1
|
Afridi WA, Picos SH, Bark JM, Stamoudis DAF, Vasani S, Irwin D, Fielding D, Punyadeera C. Minimally invasive biomarkers for triaging lung nodules-challenges and future perspectives. Cancer Metastasis Rev 2025; 44:29. [PMID: 39888565 PMCID: PMC11785609 DOI: 10.1007/s10555-025-10247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
CT chest scans are commonly performed worldwide, either in routine clinical practice for a wide range of indications or as part of lung cancer screening programs. Many of these scans detect lung nodules, which are small, rounded opacities measuring 8-30 mm. While the concern about nodules is that they may represent early lung cancer, in screening programs, only 1% of such nodules turn out to be cancer. This leads to a series of complex decisions and, at times, unnecessary biopsies for nodules that are ultimately determined to be benign. Additionally, patients may be anxious about the status of detected lung nodules. The high rate of false positive lung nodule detections has driven advancements in biomarker-based research aimed at triaging lung nodules (benign versus malignant) to identify truly malignant nodules better. Biomarkers found in biofluids and breath hold promise owing to their minimally invasive sampling methods, ease of use, and cost-effectiveness. Although several biomarkers have demonstrated clinical utility, their sensitivity and specificity are still relatively low. Combining multiple biomarkers could enhance the characterisation of small pulmonary nodules by addressing the limitations of individual biomarkers. This approach may help reduce unnecessary invasive procedures and accelerate diagnosis in the future. This review offers a thorough overview of emerging minimally invasive biomarkers for triaging lung nodules, emphasising key challenges and proposing potential solutions for biomarker-based nodule differentiation. It focuses on diagnosis rather than screening, analysing research published primarily in the past five years with some exceptions. The incorporation of biomarkers into clinical practice will facilitate the early detection of malignant nodules, leading to timely interventions and improved outcomes. Further efforts are needed to increase the cost-effectiveness and practicality of many of these applications in clinical settings. However, the range of technologies is advancing rapidly, and they may soon be implemented in clinics in the near future.
Collapse
Affiliation(s)
- Waqar Ahmed Afridi
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
- Virtual University of Pakistan, Islamabad, 44000, Pakistan
| | - Samandra Hernandez Picos
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Juliana Muller Bark
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Danyelle Assis Ferreira Stamoudis
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, 4006, Australia
| | - Darryl Irwin
- The Agena Biosciences, Bowen Hills, Brisbane, 4006, Australia
| | - David Fielding
- The Royal Brisbane and Women's Hospital, Herston, Brisbane, 4006, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Institute for Biomedicine and Glycomics (IBG), Griffith University, Brisbane, 4111, Australia.
| |
Collapse
|
2
|
Vats R, Yadav P, Bano A, Wadhwa S, Bhardwaj R. Salivary biomarkers in non-invasive oral cancer diagnostics: a comprehensive review. J Appl Oral Sci 2024; 32:e20240151. [PMID: 39258715 PMCID: PMC11464085 DOI: 10.1590/1678-7757-2024-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 09/12/2024] Open
Abstract
OBJECTIVE This review aims to provide a comprehensive analysis of the effectiveness of saliva as a non-invasive diagnostic marker for oral cancer. Despite progress in oral cancer diagnosis and prognosis, the 5-year survival rate remains low due to the resistance to treatment and delayed diagnosis, which can be attributed to various factors including tobacco and alcohol consumption, genetic damage, and human papillomavirus (HPV). The potential use of saliva as an easily accessible non-invasive screening and diagnostic method arises from its direct contact with the lesion site. METHODOLOGY Data for this study were gathered via a comprehensive literature evaluation using search engines such as the PubMed, Web of Science, Google Scholar, and SciFinder. RESULTS Identifying salivary biomarkers shows potential to transform oral cancer diagnostics by offering a reliable alternative to the traditional invasive methods. Saliva is an abundant reservoir for both cell-bound and cell-free organic and inorganic constituents. Thus, saliva is an appropriate field for research in proteomics, genomics, metagenomics, and metabolomics. CONCLUSION This review provides a comprehensive elucidation of salivary biomarkers and their function in non-invasive oral cancer diagnosis, demonstrating their potential to enhance patient outcomes and reduce the impact of this devastating disease.
Collapse
Affiliation(s)
- Ravina Vats
- Maharshi Dayanand University, Centre for Medical Biotechnology, Rohtak, Haryana, India
| | - Pooja Yadav
- Maharshi Dayanand University, Centre for Medical Biotechnology, Rohtak, Haryana, India
| | - Afsareen Bano
- Maharshi Dayanand University, Centre for Medical Biotechnology, Rohtak, Haryana, India
| | - Sapna Wadhwa
- Maharshi Dayanand University, Centre for Medical Biotechnology, Rohtak, Haryana, India
| | - Rashmi Bhardwaj
- Maharshi Dayanand University, Centre for Medical Biotechnology, Rohtak, Haryana, India
| |
Collapse
|
3
|
Liew YX, Kadir K, Phan CW, Leong KH, Kallarakkal TG, Tilakaratne WM. Salivary biomarkers: Effective diagnostic tool for oral leukoplakia and oral squamous cell carcinoma. Oral Dis 2024; 30:3591-3599. [PMID: 38098264 DOI: 10.1111/odi.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 09/03/2024]
Abstract
OBJECTIVE To identify potential salivary biomarkers for the diagnosis and monitoring of disease progression in oral squamous cell carcinoma and oral leukoplakia. MATERIALS AND METHODS An advance search from PubMed and Hindawi was performed with keywords; oral leukoplakia/oral squamous cell carcinoma, salivary biomarker and diagnosis/prognosis. An additional search of articles was done through a manual search from the Google Scholar database. RESULTS Twenty studies involving salivary biomarkers as diagnostic tools for oral squamous cell carcinoma and/or oral leukoplakia were identified. A narrative review was carried out. CONCLUSION Single or multiple salivary biomarkers reported by most studies have shown great potential as diagnostic tools for oral squamous cell carcinoma and oral leukoplakia. However, the validation of sensitivity and specificity should be carried out to ensure the accuracy of the biomarkers. Furthermore, a standardised method for saliva collection should be established to prevent variability in the expression of biomarkers.
Collapse
Affiliation(s)
- Yoon Xuan Liew
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Thomas George Kallarakkal
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wanninayake Mudiyanselage Tilakaratne
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research and Coordinating Centre (OCRCC), Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Bhamidimarri PM, Fuentes D, Salameh L, Mahboub B, Hamoudi R. Assessing the impact of storage conditions on RNA from human saliva and its application to the identification of mRNA biomarkers for asthma. Front Mol Biosci 2024; 11:1363897. [PMID: 38948078 PMCID: PMC11211611 DOI: 10.3389/fmolb.2024.1363897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction: Human saliva was used to develop non-invasive liquid biopsy biomarkers to establish saliva as an alternate to blood and plasma in translational research. The present study focused on understanding the impact of sample storage conditions on the extraction of RNA from saliva and the RNA yield, to be applied in clinical diagnosis. In this study, genes related to asthma were used to test the method developed. Methods: Salivary RNA was extracted from three subjects using the Qiazol® based method and quantified by both spectrophotometric (NanoDrop) and fluorometric (Qubit®) methods. RNA integrity was measured using a bioanalyzer. Quantitative PCR was used to monitor the impact of storage conditions on the expression of housekeeping genes: GAPDH and β-actin, and the asthma related genes: POSTN and FBN2. In addition, an independent cohort of 38 asthmatics and 10 healthy controls were used to validate the expression of POSTN and FBN2 as mRNA salivary biomarkers. Results: Approximately 2 µg of total RNA was obtained from the saliva stored at 40°C without any preservative for 2 weeks showing consistent gene expression with RNA stored at room temperature (RT) for 48 h with RNAlater. Although saliva stored with RNAlater showed a substantial increase in the yield (110 to 234 ng/μL), a similar Cq (15.6 ± 1.4) for the 18s rRNA gene from saliva without preservative showed that the RNA was stable enough. Gene expression analysis from the degraded RNA can be performed by designing the assay using a smaller fragment size spanning a single exon as described below in the case of the POSTN and FBN2 genes in the asthma cohort. Conclusion: This study showed that samples stored at room temperature up to a temperature of 40°C without any preservative for 2 weeks yielded relatively stable RNA. The methodology developed can be employed to transport samples from the point of collection to the laboratory, under non-stringent storage conditions enabling the execution of gene expression studies in a cost effective and efficient manner.
Collapse
Affiliation(s)
- Poorna Manasa Bhamidimarri
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - David Fuentes
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Laila Salameh
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Rashid Hospital, Dubai, United Arab Emirates
| | - Bassam Mahboub
- Rashid Hospital, Dubai, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Centre of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Huang X, Duijf PHG, Sriram S, Perera G, Vasani S, Kenny L, Leo P, Punyadeera C. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma. J Biomed Sci 2023; 30:65. [PMID: 37559138 PMCID: PMC10413618 DOI: 10.1186/s12929-023-00953-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023] Open
Abstract
Head and Neck cancers (HNC) are a heterogeneous group of upper aero-digestive tract cancer and account for 931,922 new cases and 467,125 deaths worldwide. About 90% of these cancers are of squamous cell origin (HNSCC). HNSCC is associated with excessive tobacco and alcohol consumption and infection with oncogenic viruses. Genotyping tumour tissue to guide clinical decision-making is becoming common practice in modern oncology, but in the management of patients with HNSCC, cytopathology or histopathology of tumour tissue remains the mainstream for diagnosis and treatment planning. Due to tumour heterogeneity and the lack of access to tumour due to its anatomical location, alternative methods to evaluate tumour activities are urgently needed. Liquid biopsy approaches can overcome issues such as tumour heterogeneity, which is associated with the analysis of small tissue biopsy. In addition, liquid biopsy offers repeat biopsy sampling, even for patients with tumours with access limitations. Liquid biopsy refers to biomarkers found in body fluids, traditionally blood, that can be sampled to provide clinically valuable information on both the patient and their underlying malignancy. To date, the majority of liquid biopsy research has focused on blood-based biomarkers, such as circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), and circulating microRNA. In this review, we will focus on ctDNA as a biomarker in HNSCC because of its robustness, its presence in many body fluids, adaptability to existing clinical laboratory-based technology platforms, and ease of collection and transportation. We will discuss mechanisms of ctDNA release into circulation, technological advances in the analysis of ctDNA, ctDNA as a biomarker in HNSCC management, and some of the challenges associated with translating ctDNA into clinical and future perspectives. ctDNA provides a minimally invasive method for HNSCC prognosis and disease surveillance and will pave the way in the future for personalized medicine, thereby significantly improving outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Xiaomin Huang
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- University Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Ganganath Perera
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane Women's Hospital, Brisbane, QLD, Australia
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Lizbeth Kenny
- The School of Medicine, University of Queensland, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Paul Leo
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD), School of Environment and Science, Griffith University, QLD, Brisbane, Australia.
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold coast, QLD, Australia.
| |
Collapse
|
6
|
Trevisan França de Lima L, Crawford DH, Broszczak DA, Zhang X, Bridle R. K, Punyadeera C. A salivary biomarker panel to detect liver cirrhosis. iScience 2023; 26:107015. [PMID: 37360686 PMCID: PMC10285560 DOI: 10.1016/j.isci.2023.107015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Limited access to diagnostic tests for liver fibrosis remains one of the main reasons for late diagnosis, especially in rural and remote communities. Saliva diagnostics is accessible with excellent patient compliance. The aim of this study was to develop a saliva-based diagnostic tool for liver fibrosis/cirrhosis. Salivary concentrations of hyaluronic acid (HA), tissue inhibitor of metalloproteinase-1 (TIMP-1), and α-2-macroglobulin (A2MG) were significantly increased (p < 0.05) in patients with liver fibrosis/cirrhosis. By combining these biomarkers, we developed the Saliva Liver Fibrosis (SALF) score, which identified patients with liver cirrhosis with an area under the receiver operating characteristic curve (AUROC) of 0.970 and 0.920 in a discovery and validation cohorts, respectively. The SALF score had a performance that was similar to that of the current Fibrosis-4 (AUROC:0.740) and Hepascore (AUROC:0.979). We demonstrated the clinical utility of saliva to diagnose liver fibrosis/cirrhosis with a potential to improve the screening for cirrhosis in asymptomatic populations.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, Australia
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Darrell H.G. Crawford
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
- The University of Queensland, Faculty of Medicine, Herston, QLD, Australia
| | - Daniel A. Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD, Australia
| | - Xi Zhang
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, Australia
| | - Kim Bridle R.
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
- The University of Queensland, Faculty of Medicine, Herston, QLD, Australia
| | - Chamindie Punyadeera
- The School of Environment and Science, Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, Australia
- Menzies Health Institute Queensland (MIHQ), Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
7
|
Balakittnen J, Weeramange CE, Wallace DF, Duijf PHG, Cristino AS, Kenny L, Vasani S, Punyadeera C. Noncoding RNAs in oral cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1754. [PMID: 35959932 PMCID: PMC10909450 DOI: 10.1002/wrna.1754] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 07/05/2022] [Indexed: 05/13/2023]
Abstract
Oral cancer (OC) is the most prevalent subtype of cancer arising in the head and neck region. OC risk is mainly attributed to behavioral risk factors such as exposure to tobacco and excessive alcohol consumption, and a lesser extent to viral infections such as human papillomaviruses and Epstein-Barr viruses. In addition to these acquired risk factors, heritable genetic factors have shown to be associated with OC risk. Despite the high incidence, biomarkers for OC diagnosis are lacking and consequently, patients are often diagnosed in advanced stages. This delay in diagnosis is reflected by poor overall outcomes of OC patients, where 5-year overall survival is around 50%. Among the biomarkers proposed for cancer detection, noncoding RNA (ncRNA) can be considered as one of the most promising categories of biomarkers due to their role in virtually all cellular processes. Similar to other cancer types, changes in expressions of ncRNAs have been reported in OC and a number of ncRNAs have diagnostic, prognostic, and therapeutic potential. Moreover, some ncRNAs are capable of regulating gene expression by various mechanisms. Therefore, elucidating the current literature on the four main types of ncRNAs namely, microRNA, lncRNA, snoRNA, piwi-RNA, and circular RNA in the context of OC pathogenesis is timely and would enable further improvements and innovations in diagnosis, prognosis, and treatment of OC. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jaikrishna Balakittnen
- The Centre for Biomedical Technologies, The School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Department of Medical Laboratory Sciences, Faculty of Allied Health SciencesUniversity of JaffnaJaffnaSri Lanka
| | - Chameera Ekanayake Weeramange
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Pascal H. G. Duijf
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Centre for Data Science, Queensland University of Queensland, TechnologyBrisbaneQueenslandAustralia
- Institute of Clinical Medicine, Faculty of Medicine, HerstonUniversity of OsloOsloNorway
- Department of Medical GeneticsOslo University HospitalOsloNorway
- University of Queensland Diamantina InstituteThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Liz Kenny
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Sarju Vasani
- Royal Brisbane and Women's Hospital, Cancer Care ServicesHerstonQueenslandAustralia
- Department of OtolaryngologyRoyal Brisbane and Women's HospitalHerstonQueenslandAustralia
| | - Chamindie Punyadeera
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug DiscoveryGriffith UniversityNathanQueenslandAustralia
- Queensland University of Technology, School of Biomedical SciencesFaculty of Health at the Translational Research InstituteWoolloongabbaQueenslandAustralia
- Menzies Health InstituteGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
8
|
Head and neck cancer patient-derived tumouroid cultures: opportunities and challenges. Br J Cancer 2023; 128:1807-1818. [PMID: 36765173 PMCID: PMC10147637 DOI: 10.1038/s41416-023-02167-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Head and neck cancers (HNC) are the seventh most prevalent cancer type globally. Despite their common categorisation, HNCs are a heterogeneous group of malignancies arising in various anatomical sites within the head and neck region. These cancers exhibit different clinical and biological manifestations, and this heterogeneity also contributes to the high rates of treatment failure and mortality. To evaluate patients who will respond to a particular treatment, there is a need to develop in vitro model systems that replicate in vivo tumour status. Among the methods developed, patient-derived cancer organoids, also known as tumouroids, recapitulate in vivo tumour characteristics including tumour architecture. Tumouroids have been used for general disease modelling and genetic instability studies in pan-cancer research. However, a limited number of studies have thus far been conducted using tumouroid-based drug screening. Studies have concluded that tumouroids can play an essential role in bringing precision medicine for highly heterogenous cancer types such as HNC.
Collapse
|
9
|
DNA Methylation as a Diagnostic, Prognostic, and Predictive Biomarker in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24032996. [PMID: 36769317 PMCID: PMC9917637 DOI: 10.3390/ijms24032996] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a term collectively used to describe all cancers that develop in the oral and nasal cavities, the paranasal sinuses, the salivary glands, the pharynx, and the larynx. The majority (75%) of all newly diagnosed cases are observed in patients with locally advanced and aggressive disease, associated with significant relapse rates (30%) and poor prognostic outcomes, despite advances in multimodal treatment. Consequently, there is an unmet need for the identification and application of tools that would enable diagnosis at the earliest possible stage, accurately predict prognostic outcomes, contribute to the timely detection of relapses, and aid in the decision for therapy selection. Recent evidence suggests that DNA methylation can alter the expression of genes in a way that it favors tumorigenesis and tumor progression in HNSCC, and therefore represents a potential source for biomarker identification. This study summarizes the current knowledge on how abnormally methylated DNA profiles in HNSCC patients may contribute to the pathogenesis of HNSCC and designate the methylation patterns that have the potential to constitute clinically valuable biomarkers for achieving significant advances in the management of the disease and for improving survival outcomes in these patients.
Collapse
|
10
|
Rasheduzzaman M, Murugan AVM, Zhang X, Oliveira T, Dolcetti R, Kenny L, Johnson NW, Kolarich D, Punyadeera C. Head and neck cancer N-glycome traits are cell line and HPV status–dependent. Anal Bioanal Chem 2022; 414:8401-8411. [DOI: 10.1007/s00216-022-04376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Glycosylation is the most common post-translational modification of proteins, and glycosylation changes at cell surfaces are frequently associated with malignant epithelia including head and neck squamous cell carcinoma (HNSCC). In HNSCC, 5-year survival remains poor, averaging around 50% globally: this is partly related to late diagnosis. Specific protein glycosylation signatures on malignant keratinocytes have promise as diagnostic and prognostic biomarkers and as therapeutic targets. Nevertheless, HNSCC-specific glycome is to date largely unknown. Herein, we tested six established HNSCC cell lines to capture the qualitative and semi-quantitative N-glycome using porous graphitized carbon liquid chromatography coupled to electrospray ionisation tandem mass spectrometry. Oligomannose-type N-glycans were the predominant features in all HNSCC cell lines analysed (57.5–70%). The levels of sialylated N-glycans showed considerable cell line-dependent differences ranging from 24 to 35%. Importantly, α2-6 linked sialylated N-glycans were dominant across most HNSCC cell lines except in SCC-9 cells where similar levels of α2-6 and α2-3 sialylated N-glycans were observed. Furthermore, we found that HPV-positive cell lines contained higher levels of phosphorylated oligomannose N-glycans, which hint towards an upregulation of lysosomal pathways. Almost all fucose-type N-glycans carried core-fucose residues with just minor levels (< 4%) of Lewis-type fucosylation identified. We also observed paucimannose-type N-glycans (2–5.5%), though in low levels. Finally, we identified oligomannose N-glycans carrying core-fucose residues and confirmed their structure by tandem mass spectrometry. This first systematic mapping of the N-glycome revealed diverse and specific glycosylation features in HNSCC, paving the way for further studies aimed at assessing their possible diagnostic relevance.
Collapse
|
11
|
Birknerova N, Mancikova V, Paul ED, Matyasovsky J, Cekan P, Palicka V, Parova H. Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer. Cancers (Basel) 2022; 14:4882. [PMID: 36230805 PMCID: PMC9563959 DOI: 10.3390/cancers14194882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.
Collapse
Affiliation(s)
- Natalia Birknerova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Veronika Mancikova
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Evan David Paul
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Jan Matyasovsky
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Pavol Cekan
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Trevisan França de Lima L, Müller Bark J, Rasheduzzaman M, Ekanayake Weeramange C, Punyadeera C. Saliva as a matrix for measurement of cancer biomarkers. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Trevisan França de Lima L, Müller Bark J, Rasheduzzaman M, Weeramange CE, Punyadeera C. Isolation and Characterization of Salivary Exosomes for Cancer Biomarker Discovery. Methods Mol Biol 2022; 2504:101-112. [PMID: 35467282 DOI: 10.1007/978-1-0716-2341-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exosomes are small extracellular vesicles secreted by cells and are known to play a key role in intercellular communication. Several studies have associated exosomes with various roles in tumorigenesis and explored their potential as a source of biomarkers for diagnosis and prognosis in cancer research. Exosomes can be isolated from several body fluids, including those that are noninvasively accessible, such as human saliva. This book chapter provides a step-by-step detailed description of techniques that are used for the isolation, quantification, and characterization of exosomes from saliva. These include ultracentrifugation for the isolation, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot (WB) for characterization of exosomes. The NTA approach explores the Brownian motion and light scattering of particles to predict size and concentration. TEM enables visualization of the exosomes which often present a cup-shaped morphology. Western blot is used to detect commonly expressed exosome-associated proteins. Finally, salivary exosomes isolated using these protocols can further be characterized for downstream analysis according to their cargo (proteins, DNA, RNA, miRNA) and utilized for cancer biomarker discovery.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Juliana Müller Bark
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Mohammad Rasheduzzaman
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Chameera Ekanayake Weeramange
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Chamindie Punyadeera
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia.
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD) and Menzies Health Institute Queensland (MIHQ), Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Head and Neck Cancers Are Not Alike When Tarred with the Same Brush: An Epigenetic Perspective from the Cancerization Field to Prognosis. Cancers (Basel) 2021; 13:cancers13225630. [PMID: 34830785 PMCID: PMC8616074 DOI: 10.3390/cancers13225630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Squamous cell carcinomas affect different head and neck subsites and, although these tumors arise from the same epithelial lining and share risk factors, they differ in terms of clinical behavior and molecular carcinogenesis mechanisms. Differences between HPV-negative and HPV-positive tumors are those most frequently explored, but further data suggest that the molecular heterogeneity observed among head and neck subsites may go beyond HPV infection. In this review, we explore how alterations of DNA methylation and microRNA expression contribute to head and neck squamous cell carcinoma (HNSCC) development and progression. The association of these epigenetic alterations with risk factor exposure, early carcinogenesis steps, transformation risk, and prognosis are described. Finally, we discuss the potential application of the use of epigenetic biomarkers in HNSCC. Abstract Head and neck squamous cell carcinomas (HNSCC) are among the ten most frequent types of cancer worldwide and, despite all efforts, are still diagnosed at late stages and show poor overall survival. Furthermore, HNSCC patients often experience relapses and the development of second primary tumors, as a consequence of the field cancerization process. Therefore, a better comprehension of the molecular mechanisms involved in HNSCC development and progression may enable diagnosis anticipation and provide valuable tools for prediction of prognosis and response to therapy. However, the different biological behavior of these tumors depending on the affected anatomical site and risk factor exposure, as well as the high genetic heterogeneity observed in HNSCC are major obstacles in this pursue. In this context, epigenetic alterations have been shown to be common in HNSCC, to discriminate the tumor anatomical subsites, to be responsive to risk factor exposure, and show promising results in biomarker development. Based on this, this review brings together the current knowledge on alterations of DNA methylation and microRNA expression in HNSCC natural history, focusing on how they contribute to each step of the process and on their applicability as biomarkers of exposure, HNSCC development, progression, and response to therapy.
Collapse
|
15
|
Smith DH, Raslan S, Samuels MA, Iglesias T, Buitron I, Deo S, Daunert S, Thomas GR, Califano J, Franzmann EJ. Current salivary biomarkers for detection of human papilloma virus-induced oropharyngeal squamous cell carcinoma. Head Neck 2021; 43:3618-3630. [PMID: 34331493 DOI: 10.1002/hed.26830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022] Open
Abstract
Human papilloma virus (HPV) infection is a key risk factor and etiology for oropharyngeal squamous cell carcinoma (OPSCC). HPV-induced OPSCC is rapidly increasing in incidence, with men experiencing increased mortality. When identified at an early stage, HPV-induced OPSCC can be successfully treated. Diagnosis of HPV-related OPSCC relies on an expert physical examination and invasive biopsy. Since saliva bathes the oropharyngeal mucosa and can be collected noninvasively, saliva obtained via salivary risings is an attractive body fluid for early detection of HPV-induced OPSCC. A plethora of DNA, RNA, and protein salivary biomarkers have been explored. This review discusses these markers and their robustness for detecting oncogenic HPV in OPSCC saliva samples. Methods detecting HPV DNA were more reliable than those detecting RNA, albeit both require time-consuming analyses. Salivary HPV proteomics are a new, promising focus of HPV detection research, and while more practical, lag behind nucleic acid detection methods in their development.
Collapse
Affiliation(s)
- Drew H Smith
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Shahm Raslan
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Michael A Samuels
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas Iglesias
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Giovana R Thomas
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joseph Califano
- Division of Otolaryngology - Head and Neck Surgery, Department of Surgery, University of California - San Diego, San Diego, California, USA
| | - Elizabeth J Franzmann
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
16
|
Ciurli A, Liebl M, Derks RJE, Neefjes JJC, Giera M. Spatially resolved sampling for untargeted metabolomics: A new tool for salivomics. iScience 2021; 24:102768. [PMID: 34278270 PMCID: PMC8271151 DOI: 10.1016/j.isci.2021.102768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
Saliva is a complex bodily fluid composed of metabolites secreted by major and minor glands, as well as by-products of host oral cells, oral bacteria, gingival crevicular fluid, and exogenous compounds. Major salivary glands include the paired parotid, submandibular, and sublingual glands. The secreted fluids of the salivary glands vary in composition, flow rate, site of release, and clearance suggesting that different types of saliva fulfill different functions and therefore can provide unique biological information. Consequently, for the comprehension of the functionality of the salivary components, spatially resolved investigations are warranted. To understand and comprehensively map the highly heterogeneous environment of the oral cavity, advanced spatial sampling techniques for metabolomics analysis are needed. Here, we present a systematic evaluation of collection devices for spatially resolved sampling aimed at untargeted metabolomics and propose a comprehensive and reproducible collection and analysis protocol for the spatially resolved analysis of the human oral metabolome. Systematic evaluation of collection devices for untargeted metabolomics of saliva Spatially resolved sampling of saliva in the human oral cavity Enabling location-specific oral metabolomics
Collapse
Affiliation(s)
- Alessio Ciurli
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Maximiliam Liebl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Rico J E Derks
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Jacques J C Neefjes
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| |
Collapse
|
17
|
Flausino CS, Daniel FI, Modolo F. DNA methylation in oral squamous cell carcinoma: from its role in carcinogenesis to potential inhibitor drugs. Crit Rev Oncol Hematol 2021; 164:103399. [PMID: 34147646 DOI: 10.1016/j.critrevonc.2021.103399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of epigenetic changes most frequently studied nowadays, together with its relationship with oral carcinogenesis. A group of enzymes is responsible for methylation process, known as DNA methyltransferases (DNMT). Although essential during embryogenesis, DNA methylation pattern alterations, including global hypomethylation or gene promoter hypermethylation, can be respectively associated with chromosomal instability and tumor suppressor gene silencing. Higher expression of DNA methyltransferases is a common finding in oral cancer and may contribute to inactivation of important tumor suppressor genes, influencing development, progression, metastasis, and prognosis of the tumor. To control these alterations, inhibitor drugs have been developed as a way to regulate DNMT overexpression, and they are intended to be associated with ongoing chemo- and radiotherapy in oral cancer treatments. In this article, we aimed to highlight the current knowledge about DNA methylation in oral cancer, including main hyper/hypomethylated genes, DNMT expression and its inhibitor treatments.
Collapse
Affiliation(s)
| | - Filipe Ivan Daniel
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Filipe Modolo
- Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
18
|
Salivary DNA Methylation as an Epigenetic Biomarker for Head and Neck Cancer. Part I: A Diagnostic Accuracy Meta-Analysis. J Pers Med 2021; 11:jpm11060568. [PMID: 34204396 PMCID: PMC8233749 DOI: 10.3390/jpm11060568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
DNA hypermethylation is an important epigenetic mechanism for gene expression inactivation in head and neck cancer (HNC). Saliva has emerged as a novel liquid biopsy representing a potential source of biomarkers. We performed a comprehensive meta-analysis to evaluate the overall diagnostic accuracy of salivary DNA methylation for detecting HNC. PubMed EMBASE, Web of Science, LILACS, and the Cochrane Library were searched. Study quality was assessed by the Quality Assessment for Studies of Diagnostic Accuracy-2, and sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (dOR), and their corresponding 95% confidence intervals (CIs) were calculated using a bivariate random-effect meta-analysis model. Meta-regression and subgroup analyses were performed to assess heterogeneity. Eighty-four study units from 18 articles with 8368 subjects were included. The pooled sensitivity and specificity of salivary DNA methylation were 0.39 and 0.87, respectively, while PLR and NLR were 3.68 and 0.63, respectively. The overall area under the curve (AUC) was 0.81 and the dOR was 8.34. The combination of methylated genes showed higher diagnostic accuracy (AUC, 0.92 and dOR, 36.97) than individual gene analysis (AUC, 0.77 and dOR, 6.02). These findings provide evidence regarding the potential clinical application of salivary DNA methylation for HNC diagnosis.
Collapse
|
19
|
MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation. Commun Biol 2021; 4:414. [PMID: 33772081 PMCID: PMC7997880 DOI: 10.1038/s42003-021-01930-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
A disordered to β-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a β-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.
Collapse
|
20
|
Abstract
Introduction: Saliva is an ideal biofluid that can be collected in a noninvasive manner, enabling safe and frequent screening of various diseases. Recent studies have revealed that salivary metabolomics analysis has the potential to detect both oral and systemic cancers. Area covered: We reviewed the technical aspects, as well as applications, of salivary metabolomics for cancer detection. The topics include the effects of preconditioning and the method of sample collection, sample storage, processing, measurement, data analysis, and validation of the results. We also examined the rational relationship between salivary biomarkers and tumors distant from the oral cavity. A strategy to establish standard operating protocols for obtaining reproducible quantification data is also discussed Expert opinion: Salivary metabolomics reflects oral and systematic health status, which potently enables cancer detection. The sensitivity and specificity of each marker and their combinations have been well evaluated, but a validation study is required. Further, the standard operating protocol for each procedure should be established to obtain reproducible data before clinical usage.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Research and Development Centre for Minimally Invasive Therapies, Medical Research Institute, Tokyo Medical University , Tokyo, Japan.,Institute for Advanced Biosciences, Keio University , Yamagata, Japan
| |
Collapse
|
21
|
Hsieh JCH, Wang HM, Wu MH, Chang KP, Chang PH, Liao CT, Liau CT. Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy. Head Neck 2020; 41 Suppl 1:19-45. [PMID: 31573749 DOI: 10.1002/hed.25932] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biomarkers in head and neck squamous cell carcinoma (HNSCC) emerge rapidly in recent years, especially for new targeted therapies and immunotherapies. METHODS Recent, relevant peer-reviewed evidence were critically reviewed and summarized. RESULTS This review article briefly introduces essential biomarker concepts, including purposes and classifications (predictive, prognostic, and diagnostic markers), and the phases of biomarker development. We summarize current biomarkers in order of clinical utility; p16 and human papillomavirus status remain the most important and validated biomarkers in HNSCC. The rationale for biomarker study design continues to evolve with technological advances, especially whole-exome or whole-genomic sequencing. Noninvasive body fluid and liquid biopsy biomarkers appear to hold strong potential for development as tools for early cancer detection, cancer diagnosis, monitoring of disease recurrence, and outcome prediction. In light of discrepancies among different technologies, standardized approaches are needed. CONCLUSION Biomarkers from cancer tissue or blood in HNSCC could direct new anticancer therapies.
Collapse
Affiliation(s)
- Jason Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Hung-Ming Wang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Min-Hsien Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Kai-Ping Chang
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Pei-Hung Chang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan and Chang Gung University, Taoyuan, Taiwan.,Cancer Center, Chang Gung Memorial Hospital, Keelung, and Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ta Liao
- Department of Otorhinolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chi-Ting Liau
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Langevin SM, Kuhnell D, Niu L, Biesiada J, Leung YK, Deka R, Chen A, Medvedovic M, Kelsey KT, Kasper S, Zhang X. Comprehensive mapping of the methylation landscape of 16 CpG-dense regions in oral and pharyngeal squamous cell carcinoma. Epigenomics 2019; 11:987-1002. [PMID: 31215230 DOI: 10.2217/epi-2018-0172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The goal of this study was to comprehensively interrogate and map DNA methylation across 16 CpG-dense regions previously associated with oral and pharyngeal squamous cell carcinoma (OPSCC). Materials & methods: Targeted multiplex bisulfite amplicon sequencing was performed on four OPSCC cell lines and primary non-neoplastic oral epithelial cells. Real-time quantitative polymerase chain reaction (RT-qPCR) was performed for a subset of associated genes. Results: There was clear differential methylation between one or more OPSCC cell lines and control cells for the majority of CpG-dense regions. Conclusion: Targeted multiplex bisulfite amplicon sequencing allowed us to efficiently map methylation across the entire region of interest with a high degree of sensitivity and helps shed light on novel differentially methylated regions that may have value as biomarkers of OPSCC.
Collapse
Affiliation(s)
- Scott M Langevin
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.,Cincinnati Cancer Center, Cincinnati, OH 45267, USA
| | - Damaris Kuhnell
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics & Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jacek Biesiada
- Division of Biostatistics & Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yuet-Kin Leung
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Ranjan Deka
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mario Medvedovic
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Biostatistics & Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI 02912, USA.,Department of Pathology & Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Susan Kasper
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiang Zhang
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA.,Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
23
|
Liyanage C, Wathupola A, Muraleetharan S, Perera K, Punyadeera C, Udagama P. Promoter Hypermethylation of Tumor-Suppressor Genes p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 in Salivary DNA as a Quadruple Biomarker Panel for Early Detection of Oral and Oropharyngeal Cancers. Biomolecules 2019; 9:biom9040148. [PMID: 31013839 PMCID: PMC6523930 DOI: 10.3390/biom9040148] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023] Open
Abstract
Silencing of tumor-suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis; hence, TSGs may serve as early tumor biomarkers. We determined the promoter methylation levels of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs in salivary DNA from oral cancer (OC) and oropharyngeal cancer (OPC) patients, using methylation-specific PCR coupled with densitometry analysis. We assessed the association between DNA methylation of individual TSGs with OC and OPC risk factors. The performance and the clinical validity of this quadruple-methylation marker panel were evaluated in discriminating OC and OPC patients from healthy controls using the CombiROC web tool. Our study reports that RASSF1A, TIMP3, and PCQAP/MED15 TSGs were significantly hypermethylated in OC and OPC cases compared to healthy controls. DNA methylation levels of TSGs were significantly augmented by smoking, alcohol use, and betel quid chewing, indicating the fact that frequent exposure to risk factors may drive oral and oropharyngeal carcinogenesis through TSG promoter hypermethylation. Also, this quadruple-methylation marker panel of p16INK4a, RASSF1A, TIMP3, and PCQAP/MED15 TSGs demonstrated excellent diagnostic accuracy in the early detection of OC at 91.7% sensitivity and 92.3% specificity and of OPC at 99.8% sensitivity and 92.1% specificity from healthy controls.
Collapse
Affiliation(s)
- Chamikara Liyanage
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| | - Asanga Wathupola
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| | - Sanjayan Muraleetharan
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| | - Kanthi Perera
- National Cancer Institute of Sri Lanka, Maharagama, 10280, Sri Lanka.
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia.
- Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia.
| | - Preethi Udagama
- Department of Zoology and Environment Sciences, University of Colombo, Colombo 03 00300, Sri Lanka.
| |
Collapse
|
24
|
Russo D, Merolla F, Varricchio S, Salzano G, Zarrilli G, Mascolo M, Strazzullo V, Di Crescenzo RM, Celetti A, Ilardi G. Epigenetics of oral and oropharyngeal cancers. Biomed Rep 2018; 9:275-283. [PMID: 30233779 DOI: 10.3892/br.2018.1136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/20/2018] [Indexed: 12/14/2022] Open
Abstract
Oral and oropharyngeal cancers represent the two most common malignancies of the head and neck region. The major risk factors for these cancers include alcohol consumption, tobacco use (via smoking or chewing) and high-risk human papillomavirus infection. The transition from normal epithelium to premalignant tissue and finally carcinoma is in part caused by a summation of genetic and epigenetic modifications. Epigenetic refers to modifications in the way the genome is expressed in cells. The most common examples of epigenetic control of gene expression are DNA methylation, histone modification and regulation by small non-coding RNAs. The aim of the current paper was to review the recent studies on the main epigenetic changes that have been suggested to serve a role in the carcinogenesis process and progression of oral and oropharyngeal cancers. Furthermore, it is discussed how the epigenetic changes may be used as potential predictive biomarkers and how recent findings in the field may impact the personalized cancer therapy approach for these tumors.
Collapse
Affiliation(s)
- Daniela Russo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Ι-86100 Campobasso, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Giovanni Salzano
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Operative Unit of Maxillofacial Surgery, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Giovanni Zarrilli
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, Ι-86100 Campobasso, Italy
| | - Massimo Mascolo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Viviana Strazzullo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Rosa Maria Di Crescenzo
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| | - Angela Celetti
- Institute for Experimental Endocrinology and Oncology Gaetano Salvatore, Italian National Council of Research, Ι-80131 Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Pathology Unit, University of Naples Federico II, Ι-80131 Naples, Italy
| |
Collapse
|
25
|
van der Merwe L, Wan Y, Cheong HJ, Perry C, Punyadeera C. A pilot study to profile salivary angiogenic factors to detect head and neck cancers. BMC Cancer 2018; 18:734. [PMID: 30001714 PMCID: PMC6043960 DOI: 10.1186/s12885-018-4656-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/01/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Early diagnosis of head and neck squamous cell carcinoma (HNSCCs) is an appealing way to increase survival rates in these patients as well as to improve quality of life post-surgery. Angiogenesis is a hallmark of tumor initiation and progression. We have investigated a panel of angiogenic factors in saliva samples collected from HNSCC patients and controls using the Bio-Plex ProTM assays. METHODS We have identified a panel of five angiogenic proteins (sEGFR, HGF, sHER2, sIL-6Ra and PECAM-1) to be elevated in the saliva samples collected from HNSCC patients (n = 58) compared to a control cohort (n = 8 smokers and n = 30 non-smokers). RESULTS High positive correlations were observed between the following sets of salivary proteins; sEGFR:sHER2, sEGFR:HGF, sEGFR:sIL-6Rα, sHER2:HGF and sHER2:sIL6Ra. A moderate positive correlation was seen between FGF-basic and sEGFR. CONCLUSION We have shown that angiogenic factor levels in saliva can be used as a potential diagnostic biomarker panel in HNSCC.
Collapse
Affiliation(s)
- L. van der Merwe
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, GPO Box 2434, Kelvin Grove, Brisbane, QLD 4059 Australia
- The School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Y. Wan
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, GPO Box 2434, Kelvin Grove, Brisbane, QLD 4059 Australia
| | - H. J. Cheong
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, GPO Box 2434, Kelvin Grove, Brisbane, QLD 4059 Australia
| | - C. Perry
- Department of Otolaryngology, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Brisbane, QLD 4102 Australia
| | - C. Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, GPO Box 2434, Kelvin Grove, Brisbane, QLD 4059 Australia
- Translational Research Institute, Woolloongabba, Brisbane, QLD 4102 Australia
| |
Collapse
|
26
|
Misawa K, Mochizuki D, Imai A, Mima M, Misawa Y, Mineta H. Analysis of Site-Specific Methylation of Tumor-Related Genes in Head and Neck Cancer: Potential Utility as Biomarkers for Prognosis. Cancers (Basel) 2018; 10:cancers10010027. [PMID: 29361757 PMCID: PMC5789377 DOI: 10.3390/cancers10010027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Clarifying the epigenetic regulation of tumor-related genes (TRGs) can provide insights into the mechanisms of tumorigenesis and the risk for disease recurrence in HPV-negative head and neck cancers, originating in the hypopharynx, larynx, and oral cavity. We analyzed the methylation status of the promoters of 30 TRGs in 178 HPV-negative head and neck cancer patients using a quantitative methylation-specific PCR. Promoter methylation was correlated with various clinical characteristics and patient survival. The mean number of methylated TRGs was 14.2 (range, 2-25). In the multivariate Cox proportional hazards analysis, the methylation of COL1A2 and VEGFR1 was associated with poor survival for hypopharyngeal cancer, with hazard ratios: 3.19; p = 0.009 and 3.07; p = 0.014, respectively. The methylation of p16 and COL1A2 were independent prognostic factors for poor survival in laryngeal cancer (hazard ratio: 4.55; p = 0.013 and 3.12; p = 0.035, respectively). In patients with oral cancer, the methylation of TAC1 and SSTR1 best correlated with poor survival (hazard ratio: 4.29; p = 0.005 and 5.38; p = 0.029, respectively). Our findings suggest that methylation status of TRGs could serve as important site-specific biomarkers for prediction of clinical outcomes in patients with HPV-negative head and neck cancer.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan.
| |
Collapse
|
27
|
Wang K, Duan C, Zou X, Song Y, Li W, Xiao L, Peng J, Yao L, Long Q, Liu L. Increased mediator complex subunit 15 expression is associated with poor prognosis in hepatocellular carcinoma. Oncol Lett 2018; 15:4303-4313. [PMID: 29556287 PMCID: PMC5844107 DOI: 10.3892/ol.2018.7820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mediator complex subunit 15 (MED15) is a coactivator involved in the regulated transcription of RNA polymerase II-dependent genes and serves an oncogenic role in numerous types of cancer. However, the expression and function of MED15 in hepatocellular carcinoma (HCC) remain unknown. In the present study, the aim was to investigate the expression and clinical significance of MED15 in HCC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical analysis revealed that MED15 mRNA and protein levels were significantly upregulated in HCC tissues compared with those in the corresponding adjacent non-tumor liver tissues. Furthermore, analyzing data from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) and GSE14520 datasets revealed a significant correlation between MED15 expression and the tumor size (P=0.033), Barcelona Clinic Liver Cancer stage (P=0.031), α-fetoprotein levels (P=0.002) and metastasis risk (P=0.001). Furthermore, patients with high MED15 expression levels had a shorter survival time compared with those with low MED15 expression levels (P<0.05). Univariate and multivariate analyses further revealed that MED15 may be an independent prognostic factor for the overall survival of HCC patients (hazard ratio, 1.762; 95% confidence interval, 1.077–2.882; P<0.05). In addition, MED15 expression was positively associated with hypoxia-inducible factor 1α expression in the TCGA-LIHC and GSE14520 datasets (P<0.01). In conclusion, the data reported in the present study indicated that MED15 is overexpressed in HCC and may represent a novel prognostic biomarker for patients with HCC.
Collapse
Affiliation(s)
- Kunyuan Wang
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chenxi Duan
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuejing Zou
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yang Song
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenwen Li
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lushan Xiao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jie Peng
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Liheng Yao
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Long
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Liu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
28
|
Langie SAS, Moisse M, Declerck K, Koppen G, Godderis L, Vanden Berghe W, Drury S, De Boever P. Salivary DNA Methylation Profiling: Aspects to Consider for Biomarker Identification. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:93-101. [PMID: 27901320 PMCID: PMC5644718 DOI: 10.1111/bcpt.12721] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
Is it not more comfortable to spit saliva in a tube than to be pricked with a needle to draw blood to analyse your health and disease risk? Many patients, study participants and (parents of) young children undoubtedly prefer non-invasive and convenient procedures. Such procedures increase compliance rates especially for longitudinal prospective studies. Saliva is an attractive biofluid providing good quality DNA to study epigenetic mechanisms underlying disease across development. In this MiniReview, we will describe the different applications of saliva in the field of epigenetics, focusing on genomewide methylation analysis. Advantages of the use of saliva and its comparability with blood will be discussed, as will the challenges in data processing and interpretation. Knowledge gaps will be identified and suggestions given on how to improve the analysis, making saliva 'the' biofluid of choice for future biomarker initiatives in many different epidemiological and public health studies.
Collapse
Affiliation(s)
- Sabine A. S. Langie
- Environmental Risk and Health UnitFlemish Institute for Technological Research (VITO)MolBelgium
- Faculty of SciencesHasselt UniversityDiepenbeekBelgium
| | | | - Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic SignalingDepartment of Biomedical SciencesUniversity of AntwerpWilrijkBelgium
| | - Gudrun Koppen
- Environmental Risk and Health UnitFlemish Institute for Technological Research (VITO)MolBelgium
| | - Lode Godderis
- Centre Environment & HealthDepartment of Public Health and Primary CareKU LeuvenLeuvenBelgium
- IDEWEExternal Service for Prevention and Protection at WorkHeverleeBelgium
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic SignalingDepartment of Biomedical SciencesUniversity of AntwerpWilrijkBelgium
| | - Stacy Drury
- The Brain InstituteTulane UniversityNew OrleansLAUSA
- Department of Psychiatry and Behavioral ScienceTulane University School of MedicineNew OrleansLAUSA
| | - Patrick De Boever
- Environmental Risk and Health UnitFlemish Institute for Technological Research (VITO)MolBelgium
- Faculty of SciencesHasselt UniversityDiepenbeekBelgium
| |
Collapse
|
29
|
Lim Y, Totsika M, Morrison M, Punyadeera C. The saliva microbiome profiles are minimally affected by collection method or DNA extraction protocols. Sci Rep 2017; 7:8523. [PMID: 28819242 PMCID: PMC5561025 DOI: 10.1038/s41598-017-07885-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
Saliva has attracted attention as a diagnostic fluid due to the association of oral microbiota with systemic diseases. However, the lack of standardised methods for saliva collection has led to the slow uptake of saliva in microbiome research. The aim of this study was to systematically evaluate the potential effects on salivary microbiome profiles using different methods of saliva collection, storage and gDNA extraction. Three types of saliva fractions were collected from healthy individuals with or without the gDNA stabilising buffer. Subsequently, three types of gDNA extraction methods were evaluated to determine the gDNA extraction efficiencies from saliva samples. The purity of total bacterial gDNA was evaluated using the ratio of human β-globin to bacterial 16S rRNA PCR while 16S rRNA gene amplicon sequencing was carried out to identify the bacterial profiles present in these samples. The quantity and quality of extracted gDNA were similar among all three gDNA extraction methods and there were no statistically significant differences in the bacterial profiles among different saliva fractions at the genus-level of taxonomic classification. In conclusion, saliva sampling, processing and gDNA preparation do not have major influence on microbiome profiles.
Collapse
Affiliation(s)
- Yenkai Lim
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Makrina Totsika
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
30
|
Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget 2017; 8:69162-69173. [PMID: 28978187 PMCID: PMC5620327 DOI: 10.18632/oncotarget.19942] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/25/2017] [Indexed: 01/01/2023] Open
Abstract
Tumor DNA contains specific somatic alterations that are crucial for the diagnosis and treatment of cancer. Due to the spatial and temporal intra-tumor heterogeneity, multi-sampling is needed to adequately characterize the somatic alterations. Tissue biopsy, however, is limited by the restricted access to sample and the challenges to recapitulate the tumor clonal diversity. Non-blood circulating tumor DNA are tumor DNA fragments presents in non-blood body fluids, such as urine, saliva, sputum, stool, pleural fluid, and cerebrospinal fluid (CSF). Recent studies have demonstrated the presence of tumor DNA in these non-blood body fluids and their application to the diagnosis, screening, and monitoring of cancers. Non-blood circulating tumor DNA has an enormous potential for large-scale screening of local neoplasms because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option. It permits longitudinal assessments and allows sequential monitoring of response and progression. Enrichment of tumor DNA of local cancers in non-blood body fluids may help to archive a higher sensitivity than in plasma ctDNA. The direct contact of cancerous cells and body fluid may facilitate the detection of tumor DNA. Furthermore, normal DNA always dilutes the plasma ctDNA, which may be aggravated by inflammation and injury when very high amounts of normal DNA are released into the circulation. Altogether, our review indicate that non-blood circulating tumor DNA presents an option where the disease can be tracked in a simple and less-invasive manner, allowing for serial sampling informing of the tumor heterogeneity and response to treatment.
Collapse
Affiliation(s)
- Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Chen Chen
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| | - Alicia Hulbert
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Malcolm V Brock
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R China
| |
Collapse
|
31
|
Idris FP, Wan Y, Zhang X, Punyadeera C. Within-Day Baseline Variation in Salivary Biomarkers in Healthy Men. ACTA ACUST UNITED AC 2017; 21:74-80. [DOI: 10.1089/omi.2016.0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Firman Prathama Idris
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Yunxia Wan
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Xi Zhang
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Chamindie Punyadeera
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
32
|
Lim Y, Wan Y, Vagenas D, Ovchinnikov DA, Perry CFL, Davis MJ, Punyadeera C. Salivary DNA methylation panel to diagnose HPV-positive and HPV-negative head and neck cancers. BMC Cancer 2016; 16:749. [PMID: 27663357 PMCID: PMC5034533 DOI: 10.1186/s12885-016-2785-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumours with a typical 5 year survival rate of <40 %. DNA methylation in tumour-suppressor genes often occurs at an early stage of tumorigenesis, hence DNA methylation can be used as an early tumour biomarker. Saliva is an ideal diagnostic medium to detect early HNSCC tumour activities due to its proximity to tumour site, non-invasiveness and ease of sampling. We test the hypothesis that the surveillance of DNA methylation in five tumour-suppressor genes (RASSF1α, p16 INK4a , TIMP3, PCQAP/MED15) will allow us to diagnose HNSCC patients from a normal healthy control group as well as to discriminate between Human Papillomavirus (HPV)-positive and HPV-negative patients. METHODS Methylation-specific PCR (MSP) was used to determine the methylation levels of RASSF1α, p16 INK4a , TIMP3 and PCQAP/MED15 in DNA isolated from saliva. Statistical analysis was carried out using non-parametric Mann-Whitney's U-test for individually methylated genes. A logistic regression analysis was carried out to determine the assay sensitivity when combing the five genes. Further, a five-fold cross-validation with a bootstrap procedure was carried out to determine how well the panel will perform in a real clinical scenario. RESULTS Salivary DNA methylation levels were not affected by age. Salivary DNA methylation levels for RASSF1α, p16 INK4a , TIMP3 and PCQAP/MED15 were higher in HPV-negative HNSCC patients (n = 88) compared with a normal healthy control group (n = 122) (sensitivity of 71 % and specificity of 80 %). Conversely, DNA methylation levels for these genes were lower in HPV-positive HNSCC patients (n = 45) compared with a normal healthy control group (sensitivity of 80 % and specificity of 74 %), consistent with the proposed aetiology of HPV-positive HNSCCs. CONCLUSIONS Salivary DNA tumour-suppressor methylation gene panel has the potential to detect early-stage tumours in HPV-negative HNSCC patients. HPV infection was found to deregulate the methylation levels in HPV-positive HNSCC patients. Large-scale double-blinded clinical trials are crucial before this panel can potentially be integrated into a clinical setting.
Collapse
Affiliation(s)
- Yenkai Lim
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Yunxia Wan
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Dimitrios Vagenas
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | - Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Chris F L Perry
- Department of Otolaryngology, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Brisbane, QLD, 4102, Australia.,School of Medicine, University of Queensland, 288 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Melissa J Davis
- Department of Biomedical Engineering, University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia.
| |
Collapse
|
33
|
Kozak RP, Urbanowicz PA, Punyadeera C, Reiding KR, Jansen BC, Royle L, Spencer DI, Fernandes DL, Wuhrer M. Variation of Human Salivary O-Glycome. PLoS One 2016; 11:e0162824. [PMID: 27610614 PMCID: PMC5017618 DOI: 10.1371/journal.pone.0162824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022] Open
Abstract
The study of saliva O-glycosylation is receiving increasing attention due to the potential of glycans for disease biomarkers, but also due to easy access and non-invasive collection of saliva as biological fluid. Saliva is rich in glycoproteins which are secreted from the bloodstream or produced by salivary glands. Mucins, which are highly O-glycosylated proteins, are particularly abundant in human saliva. Their glycosylation is associated with blood group and secretor status, and represents a reservoir of potential disease biomarkers. This study aims to analyse and compare O-glycans released from whole human mouth saliva collected 3 times a day from a healthy individual over a 5 days period. O-linked glycans were released by hydrazinolysis, labelled with procainamide and analysed by ultra-high performance liquid chromatography with fluorescence detection (UHPLC-FLR) coupled to electrospray ionization mass spectrometry (ESI-MS/MS). The sample preparation method showed excellent reproducibility and can therefore be used for biomarker discovery. Our data demonstrates that the O-glycosylation in human saliva changes significantly during the day. These changes may be related to changes in the salivary concentrations of specific proteins.
Collapse
Affiliation(s)
- Radoslaw P. Kozak
- Ludger Ltd., Culham Science Centre, Oxfordshire, United Kingdom
- * E-mail:
| | | | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Australia
| | - Karli R. Reiding
- Centre for Proteomics and Metabolomics Leiden University Medical Centre, Leiden, The Netherlands
| | - Bas C. Jansen
- Centre for Proteomics and Metabolomics Leiden University Medical Centre, Leiden, The Netherlands
| | - Louise Royle
- Ludger Ltd., Culham Science Centre, Oxfordshire, United Kingdom
| | | | | | - Manfred Wuhrer
- Centre for Proteomics and Metabolomics Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
34
|
Lim Y, Sun CX, Tran P, Punyadeera C. Salivary epigenetic biomarkers in head and neck squamous cell carcinomas. Biomark Med 2016; 10:301-13. [DOI: 10.2217/bmm.16.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The early detection of head and neck squamous cell carcinoma (HNSCC) continues to be a challenge to the clinician. Saliva as a diagnostic medium carries significant advantages including its close proximity to the region of interest, ease of collection and noninvasive nature. While the identification of biomarkers continues to carry significant diagnostic and prognostic utility in HNSCC, epigenetic alterations present a novel opportunity to serve this purpose. With the developments of novel and innovative technologies, epigenetic alterations are now emerging as attractive candidates in HNSCC. As such, this review will focus on two commonly aberrant epigenetic alterations: DNA methylation and microRNA expression in HNSCC and their potential clinical utility. Identification and validation of these salivary epigenetic biomarkers would not only enable early diagnosis but will also facilitate in the clinical management.
Collapse
Affiliation(s)
- Yenkai Lim
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
| | - Charles Xiaohang Sun
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
- School of Dentistry, The University of Queensland, 288 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Peter Tran
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
- School of Dentistry, The University of Queensland, 288 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health & Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, QLD 4001, Australia
| |
Collapse
|
35
|
Aberrant Methylation of RASSF1A Closely Associated with HNSCC, a Meta-Analysis. Sci Rep 2016; 6:20756. [PMID: 26857374 PMCID: PMC4746596 DOI: 10.1038/srep20756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
The RAS association domain family protein 1a (RASSF1A), a tumor suppressor gene at 3p21.3, plays a very important role in various cancers, including the head and neck squamous cell carcinoma (HNSCC). Hypermethylation of CpG islands in the RASSF1A promoter region contribute to epigenetic inactivation. However, the association between RASSF1A promoter methylation and HNSCC remains unclear and controversial. Therefore, a meta-analysis was performed in the study to identify the association. We identified the eligible studies through searching PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure (CNKI) databases with a systematic searching strategy. The information on characteristics of each study and prevalence of RASSF1A methylation were collected. Pooled odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated. Meta-regression was performed to analyze heterogeneity and funnel plots were applied to evaluate publication bias. A total of 550 HNSCC patients and 404 controls from twelve eligible studies were included in the meta-analysis. Overall, a significant association was observed between RASSF1A methylation status and HNSCC risk under a random-effects model (OR = 2.93, 95% CI: 1.58–5.46). There was no significant publication bias observed. The meta-analysis suggested that there was a significant association between aberrant RASSF1A methylation and HNSCC.
Collapse
|
36
|
Caragata M, Shah AK, Schulz BL, Hill MM, Punyadeera C. Enrichment and identification of glycoproteins in human saliva using lectin magnetic bead arrays. Anal Biochem 2015; 497:76-82. [PMID: 26743719 DOI: 10.1016/j.ab.2015.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Aberrant glycosylation of proteins is a hallmark of tumorigenesis and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is noninvasive and technically straightforward, and the sample collection and storage is relatively easy. Although differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimized a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.
Collapse
Affiliation(s)
- Michael Caragata
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Alok K Shah
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia.
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Biomedical Innovations, Queensland University of Technology, Kelvin Grove, and Translational Research Institute, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
37
|
Langevin SM, Eliot M, Butler RA, Cheong A, Zhang X, McClean MD, Koestler DC, Kelsey KT. CpG island methylation profile in non-invasive oral rinse samples is predictive of oral and pharyngeal carcinoma. Clin Epigenetics 2015; 7:125. [PMID: 26635906 PMCID: PMC4668652 DOI: 10.1186/s13148-015-0160-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND There are currently no screening tests in routine use for oral and pharyngeal cancer beyond visual inspection and palpation, which are provided on an opportunistic basis, indicating a need for development of novel methods for early detection, particularly in high-risk populations. We sought to address this need through comprehensive interrogation of CpG island methylation in oral rinse samples. METHODS We used the Infinium HumanMethylation450 BeadArray to interrogate DNA methylation in oral rinse samples collected from 154 patients with incident oral or pharyngeal carcinoma prior to treatment and 72 cancer-free control subjects. Subjects were randomly allocated to either a training or a testing set. For each subject, average methylation was calculated for each CpG island represented on the array. We applied a semi-supervised recursively partitioned mixture model to the CpG island methylation data to identify a classifier for prediction of case status in the training set. We then applied the resultant classifier to the testing set for validation and to assess the predictive accuracy. RESULTS We identified a methylation classifier comprised of 22 CpG islands, which predicted oral and pharyngeal carcinoma with a high degree of accuracy (AUC = 0.92, 95 % CI 0.86, 0.98). CONCLUSIONS This novel methylation panel is a strong predictor of oral and pharyngeal carcinoma case status in oral rinse samples and may have utility in early detection and post-treatment follow-up.
Collapse
Affiliation(s)
- Scott M Langevin
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, ML0056, Cincinnati, OH 45267 USA
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, RI USA
| | - Rondi A Butler
- Department of Epidemiology, Brown University, Providence, RI USA
| | - Agnes Cheong
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA USA
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati College of Medicine, 160 Panzeca Way, ML0056, Cincinnati, OH 45267 USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KA USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI USA ; Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Box G-E3, Providence, RI 02912 USA
| |
Collapse
|
38
|
Offermann A, Shaikhibrahim Z, Perner S. MED15: a potential biomarker for head and neck squamous cell carcinoma? Biomark Med 2015; 9:939-41. [PMID: 26457685 DOI: 10.2217/bmm.15.57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Anne Offermann
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Zaki Shaikhibrahim
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Sven Perner
- Pathology Network of the University Hospital of Luebeck and Leibniz Research Center Borstel, Institution of Pathology, Ratzeburger Allee 160 (Building 50), 23538 Lübeck, Germany
| |
Collapse
|