1
|
Szeliga M, Bakera B, Święcicka M, Tyrka M, Rakoczy-Trojanowska M. Identification of candidate genes responsible for chasmogamy in wheat. BMC Genomics 2023; 24:170. [PMID: 37016302 PMCID: PMC10074802 DOI: 10.1186/s12864-023-09252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The flowering biology of wheat plants favours self-pollination which causes obstacles in wheat hybrid breeding. Wheat flowers can be divided into two groups, the first one is characterized by flowering and pollination within closed flowers (cleistogamy), while the second one possesses the ability to open flowers during processes mentioned above (chasmogamy). The swelling of lodicules is involved in the flowering of cereals and among others their morphology, calcium and potassium content differentiate between cleistogamic and non-cleistogamous flowers. A better understanding of the chasmogamy mechanism can lead to the development of tools for selection of plants with the desired outcrossing rate. To learn more, the sequencing of transcriptomes (RNA-Seq) and Representational Difference Analysis products (RDA-Seq) were performed to investigate the global transcriptomes of wheat lodicules in two highly chasmogamous (HCH, Piko and Poezja) and two low chasmogamous (LCH, Euforia and KWS Dacanto) varieties at two developmental stages-pre-flowering and early flowering. RESULTS The differentially expressed genes were enriched in five, main pathways: "metabolism", "organismal systems", "genetic information processing", "cellular processes" and "environmental information processing", respectively. Important genes with opposite patterns of regulation between the HCH and LCH lines have been associated with the lodicule development i.e. expression levels of MADS16 and MADS58 genes may be responsible for quantitative differences in chasmogamy level in wheat. CONCLUSIONS We conclude that the results provide a new insight into lodicules involvement in the wheat flowering process. This study generated important genomic information to support the exploitation of the chasmogamy in wheat hybrid breeding programs.
Collapse
Affiliation(s)
- Magdalena Szeliga
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland.
| | - Beata Bakera
- Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa Street 1, 02-096, Warsaw, Poland
| | - Magdalena Święcicka
- Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Mirosław Tyrka
- Rzeszow University of Technology, Powstańców Warszawy 12, 35-959, Rzeszów, Poland
| | | |
Collapse
|
2
|
Zajączkowska U, Denisow B, Łotocka B, Dołkin-Lewko A, Rakoczy-Trojanowska M. Spikelet movements, anther extrusion and pollen production in wheat cultivars with contrasting tendencies to cleistogamy. BMC PLANT BIOLOGY 2021; 21:136. [PMID: 33726675 PMCID: PMC7970976 DOI: 10.1186/s12870-021-02917-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Cleistogamic flowers are a main barrier in pollen dispersal for cross-pollination necessary in wheat hybrid breeding. The aim of our study was to gain new knowledge on the biology of wheat flowering, in particular on the differences between the cleisto- and chasmogamic forms which has certainly cognitive significance, but it can also be used in practice when seeking a female and male ideotypes for cross hybridization. RESULTS We characterized the most significant features defining the flowering specificity in two wheat cultivars with contrasting tendency to cleistogamy: Piko (chasmogamous) and Dacanto (cleistogamous). In the field observations we assessed diurnal pattern of anther extrusion and anther extrusion capacity. For the first time we adapted the time lapse method for measuring kinetics of the spikelet movement and 3-D image correlation technique for the non-invasive measurements of potential deformations of the spikelet lemmas. We found that the two cultivars differ in the potential of pollen dispersion for-cross-pollination and in the spikelet kinetics. We also described some anatomical traits that can have potential functional role in floret opening. None of the cultivars showed any symptoms of lemma surface deformation. CONCLUSIONS The cleistogamic and chasmogamic wheat cultivars differ significantly in the potential for pollen dispersion for cross-pollination, which is mainly related to anther extrusion capacity. Although none of these features differentiated the cultivars clearly, we assume, based on spikelet kinetics and the lack of lemmas surface deformation, that the water transport and turgor of cells is essential for the floret opening and anther extrusion in wheat. The search for parental ideotype should be supported by marker assisted selection, e.g. based of polymorphisms in genes related to aquaporin biosynthesis.
Collapse
Affiliation(s)
- Urszula Zajączkowska
- Department of Forest Botany, Institute of Forest Sciences, Warsaw University of Life Sciences – SGGW, 159 Nowoursynowska Street, 02-776 Warszawa, Poland
| | - Bożena Denisow
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland
| | - Barbara Łotocka
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences – SGGW, 159 Nowoursynowska Street, 02-776 Warszawa, Poland
| | - Alicja Dołkin-Lewko
- Department of Forest Botany, Institute of Forest Sciences, Warsaw University of Life Sciences – SGGW, 159 Nowoursynowska Street, 02-776 Warszawa, Poland
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences –SGGW, 159 Nowoursynowska Street, 02-776 Warszawa, Poland
| |
Collapse
|
3
|
Li Q, Tong T, Jiang W, Cheng J, Deng F, Wu X, Chen ZH, Ouyang Y, Zeng F. Highly Conserved Evolution of Aquaporin PIPs and TIPs Confers Their Crucial Contribution to Flowering Process in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:761713. [PMID: 35058944 PMCID: PMC8764411 DOI: 10.3389/fpls.2021.761713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/22/2021] [Indexed: 05/10/2023]
Abstract
Flowering is the key process for the sexual reproduction in seed plants. In gramineous crops, the process of flowering, which includes the actions of both glume opening and glume closing, is directly driven by the swelling and withering of lodicules due to the water flow into and out of lodicule cells. All these processes are considered to be controlled by aquaporins, which are the essential transmembrane proteins that facilitate the transport of water and other small molecules across the biological membranes. In the present study, the evolution of aquaporins and their contribution to flowering process in plants were investigated via an integration of genome-wide analysis and gene expression profiling. Across the barley genome, we found that HvTIP1;1, HvTIP1;2, HvTIP2;3, and HvPIP2;1 were the predominant aquaporin genes in lodicules and significantly upregulated in responding to glume opening and closing, suggesting the importance of them in the flowering process of barley. Likewise, the putative homologs of the above four aquaporin genes were also abundantly expressed in lodicules of the other monocots like rice and maize and in petals of eudicots like cotton, tobacco, and tomato. Furthermore, all of them were mostly upregulated in responding to the process of floret opening, indicating a conserved function of these aquaporin proteins in plant flowering. The phylogenetic analysis based on the OneKP database revealed that the homologs of TIP1;1, TIP1;2, TIP2;3, and PIP2;1 were highly conserved during the evolution, especially in the angiosperm species, in line with their conserved function in controlling the flowering process. Taken together, it could be concluded that the highly evolutionary conservation of TIP1;1, TIP1;2, TIP2;3 and PIP2;1 plays important roles in the flowering process for both monocots and eudicots.
Collapse
Affiliation(s)
- Qi Li
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaojian Wu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Younan Ouyang
- China National Rice Research Institute, Hangzhou, China
| | - Fanrong Zeng
- Institute of Crop Science, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
- *Correspondence: Fanrong Zeng,
| |
Collapse
|
4
|
Salgotra RK, Stewart CN. Functional Markers for Precision Plant Breeding. Int J Mol Sci 2020; 21:E4792. [PMID: 32640763 PMCID: PMC7370099 DOI: 10.3390/ijms21134792] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Advances in molecular biology including genomics, high-throughput sequencing, and genome editing enable increasingly faster and more precise cultivar development. Identifying genes and functional markers (FMs) that are highly associated with plant phenotypic variation is a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of genes associated with phenotypic traits, which serves to increase selection efficiencies to develop varieties. Herein, we review the latest methods in FM development and how FMs are being used in precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress resistance using marker assisted selection (MAS) methods. In summary, this article describes the use of FMs in breeding for development of elite crop cultivars to enhance global food security goals.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
5
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Ayadi M, Brini F, Masmoudi K. Overexpression of a Wheat Aquaporin Gene, TdPIP2;1, Enhances Salt and Drought Tolerance in Transgenic Durum Wheat cv. Maali. Int J Mol Sci 2019; 20:E2389. [PMID: 31091755 PMCID: PMC6566926 DOI: 10.3390/ijms20102389] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 01/24/2023] Open
Abstract
In this study, we generated transgenic durum wheat cv. Maali overexpressing the wheat plasma membrane aquaporin TdPIP2;1 gene under the control of PrTdPIP2;1 promoter or under the constitutive PrCaMV35S promoter. Histochemical analysis of the fusion PrTdPIP2;1::TdPIP2;1::GusA in wheat plants showed that the β-glucuronidase (GUS) activity was detected in the leaves, stems and roots of stably transformed wheat T3 plants. Our results showed that transgenic wheat lines overexpressing the TdPIP2;1 gene exhibited improved germination rates and biomass production and retained low Na+ and high K+ concentrations in their shoots under high salt and osmotic stress conditions. In a long-term study under greenhouse conditions on salt or drought stress, transgenic TdPIP2;1 lines produced filled grains, whereas wild-type (WT) plants either died at the vegetative stage under salt stress or showed drastically reduced grain filling under drought stress. Performing real time RT-PCR experiments on wheat plants transformed with the fusion PrTdPIP2;1::GusA, we showed an increase in the accumulation of GusA transcripts in the roots of plants challenged with salt and drought stress. Study of the antioxidant defence system in transgenic wheat TdPIP2;1 lines showed that these lines induced the antioxidative enzymes Catalase (CAT) and Superoxide dismutase (SOD) activities more efficiently than the WT plants, which is associated with lower malondialdehyde and hydrogen peroxide contents. Taken together, these results indicate the high potential of the TdPIP2;1 gene for reducing water evaporation from leaves (water loss) in response to water deficit through the lowering of transpiration per unit leaf area (stomatal conductance) and engineering effective drought and salt tolerance in transgenic TdPIP2;1 lines.
Collapse
Affiliation(s)
- Malika Ayadi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| | - Khaled Masmoudi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
7
|
Madrid-Espinoza J, Brunel-Saldias N, Guerra FP, Gutiérrez A, Del Pozo A. Genome-Wide Identification and Transcriptional Regulation of Aquaporin Genes in Bread Wheat ( Triticum aestivum L.) under Water Stress. Genes (Basel) 2018; 9:genes9100497. [PMID: 30326657 PMCID: PMC6210132 DOI: 10.3390/genes9100497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/04/2023] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins essential for controlling the flow of water and other molecules required for development and stress tolerance in plants, including important crop species such as wheat (Triticum aestivum). In this study, we utilized a genomic approach for analyzing the information about AQPs available in public databases to characterize their structure and function. Furthermore, we validated the expression of a suite of AQP genes, at the transcriptional level, including accessions with contrasting responses to drought, different organs and water stress levels. We found 65 new AQP genes, from which 60% are copies expanded by polyploidization. Sequence analysis of the AQP genes showed that the purifying selection pressure acted on duplicate genes, which was related to a high conservation of the functions. This situation contrasted with the expression patterns observed for different organs, developmental stages or genotypes under water deficit conditions, which indicated functional divergence at transcription. Expression analyses on contrasting genotypes showed high gene transcription from Tonoplast Intrinsic Protein 1 (TIP1) and 2 (TIP2), and Plasma Membrane Intrinsic Protein 1 (PIP1) and 2 (PIP2) subfamilies in roots and from TIP1 and PIP1 subfamilies in leaves. Interestingly, during severe drought stress, 4 TIP genes analyzed in leaves of the tolerant accession reached up to 15-fold the level observed at the susceptible genotype, suggesting a positive relationship with drought tolerance. The obtained results extend our understanding of the structure and function of AQPs, particularly under water stress conditions.
Collapse
Affiliation(s)
- José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Nidia Brunel-Saldias
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca 3460000, Chile.
| | - Fernando P Guerra
- Laboratorio de Genética y Biotecnología Forestal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Adelina Gutiérrez
- Laboratorio de Genética y Biotecnología Forestal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- PIEI Adaptación de la Agricultura al Cambio Climático (A2C2), Universidad de Talca, Talca 3460000, Chile.
| |
Collapse
|
8
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
9
|
Molina-Hidalgo FJ, Medina-Puche L, Gelis S, Ramos J, Sabir F, Soveral G, Prista C, Iglesias-Fernández R, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:198-211. [PMID: 26259188 DOI: 10.1016/j.plantsci.2015.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 05/23/2023]
Abstract
Strawberry fruit (Fragaria × ananassa) is a soft fruit with high water content at ripe stage (more than 90% of its fresh weight). Aquaporins play an important role in plant water homeostasis, through the facilitation of water transport and solutes. We report the role played by FaNIP1;1 in the receptacle ripening process. The analysis by qRT-PCR of FaNIP1;1 showed that this gene is mainly expressed in fruit receptacle and has a ripening-related expression pattern that was accompanied by an increase in both the abscisic acid and water content of the receptacle throughout fruit ripening. Moreover, FaNIP1;1 was induced in situations of water deficit. Additionally, we show that FaNIP1;1 expression was positively regulated by abscisic acid and negatively regulated by auxins. The water transport capacity of FaNIP1;1 was determined by a stopped-flow spectroscopy in yeast over-expressing FaNIP1;1. Glycerol, H2O2 and boron transport were also demonstrated in yeast. On the other hand, GFP-FaNIP1;1 fusion protein was located in plasma membrane. In conclusion, FaNIP1;1 seems to play an important role increasing the plasma membrane permeability, that allows the water accumulation in the strawberry fruit receptacle throughout the ripening process.
Collapse
Affiliation(s)
- Francisco J Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Laura Medina-Puche
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Samuel Gelis
- Department of Microbiology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - José Ramos
- Department of Microbiology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Farzana Sabir
- CBAA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-003, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal
| | - Graça Soveral
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal; Departamento de Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, 1649-003, Portugal
| | - Catarina Prista
- CBAA, Instituto Superior de Agronomia, Universidade de Lisboa, 1649-003, Portugal
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid 28223, Spain
| | - José L Caballero
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain.
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CEIA3, Universidad de Córdoba, 14071, Spain
| |
Collapse
|
10
|
Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC. Functional molecular markers for crop improvement. Crit Rev Biotechnol 2015; 36:917-30. [DOI: 10.3109/07388551.2015.1062743] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Udaykumar Kage
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Arun Kumar
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Dhananjay Dhokane
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Shailesh Karre
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| | - Ajjamada C. Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada, H9X3V9
| |
Collapse
|
11
|
Srivastava AK, Penna S, Nguyen DV, Tran LSP. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit Rev Biotechnol 2014; 36:389-98. [PMID: 25430890 DOI: 10.3109/07388551.2014.973367] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant-water homeostasis, which is regulated by a group of proteins called "aquaporins". Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- a Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre , Mumbai , India
| | - Suprasanna Penna
- a Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre , Mumbai , India
| | - Dong Van Nguyen
- b National Key Laboratory for Plant Cell Technology , Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science , Hanoi , Vietnam , and
| | - Lam-Son Phan Tran
- c Signaling Pathway Research Unit , RIKEN Center for Sustainable Resource Science , Yokohama , Kanagawa , Japan
| |
Collapse
|
12
|
Jang HY, Rhee J, Carlson JE, Ahn SJ. The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at Ser273, but not at Ser277, of the C-terminus and is involved in salt- and drought-stress responses. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1401-12. [PMID: 25046761 DOI: 10.1016/j.jplph.2014.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/28/2014] [Accepted: 06/28/2014] [Indexed: 05/08/2023]
Abstract
Aquaporin (AQP) proteins are involved in water homeostasis in cells at all taxonomic levels of life. Phosphorylation of some AQPs has been proposed to regulate water permeability via gating of the channel itself. We analyzed plasma membrane intrinsic proteins (PIP) from Camelina and characterized their biological functions under both stressful and favorable conditions. A three-dimensional theoretical model of the Camelina AQP proteins was built by homology modeling which could prove useful in further functional characterization of AQPs. CsPIP2;1 was strongly and constitutively expressed in roots and leaves of Camelina, suggesting that this gene is related to maintenance of homeostasis during salt and drought stresses. CsPIP2s exhibited water channel activity in Xenopus oocytes. We then examined the roles of CsPIP2;1 phosphorylation at Ser273 and Ser277 in the regulation of water permeability using phosphorylation mutants. A single deletion strain of CsPIP2;1 was generated to serve as the primary host for testing AQP expression constructs. A Ser277 to alanine mutation (to prevent phosphorylation) did not change CsPIP2;1 water permeability while a Ser273 mutation to alanine did affect water permeability. Furthermore, a CsPIP2;1 point mutation when ectopically expressed in yeast resulted in lower growth in salt and drought conditions compared with controls, and confirmation of Ser273 as the phosphorylation site. Our results support the idea that post-translational modifications in the Ser273 regulatory domains of the C-terminus fine tune water flux through CsPIP2;1.
Collapse
Affiliation(s)
- Ha-Young Jang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Jiye Rhee
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, Czech Republic
| | - John E Carlson
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea; Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Sung-Ju Ahn
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|