1
|
Zheng XL, Li ZD, Luo KZ, Li YL, Liu YH, Shen SY, Shen FY, Li WY, Chen GQ, Zhang C, Zeng LH. POLR2J expression promotes glioblastoma malignancy by regulating oxidative stress and the STAT3 signaling pathway. Am J Cancer Res 2024; 14:2037-2054. [PMID: 38859843 PMCID: PMC11162680 DOI: 10.62347/jewm7691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Glioblastoma is the most common cancer in the brain, resistant to conventional therapy and prone to recurrence. Therefore, it is crucial to explore novel therapeutics strategies for the treatment and prognosis of GBM. In this study, through analyzing online datasets, we elucidated the expression and prognostic value of POLR2J and its co-expressed genes in GBM patients. Functional experiments, including assays for cell apoptosis and cell migration, were used to explore the effects of POLR2J and vorinostat on the proliferation and migration of GBM cells. The highest overexpression of POLR2J, among all cancer types, was observed in GBM. Furthermore, high expression of POLR2J or its co-expressed genes predicted a poor outcome in GBM patients. DNA replication pathways were significantly enriched in the GBM clinical samples with high POLR2J expression, and POLR2J suppression inhibited proliferation and triggered cell cycle G1/S phase arrest in GBM cells. Moreover, POLR2J silencing activated the unfolded protein response (UPR) and significantly enhanced the anti-GBM activity of vorinostat by suppressing cell proliferation and inducing apoptosis. Additionally, POLR2J could interact with STAT3 to promote the metastatic potential of GBM cells. Our study identifies POLR2J as a novel oncogene in GBM progression and provides a promising strategy for the chemotherapeutic treatment of GBM.
Collapse
Affiliation(s)
- Xiao-Li Zheng
- Taizhou Boai Hospital, Affiliated Luqiao Hospital, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
| | - Zhi-Di Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
- Department of Pharmacology, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Kai-Zhi Luo
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of TechnologyHangzhou 310014, Zhejiang, China
| | - Yang-Ling Li
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of MedicineHangzhou 310006, Zhejiang, China
| | - Ye-Han Liu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
- Department of Pharmacology, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Shu-Ying Shen
- College of Pharmaceutical Sciences, Hangzhou First People’s Hospital, Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, China
| | - Fei-Yan Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
- Department of Pharmacology, Zhejiang UniversityHangzhou 310058, Zhejiang, China
| | - Wan-Yan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
| | - Guo-Qing Chen
- Taizhou Boai Hospital, Affiliated Luqiao Hospital, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
| | - Chong Zhang
- Taizhou Boai Hospital, Affiliated Luqiao Hospital, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
| | - Ling-Hui Zeng
- Taizhou Boai Hospital, Affiliated Luqiao Hospital, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City UniversityHangzhou 310015, Zhejiang, China
| |
Collapse
|
2
|
Ren J, Liu Y, Wang S, Wang Y, Li W, Chen S, Cui D, Yang S, Li MY, Feng B, Lai PBS, Chen GG. The FKH domain in FOXP3 mRNA frequently contains mutations in hepatocellular carcinoma that influence the subcellular localization and functions of FOXP3. J Biol Chem 2020; 295:5484-5495. [PMID: 32198183 PMCID: PMC7170510 DOI: 10.1074/jbc.ra120.012518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/12/2020] [Indexed: 01/16/2023] Open
Abstract
The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC.
Collapse
Affiliation(s)
- Jianwei Ren
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute (SZRI), Chinese University of Hong Kong, Shenzhen 518057, China
| | - Yi Liu
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Wang
- Division of Cellular & Molecular Research, National Cancer Centre, Singapore 169610
| | - Wende Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Siyu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Dexuan Cui
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Shengli Yang
- Union Hospital Tumour Center, Wuhan 430022, China
| | - Ming-Yue Li
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Bo Feng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Paul B S Lai
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China.
| | - George G Chen
- Department of Surgery, Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute (SZRI), Chinese University of Hong Kong, Shenzhen 518057, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Wu HY, Peng ZG, He RQ, Luo B, Ma J, Hu XH, Dang YW, Chen G, Pan SL. Prognostic index of aberrant mRNA splicing profiling acts as a predictive indicator for hepatocellular carcinoma based on TCGA SpliceSeq data. Int J Oncol 2019; 55:425-438. [PMID: 31268164 PMCID: PMC6615926 DOI: 10.3892/ijo.2019.4834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing in tumor cells may be used as a molecular marker for the differential diagnosis of certain tumor types and assessment of prognosis. The aim of the present study was to investigate the associations among alternative splicing events, splicing factors, and the survival of patients with hepatocellular carcinoma (HCC). The alternative splicing event profiles of 371 patients with HCC were downloaded from The Cancer Genome Atlas (TCGA) SpliceSeq data, and the percent-splice-in value for each splicing event was calculated. The association between alternative splicing events and overall survival was evaluated. The most significant prognosis-related splicing events were used to build up a prognostic index (PI). A total of 3,082 survival-associated alternative splicing events were detected in HCC. The final PI based on all of the most significant candidate alternative splicing events exhibited better performance in distinguishing good or poor survival in patients compared to the PI based on a single type of splicing event. Receiver operating characteristic curves confirmed the high efficiency of the PI in predicting the survival of HCC patients, with an area under the curve of 0.914. The overexpression of 32 prognosis-related splicing factor genes could also predict poor prognosis in patients with HCC. In conclusion, the constructed computational prognostic model based on HCC-specific alternative splicing events may be used as a molecular marker for the prognosis of HCC.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre‑clinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|