of colorectal cancer (CRC). The current study is a meta-analysis undertaken to estimate the prognosis and survival associated with CTNNB1/β-catenin, APC, Wnt, SMAD3/4, TP53, and Cyclin D1 genes among CRC patients. Methods The authors searched PubMed, EMBASE, and Science Direct for relevant reports published between 2000 and 2020 and analyzed them to determine any relationship between the (immunohistochemically/sequencing-detected) gene expression and variants of the selected genes and the survival of CRC patients. Results The analysis included 34,074 patients from 64 studies. To evaluate association, hazard ratios (HRs) were estimated for overall survival (OS) or disease-free survival (DFS), with a 95% confidence interval (CIs). Pooled results showed that β-catenin overexpression, APC mutation, SMAD-3 or 4 loss of expression, TP53 mutations, and Cyclin D1 expression were associated with shorter OS. β-Catenin overexpression (HR: 0.137 (95% CI: 0.131–0.406)), loss of expression of SMAD3 or 4 (HR: 0.449 (95% CI: 0.146–0.753)), the mutations of TP53 (HR: 0.179 (95% CI: 0.126–0.485)), and Cyclin D1 expression (HR: 0.485 (95% CI: 0.772–0.198)) also presented risk for shorter DFS. Conclusions The present meta-analysis indicates that overexpression or underexpression and variants of CTNNB1/β-catenin, APC, SMAD3/4, TP53, and Cyclin D1 genes potentially acted as unfavorable biomarkers for the prognosis of CRC. The Wnt gene was not associated with prognosis.
Collapse
|
5
|
Rosic J, Dragicevic S, Miladinov M, Despotovic J, Bogdanovic A, Krivokapic Z, Nikolic A. SMAD7 and SMAD4 expression in colorectal cancer progression and therapy response. Exp Mol Pathol 2021; 123:104714. [PMID: 34717960 DOI: 10.1016/j.yexmp.2021.104714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/12/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
Inhibitory SMAD7 and common mediator SMAD4 play crucial roles in SMAD-dependent TGF-β signaling that is often disrupted in colorectal cancer (CRC). This study aimed to profile the expression of SMAD7 and SMAD4 in primary and metastatic CRC and to evaluate their significance in disease progression and therapy response. The expression of SMAD7 and SMAD4 genes was analyzed by quantitative real-time PCR in tissues from 35 primary and metastatic CRC patients and in vitro in 7 human cell lines originating from colon tissue. Expression levels of SMAD7 and SMAD4, as well as their ratio, were determined and their association with tumor characteristics and response to therapy were evaluated. SMAD4 level was significantly lower in tumors compared to non-tumor tissues in both primary (p = 0.001) and metastatic (p = 0.001) CRC patients, while tumor expression of SMAD7 was significantly lower from non-tumor tissue only in metastatic patients (p = 0.017). SMAD7/SMAD4 ratio was elevated in CRC primary tumor tissues and cell lines compared to corresponding non-tumor tissues and cell line, respectively (p = 0.003). SMAD7 expression was significantly elevated in primary tumor tissues obtained from responders to neoadjuvant chemoradiotherapy (nCRT) compared to non-responders (p = 0.014). Alterations of expression and ratio of SMAD7 and SMAD4 in CRC cell lines, primary rectal cancer, and liver metastasis emphasize the importance of these genes in different stages of disease progression. Differential expression of SMAD7 in responders versus non-responders to nCRT should be further investigated for its potential predictive value.
Collapse
Affiliation(s)
- Jovana Rosic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia.
| | - Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| | - Marko Miladinov
- Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia
| | - Jovana Despotovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| | - Aleksandar Bogdanovic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia
| | - Zoran Krivokapic
- School of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; Clinic for Digestive Surgery, University Clinical Center of Serbia, 11 000 Belgrade, Serbia; Serbian Academy of Sciences and Arts, 11 000 Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia
| |
Collapse
|
6
|
Molecular Characterization and Functional Analysis of Two Steroidogenic Genes TSPO and SMAD4 in Yellow Catfish. Int J Mol Sci 2021; 22:ijms22094505. [PMID: 33925909 PMCID: PMC8123483 DOI: 10.3390/ijms22094505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
The steroid hormones are required for gonadal development in fish. The present study was undertaken to characterize the cDNA and promoter sequences of TSPO and SMAD4 genes in yellow catfish Pelteobagrus fulvidraco, explored the mRNA tissue expression and deciphered their promoter regions. Yellow catfish TSPO and SMAD4 shared the similar domains to the corresponding genes from other vertebrates. The TSPO and SMAD4 mRNAs were widely expressed in the detected tissues, but at different levels. Several transcription factors were predicted, such as Sp, GATA, AP1, SOX1, SRY, STAT, HNF4α, PPARγ, Pu.1 and FOXL2. PPARγ overexpression increased but STAT3 overexpression reduced TSPO promoter activity, and FOXL2 overexpression inhibited the promoter activity of TSPO and SMAD4. The site mutation and EMSA analysis indicated that TSPO promoter possessed STAT3 and FOXL2 sites. Overall, our provided the novel understanding into the transcriptionally regulatory mechanisms of TSPO and SMAD4 in fish.
Collapse
|
7
|
Swellam M, Saad EA, Sabry S, Denewer A, Abdel Malak C, Abouzid A. Alterations of PTEN and SMAD4 methylation in diagnosis of breast cancer: implications of methyl II PCR assay. J Genet Eng Biotechnol 2021; 19:54. [PMID: 33825073 PMCID: PMC8024427 DOI: 10.1186/s43141-021-00154-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
Background Diagnosis of breast cancer is more complicated due to lack of minimal invasive biomarker with sufficient precision. DNA methylation is a promising marker for cancer diagnosis. In this study, authors evaluated methylation patterns for PTEN and SMAD4 in blood samples using EpiTect Methyl II QPCR assay quantitative PCR technology. Results Methylation status for PTEN and SMAD4 were statistically significant as breast cancer patients reported hypermethylation compared to benign and control groups (77.1 ± 17.9 vs. 24.9 ± 4.5 and 15.1 ± 1.4 and 70.1 ± 14.4 vs. 28.2 ± 0.61 and 29.5 ± 3.6, respectively). ROC curve analysis revealed that both PTEN (AUC = 0.992) and SMAD4 (AUC = 0.853) had good discriminative power for differentiating BC from all non-cancer individuals (benign and healthy combined) compared to routine tumor markers CEA (AUC = 0.538) and CA15.3 (AUC = 0.686). High PTEN methylation degree was associated with late stages (84.2 ± 17.4), positive lymph node (84.2 ± 18.5), positive ER (81.3 ± 19.7), positive PgR (79.5 ± 19.1), and positive HER2 (80.7 ± 19.0) vs. 67.4 ± 13.8, 70.6 ± 14.8, 72.8 ± 14.9, 72.5 ± 14.7, and 70.2 ± 13.5 in early stages, negative lymph node, negative ER, negative PgR, and negative HER2, respectively. Similar results were obtained regarding SMAD4 methylation. Sensitivity, specificity, positive and negative predictive values, and accuracy for methylated PTEN were 100%, 95%, 99.1%, 100%, and 95%, respectively when differentiated BC from all-non cancer controls. Interestingly, PTEN could distinguish early BC stages with good sensitivity 84.4%, 51.4%, 69.1%, 72%, and 70%, respectively. Conclusion Methylation status of PTEN and SMAD4 is a promising blood marker for early detection of breast cancer. Future studies are needed for their role as prognostic markers.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Entsar A Saad
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Shimaa Sabry
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt.
| | - Adel Denewer
- Surgical Oncology Department, Mansoura Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Camelia Abdel Malak
- Chemistry Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt
| | - Amr Abouzid
- Surgical Oncology Department, Mansoura Oncology Centre, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Koh J, Nam SK, Kwak Y, Kim G, Kim KK, Lee BC, Ahn SH, Park DJ, Kim HH, Park KU, Kim WH, Lee HS. Comprehensive genetic features of gastric mixed adenoneuroendocrine carcinomas and pure neuroendocrine carcinomas. J Pathol 2020; 253:94-105. [PMID: 32985687 DOI: 10.1002/path.5556] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/05/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
We aimed to determine the pathogenesis of gastric mixed adenoneuroendocrine carcinoma (MANEC) and pure neuroendocrine carcinoma (NEC), which is largely unknown. Targeted DNA sequencing was performed on 34 tumor samples from 21 patients - 13 adenocarcinoma (ADC)/NEC components from MANECs and eight pure NECs - and 21 matched non-neoplastic gastric tissues. Mutational profiles of MANECs/NECs were compared with those of other tumors using public databases. The majority (64.1%; 59/92) of mutations in MANEC were shared by both ADC and NEC components. TP53 was the most commonly mutated gene in MANEC (69.2%, 9/13) and pure NEC (87.5%, 8/9). All TP53 mutations in MANEC were pathogenic mutations and were shared by both ADC and NEC components. A subset of TP53WT MANECs had a microsatellite-unstable phenotype or amplifications in various oncogenes including ERBB2 and NMYC, and the only TP53WT pure NEC harbored MYC amplification. Compared to NEC in other organs, NECs arising from the stomach had unique features including less frequent RB1 mutations. Differentially altered genes of MANEC ADC components were significantly associated with receptor tyrosine kinase signaling pathways, while differentially altered genes of MANEC NEC components were significantly associated with the NOTCH signaling pathway. Our data provide evidence suggesting a possible clonal origin of ADC and NEC components of MANEC, and we found that gastric MANECs and pure NECs are distinct entities with unique mutational profiles and underlying protein networks. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Kyung Nam
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Yoonjin Kwak
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gilhyang Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | | | | | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Mohd Yunos RI, Ab Mutalib NS, Tieng FYF, Abu N, Jamal R. Actionable Potentials of Less Frequently Mutated Genes in Colorectal Cancer and Their Roles in Precision Medicine. Biomolecules 2020; 10:biom10030476. [PMID: 32245111 PMCID: PMC7175115 DOI: 10.3390/biom10030476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Global statistics have placed colorectal cancer (CRC) as the third most frequently diagnosed cancer and the fourth principal cause of cancer-related deaths worldwide. Improving survival for CRC is as important as early detection. Personalized medicine is important in maximizing an individual's treatment success and minimizing the risk of adverse reactions. Approaches in achieving personalized therapy in CRC have included analyses of specific genes with its clinical implications. Tumour genotyping via next-generation sequencing has become a standard practice to guide clinicians into predicting tumor behaviour, disease prognosis, and treatment response. Nevertheless, better prognostic markers are necessary to further stratify patients for personalized treatment plans. The discovery of new markers remains indispensable in providing the most effective chemotherapy in order to improve the outcomes of treatment and survival in CRC patients. This review aims to compile and discuss newly discovered, less frequently mutated genes in CRC. We also discuss how these mutations are being used to assist therapeutic decisions and their potential prospective clinical utilities. In addition, we will summarize the importance of profiling the large genomic rearrangements, gene amplification, and large deletions and how these alterations may assist in determining the best treatment option for CRC patients.
Collapse
Affiliation(s)
| | | | | | | | - Rahman Jamal
- Correspondence: (N.S.A.M.); (R.J.); Tel.: +60-3-91459073 (N.S.A.M.); +60-3-91459000 (R.J.)
| |
Collapse
|