1
|
Edderkaoui M, Chheda C, Lim A, Pandol SJ, Murali R. Co-Variation of Serum Osteoprotegerin and Pigment-Epithelial Derived Factor as Biomarker of Pancreatic Cancer. AUSTIN JOURNAL OF GASTROENTEROLOGY 2022; 9:1118. [PMID: 35571223 PMCID: PMC9104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
UNLABELLED Pancreatic cancer is one the most lethal cancers. Currently, there are reliable predictive markers to assess cancer development. Widely used CA19-9 molecular marker has been less effective in the diagnosis of early stages of cancer. OBJECTIVE To study if the soluble Osteoprotegerin (OPG) and pigment-epithelial derived factor (PEDF) levels in serum will be an indicator of cancer progression. METHODS Soluble OPG and PEDF were measured from human pancreatic cancer patients by ELISA. RESULTS We show that while OPG has been less predictive features, PEDF is more sensitive than CA19-9 in cancer detection. More importantly, PEDF and CA19-9 as combined markers showed higher sensitivity in stratifying early stages of pancreatic cancer. CONCLUSION Results from the pilot studies suggest that PEDF is useful biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- M Edderkaoui
- Departments of Medicine, Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, USA
| | - C Chheda
- Departments of Medicine, Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, USA
| | - A Lim
- Departments of Medicine, Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, USA
| | - S J Pandol
- Departments of Medicine, Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, USA
| | - R Murali
- Departments of Medicine, Biomedical Sciences, Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, USA
- Research Division of Immunology, Cedars-Sinai Medical Center, USA
| |
Collapse
|
2
|
Jeon HH, Teixeira H, Tsai A. Mechanistic Insight into Orthodontic Tooth Movement Based on Animal Studies: A Critical Review. J Clin Med 2021; 10:jcm10081733. [PMID: 33923725 PMCID: PMC8072633 DOI: 10.3390/jcm10081733] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Alveolar bone remodeling in orthodontic tooth movement (OTM) is a highly regulated process that coordinates bone resorption by osteoclasts and new bone formation by osteoblasts. Mechanisms involved in OTM include mechano-sensing, sterile inflammation-mediated osteoclastogenesis on the compression side and tensile force-induced osteogenesis on the tension side. Several intracellular signaling pathways and mechanosensors including the cilia and ion channels transduce mechanical force into biochemical signals that stimulate formation of osteoclasts or osteoblasts. To date, many studies were performed in vitro or using human gingival crevicular fluid samples. Thus, the use of transgenic animals is very helpful in examining a cause and effect relationship. Key cell types that participate in mediating the response to OTM include periodontal ligament fibroblasts, mesenchymal stem cells, osteoblasts, osteocytes, and osteoclasts. Intercellular signals that stimulate cellular processes needed for orthodontic tooth movement include receptor activator of nuclear factor-κB ligand (RANKL), tumor necrosis factor-α (TNF-α), dickkopf Wnt signaling pathway inhibitor 1 (DKK1), sclerostin, transforming growth factor beta (TGF-β), and bone morphogenetic proteins (BMPs). In this review, we critically summarize the current OTM studies using transgenic animal models in order to provide mechanistic insight into the cellular events and the molecular regulation of OTM.
Collapse
|
3
|
Zhao S, Nan L, Wang Y, Wei L, Mo S. Effects of Smad4 on the expression of caspase‑3 and Bcl‑2 in human gingival fibroblasts cultured on 3D PLGA scaffolds induced by compressive force. Int J Mol Med 2021; 47:25. [PMID: 33495811 PMCID: PMC7846422 DOI: 10.3892/ijmm.2021.4858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Human gingival fibroblasts (HGFs) are the main cells that comprise gingival tissue, where they transfer mechanical signals under physiological and pathological conditions. The exact mechanism underlying gingival tissue reconstruction under compressive forces remains unclear. The present study aimed to explore the effects of Smad4, caspase-3 and Bcl-2 on the proliferation of HGFs induced by compressive force. HGFs were cultured on poly(lactide-co-glycolide) (PLGA) scaffolds under an optimal compressive force of 25 g/cm2. Cell viability was determined via Cell Counting Kit-8 assays at 0, 12, 24, 48 and 72 h. The expression levels of Smad4, caspase-3 and Bcl-2 were measured via reverse transcription-quantitative PCR and western blotting. The application of compressive force on HGFs for 24 h resulted in a significant increase in cell proliferation and Bcl-2 expression, but a significant decrease in the expression of Smad4 and caspase-3; however, inverse trends were observed by 72 h. Subsequently, a lentivirus was used to overexpress Smad4 in HGFs, which attenuated the effects of compressive force on HGF proliferation and Bcl-2 expression, but enhanced caspase-3 expression, suggesting that Smad4 may regulate compressive force-induced apoptosis in HGFs. In conclusion, these findings increased understanding regarding the mechanisms of compressive force-induced HGF proliferation and apoptosis, which may provide further insight for improving the efficacy and stability of orthodontic treatment.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lan Nan
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yao Wang
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liying Wei
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuixue Mo
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
4
|
Symmank J, Chorus M, Appel S, Marciniak J, Knaup I, Bastian A, Hennig CL, Döding A, Schulze-Späte U, Jacobs C, Wolf M. Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts. Sci Rep 2020; 10:15706. [PMID: 32973207 PMCID: PMC7518255 DOI: 10.1038/s41598-020-72736-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Alveolar bone (AB) remodeling is necessary for the adaption to mechanical stimuli occurring during mastication and orthodontic tooth movement (OTM). Thereby, bone degradation and assembly are strongly regulated processes that can be altered in obese patients. Further, increased fatty acids (FA) serum levels affect bone remodeling cells and we, therefore, investigated whether they also influence the function of periodontal ligament fibroblast (PdLF). PdLF are a major cell type regulating the differentiation and function of osteoblasts and osteoclasts localized in the AB. We stimulated human PdLF (HPdLF) in vitro with palmitic (PA) or oleic acid (OA) and analyzed their metabolic activity, growth, survival and expression of osteogenic markers and calcium deposits. Our results emphasize that PA increased cell death of HPdLF, whereas OA induced their osteoblastic differentiation. Moreover, quantitative expression analysis of OPG and RANKL revealed altered levels in mechanically stimulated PA-treated HPdLF. Furthermore, osteoclasts stimulated with culture medium of mechanical stressed FA-treated HPdLF revealed significant changes in cell differentiation upon FA-treatment. For the first time, our results highlight a potential role of specific FA in the function of HPdLF-modulated AB remodeling and help to elucidate the complex interplay of bone metabolism, mechanical stimulation and obesity-induced alterations.
Collapse
Affiliation(s)
- Judit Symmank
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.
| | - Martin Chorus
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sophie Appel
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany.,Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Jana Marciniak
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | | | - Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Leutragraben 3, 07743, Jena, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
5
|
Ali Alhasyimi A, Fathmah Rosyida N. Cocoa administration may accelerate orthodontic tooth movement by inducing osteoclastogenesis in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:206-210. [PMID: 30834087 PMCID: PMC6396988 DOI: 10.22038/ijbms.2018.32967.7881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s): To investigate the effect of cocoa on orthodontic tooth movement (OTM) rate, osteoprotegerin (OPG), and receptor activator of nuclear factor κ β ligand (RANKL) levels after OTM. Materials and Methods: A total of 24 Sprague-Dawley rats were included in the study. They were equally divided into two groups: cocoa and control. The upper incisors of all rats were subjected to 35 cN orthodontic force and moved distally with a stainless steel 3-spin coil spring. During OTM, the cocoa group was given 4.8 g of unsweetened cocoa once a day. At 4 subsequent time points (0, 1, 7, and 14 days), the OTM rate was determined by measuring the distance between the mesial tips using a digital caliper, while OPG and RANKL levels were examined based on their gingival crevicular fluid through specific enzyme-linked immunosorbent assay (ELISA). Data gathered were analyzed through independent t-test (P<0.05). Results: The OTM rate of the cocoa group was significantly higher than that of the control group on days 1, 7, and 14 (P<0.05). ELISA analysis revealed that the OPG level was significantly lower on day 14. Furthermore, the RANKL level was significantly higher on days 0, 1, and 7 for the cocoa group compared with the control group (P<0.05). Conclusion: These results indicate that cocoa has the potential effect to modulate the OTM rate by inducing osteoclastogenesis, which suppresses the OPG level and stimulates the RANKL level, in rats.
Collapse
Affiliation(s)
- Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Niswati Fathmah Rosyida
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch Oral Biol 2018; 95:170-186. [PMID: 30130671 DOI: 10.1016/j.archoralbio.2018.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of the present systematic review was to offer a timeline of the events taking place during orthodontic tooth movement(OTM). MATERIALS AND METHODS Electronic databases PubMed, Web of Science and EMBASE were searched up to November 2017. All studies describing the expression of signaling proteins in the periodontal ligament(PDL) of teeth subjected to OTM or describing the expression of signaling proteins in human cells of the periodontal structures subjected to static mechanical loading were considered eligible for inclusion for respectively the in-vivo or the in-vitro part. Risk of bias assessment was conducted according to the validated SYRCLE's RoB tool for animal studies and guideline for assessing quality of in-vitro studies for in-vitro studies. RESULTS We retrieved 7583 articles in the initial electronic search, from which 79 and 51 were finally analyzed. From the 139 protein investigated, only the inflammatory proteins interleukin(IL)-1β, cyclooxygenase(COX)-2 and prostaglandin(PG)-E2, osteoblast markers osteocalcin and runt-related transcription factor(RUNX)2, receptor activator of nuclear factor kappa-B ligand(RANKL) and osteoprotegerin(OPG) and extracellular signal-regulated kinases(ERK)1/2 are investigated in 10 or more studies. CONCLUSION The investigated proteins were presented in a theoretical model of OTM. We can conclude that the cell activation and differentiation and recruitment of osteoclasts is mediated by osteocytes, osteoblasts and PDL cells, but that the osteogenic differentiation is only seen in stem cell present in the PDL. In addition, the recently discovered Ephrin/Ephs seem to play an role parallel with the thoroughly investigated RANKL/OPG system in mediating bone resorption during OTM.
Collapse
|
7
|
Zhou J, Zhao Y. Osteoprotegerin Gene (OPG) Polymorphisms Associated with Peri-implantitis Susceptibility in a Chinese Han Population. Med Sci Monit 2016; 22:4271-4276. [PMID: 27828936 PMCID: PMC5106242 DOI: 10.12659/msm.897592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to investigate the association between T950C (rs2073617) and G1181C (rs2073618) polymorphisms of the osteoprotegerin gene (OPG) and the susceptibility of peri-implantitis in the Chinese Han population. Material/Methods 110 patients with peri-implantitis and 116 healthy persons from the Chinese Han population were included in this study using a case-control design; rs2073617 and rs2073618 in OPG were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The linkage disequilibrium (LD) and haplotype analysis were performed with Haploview software. Hardy-Weinberg equilibrium (HWE) was assessed in the control group based on the genotype distributions of OPG polymorphisms. The genotype, allele, and haplotype distribution differences between the case and control groups were analyzed by chi-square test, and the relative risk of PD was expressed by odds ratio (OR) and 95% confidence interval (CI). Results The study results showed that people carrying the CC genotype of rs2073618 were more likely to have peri-implantitis than GG genotype carriers (OR=2.18, 95% CI=1.03–4.62, p=0.04). In addition, patients with the C allele had 1.47 times the risk of suffering from peri-implantitis (OR=1.47, 95% CI=1.01–2.13, p=0.04), but not rs2073617 polymorphism. The G-C haplotype frequency of rs2073618-rs2073617 in OPG was significantly correlated to the increased susceptibility of peri-implantitis (OR=2.27, 95% CI=1.20–4.30). Conclusions OPG rs2073618 polymorphism may be related to the risk of peri-implantitis, but not rs2073617. Moreover, haplotype is also a non-ignorable risk factor.
Collapse
Affiliation(s)
- Jian Zhou
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|