1
|
Dourado M, Cardoso-Cruz H, Monteiro C, Galhardo V. Neuromodulation of Dopamine D2 Receptors Alters Orbitofrontal Neuronal Activity and Reduces Risk-Prone Behavior in Male Rats with Inflammatory Pain. Mol Neurobiol 2025:10.1007/s12035-025-04781-0. [PMID: 39985709 DOI: 10.1007/s12035-025-04781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Dopamine (DA) is believed to play a crucial role in maintaining the integrity of the rodent orbitofrontal cortex (OFC) networks during risk-based decision-making processes. Chronic pain conditions can lead to impaired DAergic signaling, which, in turn, may affect the motivational control of risk-based responses. Nevertheless, the neural mechanisms underlying this instability are poorly understood. In this study, we aimed to investigate whether this impairment is dependent on the activity of the DA D2 receptor (D2r). To address this hypothesis, we implanted bilateral matrices of multielectrodes into the OFC of male rats and recorded the neural activity while they performed a food-reinforced rodent gambling task (rGT). We evaluated behavioral performance and neural activity patterns before and after inducing a model of inflammatory pain - complete Freund's adjuvant (CFA) model. Our findings revealed that rats treated with CFA exhibited an abnormal preference for the large/uncertain reward during rGT performance. This altered behavioral choice profile could be reversed by prior systemic administration of D2r ligands (0.05 mg/kg, quinpirole or raclopride), indicating a potential role of D2r in the decision-making process required for this task. The administration of these ligands at the specified dosages did not affect pain responses, but lead to a significant alteration of OFC neuronal activity that support goal-directed choice responses in the rGT. Finally, we found evidence that CFA-treated rats exhibit OFC functional changes, namely an upregulation of DA D1 receptor (D1r) and a downregulation of DA beta-hydroxylase (DH). These results demonstrate that the disruption of DAergic balance in the brain networks is crucial for the development of high-risk decision profiles during painful conditions.
Collapse
Affiliation(s)
- Margarida Dourado
- Instituto de Investigação E Inovação Em Saúde (i3S), Pain Neurobiology Research Group, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular E Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Faculdade de Medicina (FMUP), Departamento de Biomedicina Unidade de Biologia Experimental (Floor4), Universidade Do Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
- Programa Doutoral Em Neurociências da FMUP, Universidade Do Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| | - Helder Cardoso-Cruz
- Instituto de Investigação E Inovação Em Saúde (i3S), Pain Neurobiology Research Group, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Instituto de Biologia Molecular E Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Faculdade de Medicina (FMUP), Departamento de Biomedicina Unidade de Biologia Experimental (Floor4), Universidade Do Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal.
| | - Clara Monteiro
- Instituto de Investigação E Inovação Em Saúde (i3S), Pain Neurobiology Research Group, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular E Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Faculdade de Medicina (FMUP), Departamento de Biomedicina Unidade de Biologia Experimental (Floor4), Universidade Do Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação E Inovação Em Saúde (i3S), Pain Neurobiology Research Group, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular E Celular (IBMC), Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Faculdade de Medicina (FMUP), Departamento de Biomedicina Unidade de Biologia Experimental (Floor4), Universidade Do Porto, Rua Doutor Plácido da Costa, 4200-450, Porto, Portugal
| |
Collapse
|
2
|
Gonçalves de Queiroz BF, Cristina de Sousa Fonseca F, Pinto Barra WC, Viana GB, Irie AL, de Castro Perez A, Lima Romero TR, Gama Duarte ID. Interaction between the dopaminergic and endocannabinoid systems promotes peripheral antinociception. Eur J Pharmacol 2025; 987:177195. [PMID: 39662656 DOI: 10.1016/j.ejphar.2024.177195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Dopamine has been widely related to pain modulation, at central and peripheral levels. In this study we aimed to investigate the mechanisms involved in peripheral antinociception, evaluating the interaction between the dopaminergic and endocannabinoid systems in this event. METHODS Male Swiss mice (30-40 g) were pre-sensitized by administration of the hyperalgesic PGE2 (2 μg/paw). The nociceptive threshold was measured using the paw withdrawal test. RESULTS Dopamine (80 ng/paw) promoted antinociception. This effect was reversed by the CB1 and CB2 cannabinoid receptor antagonists AM251 (20, 40, and 80 μg/paw) and AM630 (25, 50, and 100 μg/paw). JZL (4 μg/paw), an inhibitor of the degradation of the 2-arachidonylglycerol (2-AG), potentiated the antinociceptive action of the submaximal dose of dopamine (5 ng/paw). While anandamide degradation and reuptake inhibitors (MAFP 0.5 μg/paw and VDM11 2.5 μg/paw) did not promote changes in intermediate antinociception induced by dopamine. Anandamide at a submaximal dose (12.5 ng/paw) promoted intermediate antinociception that was not potentiated by the administration of the dopamine reuptake inhibitor GBR 12783 (16 μg/paw). In contrast, the administration of GBR potentiated the intermediate antinociception induced by a submaximal dose of 2-AG (10 μg/paw). Furthermore, the dopaminergic receptor antagonists D2 Remoxipride (4 μg/paw) and D3 U99194 (16 μg/paw) reversed the antinociception mediated by the maximum dose of this endocannabinoid (20 μg/paw). In contrast, the D4 receptor antagonist L-745,870 (16 μg/paw) did not change the nociceptive threshold. CONCLUSIONS In this way, we demonstrate the interaction between the dopaminergic and endocannabinoid systems to promote analgesia peripherally.
Collapse
Affiliation(s)
- Bárbara Formiga Gonçalves de Queiroz
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Flávia Cristina de Sousa Fonseca
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Walace Cassio Pinto Barra
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Giovanna Bauer Viana
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Audrey Lopes Irie
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Andrea de Castro Perez
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago Roberto Lima Romero
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Igor Dimitri Gama Duarte
- Laboratory of Pain and Analgesia, Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Cerqueira-Nunes M, Monteiro C, Galhardo V, Cardoso-Cruz H. Orbitostriatal encoding of reward delayed gratification and impulsivity in chronic pain. Brain Res 2024; 1839:149044. [PMID: 38821332 DOI: 10.1016/j.brainres.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Central robust network functional rearrangement is a characteristic of several neurological conditions, including chronic pain. Preclinical and clinical studies have shown the importance of pain-induced dysfunction in both orbitofrontal cortex (OFC) and nucleus accumbens (NAc) brain regions for the emergence of cognitive deficits. Outcome information processing recruits the orbitostriatal circuitry, a pivotal pathway regarding context-dependent reward value encoding. The current literature reveals the existence of structural and functional changes in the orbitostriatal crosstalk in chronic pain conditions, which have emerged as a possible underlying cause for reward and time discrimination impairments observed in individuals affected by such disturbances. However, more comprehensive investigations are needed to elucidate the underlying disturbances that underpin disease development. In this review article, we aim to provide a comprehensive view of the orbitostriatal mechanisms underlying time-reward dependent behaviors, and integrate previous findings on local and network malplasticity under the framework of the chronic pain sphere.
Collapse
Affiliation(s)
- Mariana Cerqueira-Nunes
- Instituto de Investigação e Inovação em Saúde (i3S) - Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina, Departamento de Biomedicina - Unidade de Biologia Experimental (FMUP), Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; Programa doutoral em Neurociências (PDN), Faculdade de Medicina, Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Clara Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S) - Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina, Departamento de Biomedicina - Unidade de Biologia Experimental (FMUP), Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Vasco Galhardo
- Instituto de Investigação e Inovação em Saúde (i3S) - Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina, Departamento de Biomedicina - Unidade de Biologia Experimental (FMUP), Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Helder Cardoso-Cruz
- Instituto de Investigação e Inovação em Saúde (i3S) - Pain Neurobiology Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Faculdade de Medicina, Departamento de Biomedicina - Unidade de Biologia Experimental (FMUP), Universidade do Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal.
| |
Collapse
|
4
|
Delignat-Lavaud B, Kano J, Ducrot C, Massé I, Mukherjee S, Giguère N, Moquin L, Lévesque C, Burke S, Denis R, Bourque MJ, Tchung A, Rosa-Neto P, Lévesque D, De Beaumont L, Trudeau LÉ. Synaptotagmin-1-dependent phasic axonal dopamine release is dispensable for basic motor behaviors in mice. Nat Commun 2023; 14:4120. [PMID: 37433762 PMCID: PMC10336101 DOI: 10.1038/s41467-023-39805-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
In Parkinson's disease (PD), motor dysfunctions only become apparent after extensive loss of DA innervation. This resilience has been hypothesized to be due to the ability of many motor behaviors to be sustained through a diffuse basal tone of DA; but experimental evidence for this is limited. Here we show that conditional deletion of the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (Syt1 cKODA mice) abrogates most activity-dependent axonal DA release in the striatum and mesencephalon, leaving somatodendritic (STD) DA release intact. Strikingly, Syt1 cKODA mice showed intact performance in multiple unconditioned DA-dependent motor tasks and even in a task evaluating conditioned motivation for food. Considering that basal extracellular DA levels in the striatum were unchanged, our findings suggest that activity-dependent DA release is dispensable for such tasks and that they can be sustained by a basal tone of extracellular DA. Taken together, our findings reveal the striking resilience of DA-dependent motor functions in the context of a near-abolition of phasic DA release, shedding new light on why extensive loss of DA innervation is required to reveal motor dysfunctions in PD.
Collapse
Affiliation(s)
- Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Jana Kano
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Ian Massé
- Hôpital du Sacré-Cœur-de-Montréal, CIUSSS NIM, Université de Montréal, Montreal, QC, Canada
| | - Sriparna Mukherjee
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Luc Moquin
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Samuel Burke
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Raphaëlle Denis
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alex Tchung
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Daniel Lévesque
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Louis De Beaumont
- Hôpital du Sacré-Cœur-de-Montréal, CIUSSS NIM, Université de Montréal, Montreal, QC, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- SNC and CIRCA Research Groups, Université de Montréal, Montréal, QC, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
5
|
Huang M, Wang G, Lin Y, Guo Y, Ren X, Shao J, Cao J, Zang W, Li Z. Dopamine receptor D2, but not D1, mediates the reward circuit from the ventral tegmental area to the central amygdala, which is involved in pain relief. Mol Pain 2022; 18:17448069221145096. [PMID: 36464669 PMCID: PMC9742700 DOI: 10.1177/17448069221145096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pain involves both sensory and affective dimensions. The amygdala is a key player in linking nociceptive stimuli to negative emotional behaviors or affective states. Relief of pain is rewarding and activates brain reward circuits. Whether the reward circuit from the ventral tegmental area (VTA) to the central amygdala (CeA) is involved in pain relief remains unexplored. Using a model of experimental postsurgical pain, we found that pain relief elicited conditioned place preference (CPP), activated CeA-projecting dopaminergic cells in the VTA, and decreased dopaminergic D2 receptor expression in the CeA. Activation of the VTA-CeA neural pathway using optogenetic approaches relieved incisional pain. Administration of a D2 receptor agonist reversed the pain relief elicited by light-induced activation of the VTA-CeA pathway. These findings indicate that the VTA-CeA circuit is involved in pain relief in mice via dopamine receptor D2 in the CeA.
Collapse
Affiliation(s)
- Minjie Huang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Human Anatomy, Basic Medical Sciences College, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guoqing Wang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yazhou Lin
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanyan Guo
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiuhua Ren
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jinping Shao
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Cao
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Weidong Zang
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhihua Li
- Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, Zhengzhou, Henan Province, China,Zhihua Li, Department of Human Anatomy, Basic Medical Sciences College, Zhengzhou University, 1 Science Road, Zhengzhou 450001, Henan Province, China.
| |
Collapse
|
6
|
Frederick NM, Pooler MM, Shah P, Didonna A, Opal P. Pharmacological perturbation reveals deficits in D2 receptor responses in Thap1 null mice. Ann Clin Transl Neurol 2021; 8:2302-2308. [PMID: 34802187 PMCID: PMC8670318 DOI: 10.1002/acn3.51481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
The primary dystonia DYT6 is caused by mutations in the transcription factor Thanatos‐associated protein 1 (THAP1). To understand THAP1’s functions, we generated mice lacking THAP1 in the nervous system. THAP1 loss causes locomotor deficits associated with transcriptional changes. Since many of the genes misregulated involve dopaminergic signaling, we pharmacologically challenged the two striatal canonical dopamine pathways: the direct, regulated by the D1 receptor, and the indirect, regulated by the D2 receptor. We discovered that depleting THAP1 specifically interferes with the D2 receptor responses, pointing to a selective misregulation of the indirect pathway in DYT6 with implications for pathogenesis and treatment.
Collapse
Affiliation(s)
- Natalie M Frederick
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, 60208, USA
| | - Morgan M Pooler
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Parth Shah
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Alessandro Didonna
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, 94158, USA
| | - Puneet Opal
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA.,Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| |
Collapse
|
7
|
The Distinct Functions of Dopaminergic Receptors on Pain Modulation: A Narrative Review. Neural Plast 2021; 2021:6682275. [PMID: 33688340 PMCID: PMC7920737 DOI: 10.1155/2021/6682275] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is considered an economic burden on society as it often results in disability, job loss, and early retirement. Opioids are the most common analgesics prescribed for the management of moderate to severe pain. However, chronic exposure to these drugs can result in opioid tolerance and opioid-induced hyperalgesia. On pain modulation strategies, exploiting the multitarget drugs with the ability of the superadditive or synergistic interactions attracts more attention. In the present report, we have reviewed the analgesic effects of different dopamine receptors, particularly D1 and D2 receptors, in different regions of the central nervous system, including the spinal cord, striatum, nucleus accumbens (NAc), and periaqueductal gray (PAG). According to the evidence, these regions are not only involved in pain modulation but also express a high density of DA receptors. The findings can be categorized as follows: (1) D2-like receptors may exert a higher analgesic potency, but D1-like receptors act in different manners across several mechanisms in the mentioned regions; (2) in the spinal cord and striatum, antinociception of DA is mainly mediated by D2-like receptors, while in the NAc and PAG, both D1- and D2-like receptors are involved as analgesic targets; and (3) D2-like receptor agonists can act as adjuvants of μ-opioid receptor agonists to potentiate analgesic effects and provide a better approach to pain relief.
Collapse
|
8
|
Dopamine D 1 and D 2 receptors mediate analgesic and hypnotic effects of l-tetrahydropalmatine in a mouse neuropathic pain model. Psychopharmacology (Berl) 2019; 236:3169-3182. [PMID: 31172225 DOI: 10.1007/s00213-019-05275-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Levo-tetrahydropalmatine (l-THP), an active ingredient of Corydalis yanhusuo, has been reported to be a partial agonist for dopamine D1 receptors (D1R) and an antagonist for D2R. Although it has been safely used clinically in China for decades as an analgesic with sedative/hypnotic properties, there are few studies that address the mechanisms by which l-THP exerts its beneficial effects in chronic pain-induced sleep disturbance. OBJECTIVES To investigate the effects and mechanisms of l-THP on sleep disturbance in a neuropathic pain-like condition. METHODS A mouse model of chronic neuropathic pain induced by partial sciatic nerve ligation (PSNL) was employed. The antinociceptive and hypnotic effects of l-THP were evaluated by measurement of mechanical allodynia, thermal hyperalgesia, and electroencephalogram (EEG) recordings in PSNL mice. Pharmacological approaches and c-Fos expression were used to clarify the mechanisms of l-THP. RESULTS Intraperitoneal injection of l-THP at 5 and 10 mg/kg not only significantly increased the mechanical threshold by 134.4% and 174.8%, and prolonged the thermal latency by 49.4% and 69.2%, but also increased non-rapid eye movement sleep by 17.5% and 29.6%, and decreased sleep fragmentation in PSNL mice, compared with the vehicle control. Moreover, the antinociceptive effect of l-THP was prevented by D1R antagonist SCH23390 or D2R agonist quinpirole; meanwhile, the hypnotic effect of l-THP was blocked by quinpirole rather than by SCH23390. Immunohistochemistry demonstrated that l-THP inhibited c-Fos overexpression induced by PSNL in the cingulate cortex and the periaqueductal gray. CONCLUSIONS These findings indicated that l-THP exerted analgesic effects by agonism D1R and antagonism D2R, and the antagonism of D2R mediated the hypnotic effect of l-THP in PSNL mice.
Collapse
|
9
|
Cardoso-Cruz H, Dourado M, Monteiro C, Galhardo V. Blockade of dopamine D2 receptors disrupts intrahippocampal connectivity and enhances pain-related working memory deficits in neuropathic pain rats. Eur J Pain 2018; 22:1002-1015. [PMID: 29377353 DOI: 10.1002/ejp.1186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2017] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dopamine (DA) is thought to be important to local hippocampal networks integrity during spatial working memory (sWM) processing. Chronic pain may contribute to deficient dopaminergic signalling, which may in turn affect cognition. However, the neural mechanisms that determine this impairment are poorly understood. Here, we evaluated whether the sWM impairment characteristic of animal models of chronic pain is dependent on DA D2 receptor (D2r) activity. METHODS To address this issue, we implanted multichannel arrays of electrodes in the dorsal and ventral hippocampal CA1 field (dvCA1) of rats and recorded the neuronal activity during a classical delayed food-reinforced T-maze sWM task. Within-subject behavioural performance and patterns of dorsoventral neural activity were assessed before and after the onset of persistent neuropathic pain using the spared nerve injury (SNI) model. RESULTS Our results show that the peripheral nerve lesion caused a disruption in sWM and hippocampus spike activity and that disruption was maximized by the systemic administration of the D2r antagonist raclopride. These deficits are strictly correlated with a selective disruption of hippocampal theta-oscillations. Particularly, we found a significant decrease in intrahippocampal CA1 field connectivity level. CONCLUSIONS Together, these results suggest that disruption of the dopaminergic balance in the intrahippocampal networks may be important for the development of cognitive deficits experienced during painful conditions. SIGNIFICANCE This study provides new insights into the role of D2r in the manifestation of pain-related sWM deficits. Our findings support that selective blockade of D2r produces a significant decrease in intrahippocampal connectivity mediated by theta-oscillations, and amplifies pain-related sWM deficits. These results suggest that further characterization of intrahippocampal dopaminergic modulation may be clinically relevant for the understanding of cognitive impairments that accompanies nociceptive stressful conditions.
Collapse
Affiliation(s)
- H Cardoso-Cruz
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - M Dourado
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal.,PDN - Programa Doutoral em Neurociências, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - C Monteiro
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| | - V Galhardo
- Departamento de Biomedicina - Unidade de Biologia Experimental, Faculdade de Medicina, Centro de investigação Médica, Universidade do Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde & IBMC - Instituto de Biologia Molecular e Celular, Pain Research Group, Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Lazenka MF, Freitas KC, Henck S, Negus SS. Relief of Pain-Depressed Behavior in Rats by Activation of D1-Like Dopamine Receptors. J Pharmacol Exp Ther 2017; 362:14-23. [PMID: 28411257 PMCID: PMC5454591 DOI: 10.1124/jpet.117.240796] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Clinically significant pain often includes a decrease in both behavior and mesolimbic dopamine signaling. Indirect and/or direct dopamine receptor agonists may alleviate pain-related behavioral depression. To test this hypothesis, the present study compared effects of indirect and direct dopamine agonists in a preclinical assay of pain-depressed operant responding. Male Sprague-Dawley rats with chronic indwelling microelectrodes in the medial forebrain bundle were trained in an intracranial self-stimulation (ICSS) procedure to press a lever for pulses of electrical brain stimulation. Intraperitoneal injection of dilute lactic acid served as an acute noxious stimulus to depress ICSS. Intraperitoneal lactic acid-induced depression of ICSS was dose-dependently blocked by the dopamine transporter inhibitor methylphenidate and the D1-selective agonist SKF82958, but not by the D2/3-selective agonists quinpirole, pramipexole, or sumanirole. The antinociceptive effects of methylphenidate and SKF82958 were blocked by the D1-selective antagonist SCH39166. Acid-induced stimulation of a stretching response was evaluated in separate groups of rats, but all agonists decreased acid-stimulated stretching, and antagonism experiments were inconclusive due to direct effects of the antagonists when administered alone. Taken together, these results suggest that D1-receptor stimulation is both sufficient to block acid-induced depression of ICSS and necessary for methylphenidate antinociception in this procedure. Conversely, D2/3-receptor stimulation is not sufficient to relieve pain-depressed behavior. These results support the hypothesis that pain-related depression of dopamine D1 receptor signaling contributes to pain-related depression of behavior in rats. Additionally, these results support further consideration of indirect dopamine agonists and direct D1 receptor agonists as candidate treatments for pain-related behavioral depression.
Collapse
Affiliation(s)
- Matthew F Lazenka
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Kelen C Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Sydney Henck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|