1
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
2
|
Identification and motif analyses of candidate nonreceptor olfactory genes of Dendroctonus adjunctus Blandford (Coleoptera: Curculionidae) from the head transcriptome. Sci Rep 2020; 10:20695. [PMID: 33244016 PMCID: PMC7691339 DOI: 10.1038/s41598-020-77144-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
The round-headed pine beetle Dendroctonus adjunctus, whose dispersion and colonization behaviors are linked to a communication system mediated by semiochemicals, is one of the five most critical primary pests in forest ecosystems in Mexico. This study provides the first head transcriptome analysis of D. adjunctus and the identification of the nonreceptor olfactory genes involved in the perception of odors. De novo assembly yielded 44,420 unigenes, and GO annotations were similar to those of antennal transcriptomes of other beetle species, which reflect metabolic processes related to smell and signal transduction. A total of 36 new transcripts of nonreceptor olfactory genes were identified, of which 27 encode OBPs, 7 encode CSPs, and 2 encode SNMP candidates, which were subsequently compared to homologous proteins from other bark beetles and Coleoptera species by searching for sequence motifs and performing phylogenetic analyses. Our study provides information on genes encoding nonreceptor proteins in D. adjunctus and broadens the knowledge of olfactory genes in Coleoptera and bark beetle species, and will help to understand colonization and aggregation behaviors for the development of tools that complement management strategies.
Collapse
|
3
|
Payne P, Polechová J. Sympatric ecological divergence with coevolution of niche preference. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190749. [PMID: 32654636 PMCID: PMC7423286 DOI: 10.1098/rstb.2019.0749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reinforcement, the increase of assortative mating driven by selection against unfit hybrids, is conditional on pre-existing divergence. Yet, for ecological divergence to precede the evolution of assortment, strict symmetries between fitnesses in niches must hold, and/or there must be low gene flow between the nascent species. It has thus been argued that conditions favouring sympatric speciation are rarely met in nature. Indeed, we show that under disruptive selection, violating symmetries in niche sizes and increasing strength of the trade-off in selection between the niches quickly leads to loss of genetic variation, instead of evolution of specialists. The region of the parameter space where polymorphism is maintained further narrows with increasing number of loci encoding the diverging trait and the rate of recombination between them. Yet, evolvable assortment and pre-existing assortment both substantially broaden the parameter space within which polymorphism is maintained. Notably, pre-existing niche preference speeds up further increase of assortment, thus facilitating reinforcement in the later phases of speciation. We conclude that in order for sympatric ecological divergence to occur, niche preference must coevolve throughout the divergence process. Even if populations come into secondary contact, having diverged in isolation, niche preference substantially broadens the conditions for coexistence in sympatry and completion of the speciation process. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Pavel Payne
- Department of Zoology, Charles University, Prague, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | | |
Collapse
|
4
|
Moindi AO, Tare C, Ochieng PJ, Wamunyokoli F, Nyanjom SRG. Expression of odorant co-receptor Orco in tissues and development stages of Glossina morsitans morsitans, Glossina fuscipies fuscipies and Glossina pallidipies. SCIENTIFIC AFRICAN 2018. [DOI: 10.1016/j.sciaf.2018.e00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
5
|
Shultzaberger RK, Johnson SJ, Wagner J, Ha K, Markow TA, Greenspan RJ. Conservation of the behavioral and transcriptional response to social experience among Drosophilids. GENES BRAIN AND BEHAVIOR 2018; 18:e12487. [PMID: 29797548 PMCID: PMC7379240 DOI: 10.1111/gbb.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 12/02/2022]
Abstract
While social experience has been shown to significantly alter behaviors in a wide range of species, comparative studies that uniformly measure the impact of a single experience across multiple species have been lacking, limiting our understanding of how plastic traits evolve. To address this, we quantified variations in social feeding behaviors across 10 species of Drosophilids, tested the effect of altering rearing context on these behaviors (reared in groups or in isolation) and correlated observed behavioral shifts to accompanying transcriptional changes in the heads of these flies. We observed significant variability in the extent of aggressiveness, the utilization of social cues during food search, and social space preferences across species. The sensitivity of these behaviors to rearing experience also varied: socially naive flies were more aggressive than their socialized conspecifics in some species, and more reserved or identical in others. Despite these differences, the mechanism of socialization appeared to be conserved within the melanogaster subgroup as species could cross‐socialize each other, and the transcriptional response to social exposure was significantly conserved. The expression levels of chemosensory‐perception genes often varied between species and rearing conditions, supporting a growing body of evidence that behavioral evolution is driven by the differential regulation of this class of genes. The clear differences in behavioral responses to socialization observed in Drosophilids make this an ideal system for continued studies on the genetic basis and evolution of socialization and behavioral plasticity.
Collapse
Affiliation(s)
- R K Shultzaberger
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - S J Johnson
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - J Wagner
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - K Ha
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| | - T A Markow
- Laboratorio Nacional de Genomica de la Biodiversidad, Centro de Investigacion y de Estudios Avanzados-Irapuato, Guanajuato, Mexico.,Department of Cell and Developmental Biology, University of California San Diego, San Diego, California
| | - R J Greenspan
- Kavli Institute of Brain and Mind, University of California San Diego, San Diego, California
| |
Collapse
|
6
|
Tian R, Xu S, Chai S, Yin D, Zakon H, Yang G. Stronger selective constraint on downstream genes in the oxidative phosphorylation pathway of cetaceans. J Evol Biol 2017; 31:217-228. [PMID: 29172233 DOI: 10.1111/jeb.13213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/11/2017] [Accepted: 11/18/2017] [Indexed: 02/05/2023]
Abstract
The oxidative phosphorylation (OXPHOS) pathway is an efficient way to produce energy via adenosine triphosphate (ATP), which is critical for sustaining an energy supply for cetaceans in a hypoxic environment. Several studies have shown that natural selection may shape the evolution of the genes involved in OXPHOS. However, how network architecture drives OXPHOS protein sequence evolution remains poorly explored. Here, we investigated the evolutionary patterns of genes in the OXPHOS pathway across six cetacean genomes within the framework of a functional network. Our results show a negative correlation between the strength of purifying selection and pathway position. This result indicates that downstream genes were subjected to stronger evolutionary constraints than upstream genes, which may be due to the dual function of ATP synthase in the OXPHOS pathway. Additionally, there was a positive correlation between codon usage bias and omega (ω = dN/dS) and a negative correlation with synonymous substitution rate (dS), indicating that the stronger selective constraint on genes (with less biased codon usage) along the OXPHOS pathway is attributable to an increase in the rate of synonymous substitution. Surprisingly, there was no significant correlation between protein-protein interactions and the evolutionary estimates, implying that highly connected enzymes may not always show greater evolutionary constraints. Compared with that observed for terrestrial mammals, we found that the signature of positive selection detected in five genes (ATP5J, LHPP, PPA1, UQCRC1 and UQCRQ) was cetacean-specific, reflecting the importance of OXPHOS for survival in hypoxic, aquatic environments.
Collapse
Affiliation(s)
- R Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - S Chai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - D Yin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - H Zakon
- Department of Integrative Biology, The University of Texas, Austin, TX, USA.,Department of Neuroscience, The University of Texas, Austin, TX, USA
| | - G Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
7
|
Jacob V, Scolari F, Delatte H, Gasperi G, Jacquin-Joly E, Malacrida AR, Duyck PF. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila. Sci Rep 2017; 7:15304. [PMID: 29127313 PMCID: PMC5681579 DOI: 10.1038/s41598-017-15431-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Ecological specialization of insects involves the functional and morphological reshaping of olfactory systems. Little is known about the degree to which insect sensitivity to odorant compounds is conserved between genera, tribes, or families. Here we compared the olfactory systems of six tephritid fruit fly species spanning two tribes and the distantly related Drosophila melanogaster at molecular, functional, and morphological levels. Olfaction in these flies is mediated by a set of olfactory receptors (ORs) expressed in different functional classes of neurons located in distinct antennal regions. We performed a phylogenetic analysis that revealed both family-specific OR genes and putative orthologous OR genes between tephritids and Drosophila. With respect to function, we then used a current source density (CSD) analysis to map activity across antennae. Functional maps mirrored the intrinsic structure of antennae observed with scanning electron microscopy. Together, the results revealed partial conservation of the olfactory systems between tephritids and Drosophila. We also demonstrate that the mapping of olfactory responses is necessary to decipher antennal sensory selectivity to olfactory compounds. CSD analysis can be easily applied to map antennae of other species and therefore enables the rapid deriving of olfactory maps and the reconstructing of the target organisms' history of evolution.
Collapse
Affiliation(s)
- Vincent Jacob
- UMR PVBMT, Université de la Réunion, Saint Pierre, La Réunion, France.
- UMR PVBMT, CIRAD, Saint Pierre, La Réunion, France.
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
8
|
Pan JW, Li Q, Barish S, Okuwa S, Zhao S, Soeder C, Kanke M, Jones CD, Volkan PC. Patterns of transcriptional parallelism and variation in the developing olfactory system of Drosophila species. Sci Rep 2017; 7:8804. [PMID: 28821769 PMCID: PMC5562767 DOI: 10.1038/s41598-017-08563-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.
Collapse
Affiliation(s)
- Jia Wern Pan
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Qingyun Li
- Department of Biology, Stanford University, Stanford, California, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sumie Okuwa
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Songhui Zhao
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Charles Soeder
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew Kanke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Corbin D Jones
- Department of Biology and Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
9
|
Comeault AA, Serrato-Capuchina A, Turissini DA, McLaughlin PJ, David JR, Matute DR. A nonrandom subset of olfactory genes is associated with host preference in the fruit fly Drosophila orena. Evol Lett 2017; 1:73-85. [PMID: 30283640 PMCID: PMC6121841 DOI: 10.1002/evl3.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022] Open
Abstract
Specialization onto different host plants has been hypothesized to be a major driver of diversification in insects, and traits controlling olfaction have been shown to play a fundamental role in host preferences. A diverse set of olfactory genes control olfactory traits in insects, and it remains unclear whether specialization onto different hosts is likely to involve a nonrandom subset of these genes. Here, we test the role of olfactory genes in a novel case of specialization in Drosophila orena. We report the first population‐level sample of D. orena on the West African island of Bioko, since its initial collection in Cameroon in 1975, and use field experiments and behavioral assays to show that D. orena has evolved a strong preference for waterberry (Syzygium staudtii). We then show that a nonrandom subset of genes controlling olfaction‐–those controlling odorant‐binding and chemosensory proteins–‐have an enriched signature of positive selection relative to the rest of the D. orena genome. By comparing signatures of positive selection on olfactory genes between D. orena and its sister species, D. erecta we show that odorant‐binding and chemosensory have evidence of positive selection in both species; however, overlap in the specific genes with evidence of selection in these two classes is not greater than expected by chance. Finally, we use quantitative complementation tests to confirm a role for seven olfactory loci in D. orena’s preference for waterberry fruit. Together, our results suggest that D. orena and D. erecta have specialized onto different host plants through convergent evolution at the level of olfactory gene family, but not at specific olfactory genes.
Collapse
Affiliation(s)
- Aaron A Comeault
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| | | | - David A Turissini
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| | - Patrick J McLaughlin
- Department of Biology Drexel University Philadelphia Pennsylvania 19104.,Bioko Biodiversity Protection Program Bioko Island Equatorial Guinea
| | - Jean R David
- Laboratoire Evolution, Genomes, Speciation (LEGS) CNRS Gif sur Yvette Cedex France.,Université Paris-Sud Orsay Cedex France.,Département Systématique et Evolution Museum National d'Histoire Naturelle (MNHN) UMR 7205 (OSEB) Paris France
| | - Daniel R Matute
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| |
Collapse
|
10
|
Guo H, Cheng T, Chen Z, Jiang L, Guo Y, Liu J, Li S, Taniai K, Asaoka K, Kadono-Okuda K, Arunkumar KP, Wu J, Kishino H, Zhang H, Seth RK, Gopinathan KP, Montagné N, Jacquin-Joly E, Goldsmith MR, Xia Q, Mita K. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 82:74-82. [PMID: 28185941 DOI: 10.1016/j.ibmb.2017.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for finding genes involved in plant-insect interactions in Lepidoptera and establishing correlations between these genes and vital insect behaviors like host plant selection and courtship for mating.
Collapse
Affiliation(s)
- Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Zhiwei Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Youbing Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Jianqiu Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Shenglong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Kiyoko Taniai
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Kiyoshi Asaoka
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Keiko Kadono-Okuda
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | | | - Jiaqi Wu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirohisa Kishino
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huijie Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Rakesh K Seth
- Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Nicolas Montagné
- Sorbonne Universités, UPMC Univ Paris 06, Institute of Ecology and Environmental Sciences IEES-Paris, 4 Place Jussieu, Paris F-75005, France
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology and Environmental Sciences IEES-Paris, Route de Saint-Cyr, Versailles F-78000, France.
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston 02881, RI, USA.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Marcellini S, González F, Sarrazin AF, Pabón-Mora N, Benítez M, Piñeyro-Nelson A, Rezende GL, Maldonado E, Schneider PN, Grizante MB, Da Fonseca RN, Vergara-Silva F, Suaza-Gaviria V, Zumajo-Cardona C, Zattara EE, Casasa S, Suárez-Baron H, Brown FD. Evolutionary Developmental Biology (Evo-Devo) Research in Latin America. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:5-40. [PMID: 27491339 DOI: 10.1002/jez.b.22687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/29/2022]
Abstract
Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratorio de Desarrollo y Evolución, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Favio González
- Facultad de Ciencias, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Andres F Sarrazin
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alma Piñeyro-Nelson
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana, Xochimilco, Ciudad de México, México
| | - Gustavo L Rezende
- Universidade Estadual do Norte Fluminense, CBB, LQFPP, Campos dos Goytacazes, RJ, Brazil
| | - Ernesto Maldonado
- EvoDevo Lab, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | | | | | - Rodrigo Nunes Da Fonseca
- Núcleo em Ecologia e Desenvolvimento SócioAmbiental de Macaé (NUPEM), Campus Macaé, Universidade Federal do Rio de Janeiro, Macae, RJ, Brazil
| | | | | | | | | | - Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | - Federico D Brown
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
12
|
Li XM, Zhu XY, Wang ZQ, Wang Y, He P, Chen G, Sun L, Deng DG, Zhang YN. Candidate chemosensory genes identified in Colaphellus bowringi by antennal transcriptome analysis. BMC Genomics 2015; 16:1028. [PMID: 26626891 PMCID: PMC4667470 DOI: 10.1186/s12864-015-2236-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/23/2015] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Since chemosensory genes play key roles in insect behaviour, they can potentially be used as new targets for pest control. The cabbage beetle, Colaphellus bowringi, is a serious insect pest of cruciferous vegetables in China and other Asian countries. However, a systematic identification of the chemosensory genes expressed in the antennae has not been reported. RESULTS We assembled the antennal transcriptome of C. bowringi by using Illumina sequencing technology and identified 104 candidate chemosensory genes by analyzing transcriptomic data, which included transcripts encoding 26 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), four sensory neuron membrane proteins (SNMPs), 43 odorant receptors (ORs), nine ionotropic receptors (IRs), and ten gustatory receptors (GRs). The data obtained are similar to those found in other coleopteran species, suggesting that our approach successfully identified the chemosensory genes of C. bowringi. The expression patterns of 43 OR genes, some of which were predominately found in the antenna or associated with sex-biased expression, were analyzed using quantitative real time RT-PCR (qPCR). CONCLUSIONS Our study revealed that a large number of chemosensory genes are expressed in C. bowringi. These candidate chemosensory genes and their expression profiles in various tissues provide further information on understanding their function in C. bowringi as well as other insects, and identifying potential targets to disrupt the odorant system in C. bowringi so that new methods for pest management can be developed.
Collapse
Affiliation(s)
- Xiao-Ming Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Zhi-Qiang Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Yi Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Geng Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Liang Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | - Dao-Gui Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
13
|
Mensch J, Serra F, Lavagnino NJ, Dopazo H, Hasson E. Positive selection in nucleoporins challenges constraints on early expressed genes in Drosophila development. Genome Biol Evol 2014; 5:2231-41. [PMID: 24171912 PMCID: PMC3845637 DOI: 10.1093/gbe/evt156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developmental conservation among related species is a common generalization known as von Baer’s third law and implies that early stages of development are the most refractory to change. The “hourglass model” is an alternative view that proposes that middle stages are the most constrained during development. To investigate this issue, we undertook a genomic approach and provide insights into how natural selection operates on genes expressed during the first 24 h of Drosophila ontogeny in the six species of the melanogaster group for which whole genome sequences are available. Having studied the rate of evolution of more than 2,000 developmental genes, our results showed differential selective pressures at different moments of embryogenesis. In many Drosophila species, early zygotic genes evolved slower than maternal genes indicating that mid-embryogenesis is the stage most refractory to evolutionary change. Interestingly, positively selected genes were found in all embryonic stages even during the period with the highest developmental constraint, emphasizing that positive selection and negative selection are not mutually exclusive as it is often mistakenly considered. Among the fastest evolving genes, we identified a network of nucleoporins (Nups) as part of the maternal transcriptome. Specifically, the acceleration of Nups was driven by positive selection only in the more recently diverged species. Because many Nups are involved in hybrid incompatibilities between species of the Drosophila melanogaster subgroup, our results link rapid evolution of early developmental genes with reproductive isolation. In summary, our study revealed that even within functional groups of genes evolving under strong negative selection many positively selected genes could be recognized. Understanding these exceptions to the broad evolutionary conservation of early expressed developmental genes can shed light into relevant processes driving the evolution of species divergence.
Collapse
Affiliation(s)
- Julián Mensch
- Departamento de Ecología, Genética y Evolución-IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
14
|
Chen Y, Cao J. Comparative genomic analysis of the Sm gene family in rice and maize. Gene 2014; 539:238-49. [PMID: 24525402 DOI: 10.1016/j.gene.2014.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
Abstract
Sm proteins are a group of ubiquitous ring-shaped oligomers that function in multiple aspects of RNA metabolism. However, until this study, no comprehensive study incorporating phylogeny, chromosomal location, gene organization, adaptive evolution, expression profiling and functional networks has been reported for rice and maize. In this study, twenty-five and thirty-three Sm genes have been identified in rice and maize, respectively. Phylogenetic analyses identified eighteen gene groups. Results by gene locations indicated that segmental duplication contributes to the expansion of this gene family in rice and maize. Gene organization and motif compositions of the Sm members are highly conserved in each group, indicative of their functional conservation. Expression profiles have provided insights into the possible functional divergence among members of the Sm gene family. Adaptive evolution analyses suggested that purifying selection was the main force driving Sm evolution, but some critical sites might be responsible for functional divergence. In addition, four hundred and seventy-nine interactions were identified by functional network analyses, and most of which were associated with binding, cellular macromolecule biosynthesis, pre-mRNA processing and transferase activity. Overall, the data contribute to a better understanding of the complexity of Sm gene family in rice and maize and will provide a solid foundation for future functional studies.
Collapse
Affiliation(s)
- Yuzhu Chen
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Jun Cao
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
15
|
Davila-Velderrain J, Servin-Marquez A, Alvarez-Buylla ER. Molecular evolution constraints in the floral organ specification gene regulatory network module across 18 angiosperm genomes. Mol Biol Evol 2013; 31:560-73. [PMID: 24273325 DOI: 10.1093/molbev/mst223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The gene regulatory network of floral organ cell fate specification of Arabidopsis thaliana is a robust developmental regulatory module. Although such finding was proposed to explain the overall conservation of floral organ types and organization among angiosperms, it has not been confirmed that the network components are conserved at the molecular level among flowering plants. Using the genomic data that have accumulated, we address the conservation of the genes involved in this network and the forces that have shaped its evolution during the divergence of angiosperms. We recovered the network gene homologs for 18 species of flowering plants spanning nine families. We found that all the genes are highly conserved with no evidence of positive selection. We studied the sequence conservation features of the genes in the context of their known biological function and the strength of the purifying selection acting upon them in relation to their placement within the network. Our results suggest an association between protein length and sequence conservation, evolutionary rates, and functional category. On the other hand, we found no significant correlation between the strength of purifying selection and gene placement. Our results confirm that the studied robust developmental regulatory module has been subjected to strong functional constraints. However, unlike previous studies, our results do not support the notion that network topology plays a major role in constraining evolutionary rates. We speculate that the dynamical functional role of genes within the network and not just its connectivity could play an important role in constraining evolution.
Collapse
|
16
|
Briscoe AD, Macias-Muñoz A, Kozak KM, Walters JR, Yuan F, Jamie GA, Martin SH, Dasmahapatra KK, Ferguson LC, Mallet J, Jacquin-Joly E, Jiggins CD. Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLoS Genet 2013; 9:e1003620. [PMID: 23950722 PMCID: PMC3732137 DOI: 10.1371/journal.pgen.1003620] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/23/2013] [Indexed: 11/27/2022] Open
Abstract
Secondary plant compounds are strong deterrents of insect oviposition and feeding, but may also be attractants for specialist herbivores. These insect-plant interactions are mediated by insect gustatory receptors (Grs) and olfactory receptors (Ors). An analysis of the reference genome of the butterfly Heliconius melpomene, which feeds on passion-flower vines (Passiflora spp.), together with whole-genome sequencing within the species and across the Heliconius phylogeny has permitted an unprecedented opportunity to study the patterns of gene duplication and copy-number variation (CNV) among these key sensory genes. We report in silico gene predictions of 73 Gr genes in the H. melpomene reference genome, including putative CO2, sugar, sugar alcohol, fructose, and bitter receptors. The majority of these Grs are the result of gene duplications since Heliconius shared a common ancestor with the monarch butterfly or the silkmoth. Among Grs but not Ors, CNVs are more common within species in those gene lineages that have also duplicated over this evolutionary time-scale, suggesting ongoing rapid gene family evolution. Deep sequencing (∼1 billion reads) of transcriptomes from proboscis and labial palps, antennae, and legs of adult H. melpomene males and females indicates that 67 of the predicted 73 Gr genes and 67 of the 70 predicted Or genes are expressed in these three tissues. Intriguingly, we find that one-third of all Grs show female-biased gene expression (n = 26) and nearly all of these (n = 21) are Heliconius-specific Grs. In fact, a significant excess of Grs that are expressed in female legs but not male legs are the result of recent gene duplication. This difference in Gr gene expression diversity between the sexes is accompanied by a striking sexual dimorphism in the abundance of gustatory sensilla on the forelegs of H. melpomene, suggesting that female oviposition behaviour drives the evolution of new gustatory receptors in butterfly genomes. Insects and their chemically-defended hostplants engage in a co-evolutionary arms race but the genetic basis by which suitable host plants are identified by insects is poorly understood. Host plant specializations require specialized sensors by the insects to exploit novel ecological niches. Adult male and female Heliconius butterflies feed on nectar and, unusually for butterflies, on pollen from flowers while their larvae feed on the leaves of passion-flower vines. We have discovered–between sub-species of butterflies-fixed differences in copy-number variation among several putative sugar receptor genes that are located on different chromosomes, raising the possibility of local adaptation around the detection of sugars. We also show that the legs of adult female butterflies, which are used by females when selecting a host plant on which to lay their eggs, express more gustatory (taste) receptor genes than those of male butterflies. These female-biased taste receptors show a significantly higher level of gene duplication than a set of taste receptors expressed in both sexes. Sex-limited behaviour may therefore influence the long-term evolution of physiologically important gene families resulting in a strong genomic signature of ecological adaptation.
Collapse
Affiliation(s)
- Adriana D. Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
- * E-mail: (ADB); (CDJ)
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Krzysztof M. Kozak
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - James R. Walters
- Department of Biology, Stanford University, Palo Alto, California, United States of America
| | - Furong Yuan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Gabriel A. Jamie
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Martin
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1272 INRA-UPMC Physiologie de l'Insecte: Signalisation et Communication, Versailles, France
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (ADB); (CDJ)
| |
Collapse
|
17
|
Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci 2012; 279:5048-57. [PMID: 22977152 PMCID: PMC3497230 DOI: 10.1098/rspb.2012.1108] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 08/21/2012] [Indexed: 01/13/2023] Open
Abstract
A subject of extensive study in evolutionary theory has been the issue of how neutral, redundant copies can be maintained in the genome for long periods of time. Concurrently, examples of adaptive gene duplications to various environmental conditions in different species have been described. At this point, it is too early to tell whether or not a substantial fraction of gene copies have initially achieved fixation by positive selection for increased dosage. Nevertheless, enough examples have accumulated in the literature that such a possibility should be considered. Here, I review the recent examples of adaptive gene duplications and make an attempt to draw generalizations on what types of genes may be particularly prone to be selected for under certain environmental conditions. The identification of copy-number variation in ecological field studies of species adapting to stressful or novel environmental conditions may improve our understanding of gene duplications as a mechanism of adaptation and its relevance to the long-term persistence of gene duplications.
Collapse
Affiliation(s)
- Fyodor A Kondrashov
- Institució Catalana de Recerca i Estudis Avançats, Centre for Genomic Regulation (CRG) and Universitat Pompeu Fabra, 88 Dr Aiguader, Barcelona 08003, Spain.
| |
Collapse
|
18
|
Cao J. The pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS One 2012; 7:e46944. [PMID: 23056537 PMCID: PMC3467278 DOI: 10.1371/journal.pone.0046944] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/06/2012] [Indexed: 11/22/2022] Open
Abstract
Pectin lyases are a group of enzymes that are thought to contribute to many biological processes, such as the degradation of pectin. However, until this study, no comprehensive study incorporating phylogeny, chromosomal location, gene duplication, gene organization, functional divergence, adaptive evolution, expression profiling and functional networks has been reported for Arabidopsis. Sixty-seven pectin lyase genes have been identified, and most of them possess signal sequences targeting the secretory pathway. Phylogenetic analyses identified five gene groups with considerable conservation among groups. Pectin lyase genes were non-randomly distributed across chromosomes and clustering was evident. Functional divergence and adaptive evolution analyses suggested that purifying selection was the main force driving pectin lyase evolution, although some critical sites responsible for functional divergence might be the consequence of positive selection. A stigma- and receptacle-specific expression promoter was identified, and it had increased expression in response to wounding. Two hundred and eighty-eight interactions were identified by functional network analyses, and most of these were involved in cellular metabolism, cellular transport and localization, and stimulus responses. This investigation contributes to an improved understanding of the complexity of the Arabidopsis pectin lyase gene family.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.
| |
Collapse
|
19
|
Najar-Rodriguez A, Schneeberger M, Bellutti N, Dorn S. Variation in Attraction to Host Plant Odors in an Invasive Moth Has a Genetic Basis and is Genetically Negatively Correlated with Fecundity. Behav Genet 2012; 42:687-97. [DOI: 10.1007/s10519-012-9539-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/05/2012] [Indexed: 11/29/2022]
|