1
|
Li S, Tantibhadrasapa A, Buddhasiri S, Boonpan P, Sukjoi C, Mongkolkarvin P, Nakphaichit M, Nitisinprasert S, Thiennimitr P. Probiotic, Paraprobiotic, and Postbiotic Activities of Lactiplantibacillus plantarum KUNN19-2 Against Non-Typhoidal Salmonella Serovars. Int J Mol Sci 2025; 26:1821. [PMID: 40076451 PMCID: PMC11899724 DOI: 10.3390/ijms26051821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Non-typhoidal salmonellosis (NTS) caused by multidrug-resistant (MDR) Salmonella enterica is a significant public health concern worldwide. Probiotics offer a potential alternative to antibiotics in many infectious diseases, including NTS. However, using living bacteria raises safety concerns in clinical settings, especially in the immunocompromised host. This study compared the anti-Salmonella and immunomodulatory effects between viable (probiotics) and heat-killed (paraprobiotics) lactic acid bacteria Lactiplantibacillus plantarum KUNN19-2 (KUNN19-2), isolated from Thai-style fermented pork (Nham), against several strains of MDR Salmonella. Only viable KUNN19-2 and its cell-free supernatant directly inhibited Salmonella growth by spot-on lawn and agar well diffusion assays. A significant reduction in Salmonella numbers in the co-culture assay with viable KUNN19-2 was observed at 12-14 h after the incubation. Viable and heat-killed KUNN19-2 exhibited moderate adhesion to human colonic epithelium (T84) cells. Pretreatment with either form of KUNN19-2 enhanced macrophage (RAW264.7) phagocytic activity against Salmonella and upregulated pro-inflammatory genes (Mip-2 and Nos2) and anti-inflammatory gene (IL10) expression, with viable KUNN19-2 showing a more potent effect. Collectively, viable KUNN19-2 can directly inhibit Salmonella growth. However, viable and heat-killed KUNN19-2 can modulate gut immunity against Salmonella infection, suggesting that paraprobiotic KUNN19-2 may serve as an alternative treatment against MDR Salmonella through host immune modulation.
Collapse
Affiliation(s)
- Songbo Li
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (A.T.); (P.B.); (C.S.); (P.M.)
- Key Laboratory of Basic Research and Transformation of Tumor Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Arishabhas Tantibhadrasapa
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (A.T.); (P.B.); (C.S.); (P.M.)
| | - Songphon Buddhasiri
- Research Center for Veterinary Biosciences and Veterinary Public Health, Chiang Mai University, Chiang Mai 50100, Thailand;
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pattarapon Boonpan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (A.T.); (P.B.); (C.S.); (P.M.)
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (A.T.); (P.B.); (C.S.); (P.M.)
| | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (A.T.); (P.B.); (C.S.); (P.M.)
| | - Massalin Nakphaichit
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (M.N.); (S.N.)
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Sunee Nitisinprasert
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand; (M.N.); (S.N.)
- Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.L.); (A.T.); (P.B.); (C.S.); (P.M.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Piñera-Avellaneda D, Buxadera-Palomero J, Delint RC, Dalby MJ, Burgess KV, Ginebra MP, Rupérez E, Manero JM. Gallium and silver-doped titanium surfaces provide enhanced osteogenesis, reduce bone resorption and prevent bacterial infection in co-culture. Acta Biomater 2024; 180:154-170. [PMID: 38621600 DOI: 10.1016/j.actbio.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Bacterial infection remains a significant problem associated with orthopaedic surgeries leading to surgical site infection (SSI). This unmet medical need can become an even greater complication when surgery is due to malignant bone tumor. In the present study, we evaluated in vitro titanium (Ti) implants subjected to gallium (Ga) and silver (Ag)-doped thermochemical treatment as strategy to prevent SSI and improve osteointegration in bone defects caused by diseases such as osteoporosis, bone tumor, or bone metastasis. Firstly, as Ga has been reported to be an osteoinductive and anti-resorptive agent, its performance in the mixture was proved by studying human mesenchymal stem cells (hMSC) and pre-osteoclasts (RAW264.7) behaviour. Then, the antibacterial potential provided by Ag was assessed by resembling "The Race for the Surface" between hMSC and Pseudomonas aeruginosa in two co-culture methods. Moreover, the presence of quorum sensing molecules in the co-culture was evaluated. The results highlighted the suitability of the mixture to induce osteodifferentiation and reduce osteoclastogenesis in vitro. Furthermore, the GaAg surface promoted strong survival rate and retained osteoinduction potential of hMSCs even after bacterial inoculation. Therefore, GaAg-modified titanium may be an ideal candidate to repair bone defects caused by excessive bone resorption, in addition to preventing SSI. STATEMENT OF SIGNIFICANCE: This article provides important insights into titanium for fractures caused by osteoporosis or bone metastases with high incidence in surgical site infection (SSI) because in this situation bacterial infection can become a major disaster. In order to solve this unmet medical need, we propose a titanium implant modified with gallium and silver to improve osteointegration, reduce bone resorption and avoid bacterial infection. For that aim, we study osteoblast and osteoclast behavior with the main novelty focused on the antibacterial evaluation. In this work, we recreate "the race for the surface" in long-term experiments and study bacterial virulence factors (quorum sensing). Therefore, we believe that our article could be of great interest, providing a great impact on future orthopedic applications.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karl V Burgess
- EdinOmics, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028, Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain
| |
Collapse
|
3
|
Piñera-Avellaneda D, Buxadera-Palomero J, Ginebra MP, Rupérez E, Manero JM. Gallium-doped thermochemically treated titanium reduces osteoclastogenesis and improves osteodifferentiation. Front Bioeng Biotechnol 2023; 11:1303313. [PMID: 38144539 PMCID: PMC10748490 DOI: 10.3389/fbioe.2023.1303313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Excessive bone resorption is one of the main causes of bone homeostasis alterations, resulting in an imbalance in the natural remodeling cycle. This imbalance can cause diseases such as osteoporosis, or it can be exacerbated in bone cancer processes. In such cases, there is an increased risk of fractures requiring a prosthesis. In the present study, a titanium implant subjected to gallium (Ga)-doped thermochemical treatment was evaluated as a strategy to reduce bone resorption and improve osteodifferentiation. The suitability of the material to reduce bone resorption was proven by inducing macrophages (RAW 264.7) to differentiate to osteoclasts on Ga-containing surfaces. In addition, the behavior of human mesenchymal stem cells (hMSCs) was studied in terms of cell adhesion, morphology, proliferation, and differentiation. The results proved that the Ga-containing calcium titanate layer is capable of inhibiting osteoclastogenesis, hypothetically by inducing ferroptosis. Furthermore, Ga-containing surfaces promote the differentiation of hMSCs into osteoblasts. Therefore, Ga-containing calcium titanate may be a promising strategy for patients with fractures resulting from an excessive bone resorption disease.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Technical University of Catalonia (UPC), Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, EEBE, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
4
|
Hu Y, Li S, Dong H, Weng L, Yuwen L, Xie Y, Yang J, Shao J, Song X, Yang D, Wang L. Environment-Responsive Therapeutic Platforms for the Treatment of Implant Infection. Adv Healthc Mater 2023; 12:e2300985. [PMID: 37186891 DOI: 10.1002/adhm.202300985] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The application of medical implants has greatly improved the survival rate and life quality of patients. Nevertheless, in recent years, there are increasing cases of implant dysfunction or failure because of bacterial infections. Despite significant improvements in biomedicine, there are still serious challenges in the treatment of implant-related infections. With the formation of bacterial biofilms and the development of bacterial resistance, these limitations lead to a low efficacy of conventional antibiotics. To address these challenges, it is urgent to exploit innovative treatment strategies for implant-related infections. Based on these ideas, environment-responsive therapeutic platforms with high selectivity, low drug resistance, and minor dose-limiting toxicity have attracted widespread attention. By using exogenous/endogenous stimuli, the antibacterial activity of therapeutics can be activated on demand and exhibit remarkable therapeutic effects. Exogenous stimuli include photo, magnetism, microwave, and ultrasound. Endogenous stimuli mainly include the pathological characteristics of bacterial infections such as acidic pH, anomalous temperature, and abnormal enzymatic activities. In this review, the recent progress of environment-responsive therapeutic platforms with spatiotemporally controlled drug release/activation is systematically summarized. Afterward, the limitations and opportunities of these emerging platforms are highlighted. Finally, it is hoped that this review will offer novel ideas and techniques to combat implant-related infections.
Collapse
Affiliation(s)
- Yanling Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Nanjing Polytechnic Institute, Nanjing, 210048, P. R. China
| | - Shengke Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jun Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
5
|
Abdelfattah MA, Mohamed AS, Ibrahim SA, Fahmy SR. Allolobophora caliginosa coelomic fluid and extract alleviate glucocorticoid-induced osteoporosis in mice by suppressing oxidative stress and regulating osteoblastic/osteoclastic-related markers. Sci Rep 2023; 13:2090. [PMID: 36746995 PMCID: PMC9902447 DOI: 10.1038/s41598-023-29070-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Allolobophora calignosa (Ac) is a folk medicine for millennia, as it possesses many biological activities. This study aimed to investigate the chemo-preventive activity of A.calignosa coelomic fluid (AcCF) and A.calignosa extract (AcE) on glucocorticoid-induced osteoporosis (GIOP) in mice. Characterization and in vitro biological activity of AcE and AcCF has been assessed. Male CD-1 mice were subcutaneously received dexamethasone (DEX) (1 mg/kg, 5 times/week) and concurrently intraperitoneally treated with either AcCF (20 mg/kg) or AcE (45 mg/kg) every other day for 28 days. Serum and bone homogenates were subjected for qPCR and biochemical analysis. AcE and AcCF treatment significantly increased bone mineral density (BMD), bone mineral content (BMC), calcium (Ca), phosphorus (P), and calcitonin levels, whereas activity of serum alkaline phosphatase (ALP), bone alkaline phosphatase (BALP), serum acidic phosphatase (ACP), bone acidic phosphatase (BACP) and parathyroid hormone (PTH) levels were significantly reduced compare with untreated GIOP mice. Treatment with AcE and AcCF modulates oxidative stress and downregulated Rank and Mmp9 expression, as well as increased glycosaminoglycan content in the organic bone matrix, resulting in osteoclastogenesis inhibition. Overall, AcCF and AcE show a chemo-preventive activity against GIOP by inhibiting oxidative stress and regulating expression and/or activity of osteoblast/osteoclast-related markers.
Collapse
Affiliation(s)
| | - Ayman Saber Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Sohair R Fahmy
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Evaluation of delphinidin as a storage medium for avulsed teeth. BMC Oral Health 2023; 23:21. [PMID: 36641447 PMCID: PMC9840347 DOI: 10.1186/s12903-023-02713-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Delphinidin (DP), an anthocyanidin found in blueberries, has antioxidant and anti-inflammatory effects. This study aimed to investigate the efficacy of DP as a storage medium for avulsed teeth. METHODS Human periodontal ligament cells were cultured and exposed to DP solution (10, 50, and 100 μM), Dulbecco's modified Eagle's medium, Hank's balanced salt solution and tap water. Cell counting kit-8 assays were performed after 0.5, 1, 6, and 24 h to measure the cell viability. Nitric oxide assays and gelatin zymography were performed to evaluate the anti-inflammatory effects of DP. Reverse transcription-polymerase chain reaction was used to determine the expression levels of inflammatory cytokines. RESULTS The viability of periodontal ligament cells was greatest at 100 μM DP. At 1 h, 100 μM DP decreased nitric oxide synthesis (p < .0167). Matrix metallopeptidase-9 activity was inhibited by DP in a dose-dependent manner (p < .0167). Moreover, treatment with 100 μM DP decreased the expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8 in periodontal ligament cells (p < .0167). CONCLUSIONS Within the limits of this study, DP preserved the viability and suppressed the inflammatory response of periodontal ligament cells. These findings suggest that DP could be promising for preservation of avulsed teeth.
Collapse
|
7
|
Nasiri-Ansari N, Spilioti E, Kyrou I, Kalotychou V, Chatzigeorgiou A, Sanoudou D, Dahlman-Wright K, Randeva HS, Papavassiliou AG, Moutsatsou P, Kassi E. Estrogen Receptor Subtypes Elicit a Distinct Gene Expression Profile of Endothelial-Derived Factors Implicated in Atherosclerotic Plaque Vulnerability. Int J Mol Sci 2022; 23:10960. [PMID: 36142876 PMCID: PMC9506323 DOI: 10.3390/ijms231810960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
In the presence of established atherosclerosis, estrogens are potentially harmful. MMP-2 and MMP-9, their inhibitors (TIMP-2 and TIMP-1), RANK, RANKL, OPG, MCP-1, lysyl oxidase (LOX), PDGF-β, and ADAMTS-4 play critical roles in plaque instability/rupture. We aimed to investigate (i) the effect of estradiol on the expression of the abovementioned molecules in endothelial cells, (ii) which type(s) of estrogen receptors mediate these effects, and (iii) the role of p21 in the estrogen-mediated regulation of the aforementioned factors. Human aortic endothelial cells (HAECs) were cultured with estradiol in the presence or absence of TNF-α. The expression of the aforementioned molecules was assessed by qRT-PCR and ELISA. Zymography was also performed. The experiments were repeated in either ERα- or ERβ-transfected HAECs and after silencing p21. HAECs expressed only the GPR-30 estrogen receptor. Estradiol, at low concentrations, decreased MMP-2 activity by 15-fold, increased LOX expression by 2-fold via GPR-30, and reduced MCP-1 expression by 3.5-fold via ERβ. The overexpression of ERα increased MCP-1 mRNA expression by 2.5-fold. In a low-grade inflammation state, lower concentrations of estradiol induced the mRNA expression of MCP-1 (3.4-fold) and MMP-9 (7.5-fold) and increased the activity of MMP-2 (1.7-fold) via GPR-30. Moreover, p21 silencing resulted in equivocal effects on the expression of the abovementioned molecules. Estradiol induced different effects regarding atherogenic plaque instability through different ERs. The balance of the expression of the various ER subtypes may play an important role in the paradoxical characterization of estrogens as both beneficial and harmful.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eliana Spilioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, 14561 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Vassiliki Kalotychou
- Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institute, SE-14183 Huddinge, Sweden
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Jurado S, Parés A, Peris P, Combalia A, Monegal A, Guañabens N. Bilirubin increases viability and decreases osteoclast apoptosis contributing to osteoporosis in advanced liver diseases. Bone 2022; 162:116483. [PMID: 35787483 DOI: 10.1016/j.bone.2022.116483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022]
Abstract
Bilirubin and bile acids have deleterious effects on osteoblasts, which may explain the low bone formation of liver diseases with cholestasis. Although there is some clinical evidence of increased bone resorption in this condition, the effects of these substances on osteoclasts are unknown. The objective was to analyze the effects of bilirubin and bile acids -lithocholic acid (LCA) and ursodeoxycholic acid (UDCA)- on osteoclast viability and apoptosis, and on the expression of osteoclast-related microRNAs (miRNAs). RAW 264.7 cells and human PBMCs were differentiated into osteoclasts. Success in differentiation was assessed by TRAP stain and osteoclast-specific gene expression; osteoclast activity was detected by the resorption pits in Corning® Osteo Assay Surface Plates. Cells were treated with camptothecin (CAM) or with bilirubin, LCA or UDCA, at several concentrations and combinations, including non-treated cells as control. Cell viability was measured using WST-1 assay and apoptosis assessing Caspase-3 by Western blot. Expression of miR-21a, miR-29b, miR-31, miR-148a, miR-155 and miR-223 were analyzed by Real Time. Viability increased gradually in osteoclasts differentiated from RAW 264.7 cells, as the concentration of bilirubin increased, being particularly high with bilirubin 100 μM (61 %) as compared to the untreated control (p < 0.007). Viability decreased significantly with CAM, LCA and UDCA (80 %, 62 % and 27 %, respectively), effects which were abolished by bilirubin. Moreover, bilirubin increased viability in osteoclasts derived from human PBMCs (p < 0.03). Caspase-3 decreased by 46 % with bilirubin 50 μM and increased 10-fold with LCA 100 μM and CAM (p < 0.01). Bilirubin increased miR-21 and miR-148a expression as compared to controls (115 % and 59 %, respectively; p < 0.007). In conclusion, bilirubin increases viability and decreases apoptosis of osteoclasts, and overexpresses the osteoclastogenic miR-21 and miR-148a. The effects of bilirubin counteract the actions of LCA and UDCA. Therefore, bilirubin may contribute to the increased bone resorption and to the development of osteoporosis in advanced liver diseases.
Collapse
Affiliation(s)
- Susana Jurado
- IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| | - Albert Parés
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Liver Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Peris
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Andreu Combalia
- Orthopedics Department, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Ana Monegal
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Núria Guañabens
- Metabolic Bone Diseases Unit, Department of Rheumatology, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Zhou S, Ji Y, Yao H, Guo H, Zhang Z, Wang Z, Du M. Application of Ginsenoside Rd in Periodontitis With Inhibitory Effects on Pathogenicity, Inflammation, and Bone Resorption. Front Cell Infect Microbiol 2022; 12:813953. [PMID: 35480231 PMCID: PMC9035930 DOI: 10.3389/fcimb.2022.813953] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/11/2022] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is a worldwide oral disease induced by the interaction of subgingival bacteria and host response and is characterized by local inflammation, bone resorption, and tooth loss. Ginsenoside Rd (Rd) is a biologically active component derived from Panax ginseng and has been demonstrated to exert antibacterial and anti-inflammatory activities. This study aims to investigate the inhibitory efficiency of Rd towards Porphyromonas gingivalis (P. gingivalis), periodontal inflammatory response, and osteoclastogenesis in vitro and to further validate the results in a mouse periodontitis model, thus, evaluate the potential effects of Rd on the control and prevention of periodontitis. According to the results, Rd exerted excellent antibacterial activities against planktonic P. gingivalis, along with attenuating P. gingivalis virulence and inhibiting its biofilms. Meanwhile, the inflammatory cytokine production and osteoclastogenesis were remarkably inhibited by Rd both in vitro and in vivo. Furthermore, Rd efficiently ameliorated the subgingival P. gingivalis abundance and suppressed the alveolar bone resorption in vivo as well. In conclusion, Rd has the potential to be developed as a promising medication in the control and prevention of periodontitis.
Collapse
|
10
|
Deng W, Ding Z, Wang Y, Zou B, Zheng J, Tan Y, Yang Q, Ke M, Chen Y, Wang S, Li X. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/ MMP9 pathway and prevents inflammatory bone destruction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153838. [PMID: 34801352 DOI: 10.1016/j.phymed.2021.153838] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Osteolytic diseases share symptoms such as bone loss, fracture and pain, which are caused by over-activated osteoclasts. Targeting osteoclast differentiation has emerged as a therapeutic strategy clinically. Dendrobine is an alkaloid isolated from Chinese herb Dendrobium nobile, with knowing effects of analgesia and anti-inflammation. The roles of dendrobine on osteoclasts and osteolysis remain unclear. PURPOSE Herein, the possible roles of dendrobine in osteoclastogenesis, inflammatory osteolysis and the underlying mechanism were explored. METHODS Bone marrow-derived macrophages (BMMs) and RAW264.7 cells were employed to evaluate the roles of dendrobine on osteoclastogenesis, bone absorption and the underlying mechanism in vitro. LPS injection was used to cause inflammatory osteolysis in vivo. RESULTS Dendrobine repressed osteoclastogenesis, bone resorption induced by receptor activator of nuclear factor kappa B ligand (RANKL) in vitro. Mechanistically, dendrobine inhibited RANKL-upregulated intracellular (ROS), p-p38, c-Fos expression and nuclear factor of activated T cells (NFATc1) nuclear translocation. Osteoclastic genes were reduced, and among them matrix metalloproteinase 9 (MMP9) mRNA was dramatically blocked by dendrobine. Moreover, it substantially suppressed MMP9 protein expression during osteoclastogenesis in vitro. Accordingly, oral 20 mg/kg/day dendrobine was capable of preventing LPS-induced osteolysis with decreased osteoclasts in vivo. CONCLUSION Taken together, dendrobine suppresses osteoclastogenesis through restraining ROS, p38-c-Fos and NFATc1-MMP9 in vitro, thus attenuates inflammatory osteolysis in vivo. This finding supports the discover of dendrobine as a novel osteoclast inhibitor for impeding bone erosion in the future.
Collapse
Affiliation(s)
- Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zongbao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Song Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Surgery Department, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510120, Guangdong, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Zhang F, Attarilar S, Xie K, Han C, Qingyang Liang, Huang K, Lan C, Wang C, Yang C, Wang L, Mozafari M, Li K, Liu J, Tang Y. Carfilzomib alleviated osteoporosis by targeting PSME1/2 to activate Wnt/β-catenin signaling. Mol Cell Endocrinol 2022; 540:111520. [PMID: 34838695 DOI: 10.1016/j.mce.2021.111520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis (OP) is characterized by decreased bone mineral density and impaired bone strength. Carfilzomib (CFZ) is a new-generation proteasome inhibitor and has been found to affect bone metabolism. However, the effect and mechanism of CFZ on OP has not been investigated systematically. In this study, we found that protein levels of proteasome activator subunit 1/2 (PSME1/2) increased in OP, and accumulated mostly in osteoblasts and osteoclasts. Treatment with PSME1/2 recombinant protein inhibited osteogenesis and promoted osteoclast formation in vitro. Also, PSME1/2 inhibited the expression of β-catenin protein, resulting in limitation of Wnt/β-catenin signaling. CFZ inhibited PSME1 and PSME2 proteasome activities and increased β-catenin protein level, resulting in the translocation of β-catenin to the nucleus and activation of canonical Wnt/β-catenin signaling, further promoting osteogenesis and inhibiting osteoclastic differentiation. In vivo, we conducted ovariectomy (OVX) to create a model of OVX-induced postmenopausal OP in mice. When analyzed by micro-CT scanning, enhancement of bone mineral density, bone volume, trabecular number, and thickness was seen in the CFZ-treated mice. Also, we noticed increased osteogenesis and decreased osteoclastogenesis, diminished expression of PSME1 and PSME2 and activated Wnt/β-catenin signaling in bone sections from OP mice treated with CFZ. Overall, our data indicated that PSME1/2 may serve as new targets for the treatment of OP, and targeting PSME1/2 with CFZ provides a candidate therapeutic molecule for postmenopausal OP.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kegong Xie
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chao Han
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Qingyang Liang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Ke Huang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Changgong Lan
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Chengliang Yang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kai Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China.
| | - Jia Liu
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Yujin Tang
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, 533000, Guangxi, China; Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
12
|
Fischer NG, Chen X, Astleford-Hopper K, He J, Mullikin AF, Mansky KC, Aparicio C. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112108. [PMID: 33965114 DOI: 10.1016/j.msec.2021.112108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 04/10/2021] [Indexed: 12/21/2022]
Abstract
Functionalization of dental and orthopedic implants with multiple bioactivities is desirable to obtain surfaces with improved biological performance and reduced infection rates. While many approaches have been explored to date, nearly all functionalized surfaces are static, i.e., non-responsive to biological cues. However, tissue remodeling necessary for implant integration features an ever-changing milieu of cells that demands a responsive biomaterial surface for temporal synchronization of interactions between biomaterial and tissue. Here, we successfully synthesized a multi-functional, dynamic coating on titanium by co-immobilizing GL13K antimicrobial peptide and an MMP-9 - a matrix metalloproteinase secreted by bone-remodeling osteoclasts - responsive peptide. Our co-immobilized peptide surface showed potent anti-biofilm activity, enabled effective osteoblast and fibroblast proliferation, and demonstrated stability against a mechanical challenge. Finally, we showed peptide release was triggered for up to seven days when the multi-peptide coatings were cultured with MMP-9-secreting osteoclasts. Our MMP-9 cleavable peptide can be conjugated with osteogenic or immunomodulatory motifs for enhanced bone formation in future work. Overall, we envisage our multifunctional, dynamic surface to reduce infection rates of percutaneous bone-anchored devices via strong anti-microbial activity and enhanced tissue regeneration via temporal synchronization between biomaterial cues and tissue responses.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Xi Chen
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Kristina Astleford-Hopper
- Department of Diagnostic and Biological Sciences, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Alex F Mullikin
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Kim C Mansky
- Department of Diagnostic and Biological Sciences, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Zang L, Kagotani K, Nakayama H, Bhagat J, Fujimoto Y, Hayashi A, Sono R, Katsuzaki H, Nishimura N, Shimada Y. 10-Gingerol Suppresses Osteoclastogenesis in RAW264.7 Cells and Zebrafish Osteoporotic Scales. Front Cell Dev Biol 2021; 9:588093. [PMID: 33748100 PMCID: PMC7978033 DOI: 10.3389/fcell.2021.588093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is the most common aging-associated bone disease and is caused by hyperactivation of osteoclastic activity. We previously reported that the hexane extract of ginger rhizome [ginger hexane extract (GHE)] could suppress receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells. However, the anti-osteoclastic components in GHE have not yet been identified. In this study, we separated GHE into several fractions using silica gel column chromatography and evaluated their effects on osteoclastogenesis using a RAW264.7 cell osteoclast differentiation assay (in vitro) and the zebrafish scale model of osteoporosis (in vivo). We identified that the fractions containing 10-gingerol suppressed osteoclastogenesis in RAW264.7 cells detected by tartrate-resistant acid phosphatase (TRAP) staining. In zebrafish, GHE and 10-gingerol suppressed osteoclastogenesis in prednisolone-induced osteoporosis regenerated scales to promote normal regeneration. Gene expression analysis revealed that 10-gingerol suppressed osteoclast markers in RAW264.7 cells [osteoclast-associated immunoglobulin-like receptor, dendrocyte-expressed seven transmembrane protein, and matrix metallopeptidase-9 (Mmp9)] and zebrafish scales [osteoclast-specific cathepsin K (CTSK), mmp2, and mmp9]. Interestingly, nuclear factor of activated T-cells cytoplasmic 1, a master transcription regulator of osteoclast differentiation upstream of the osteoclastic activators, was downregulated in zebrafish scales but showed no alteration in RAW264.7 cells. In addition, 10-gingerol inhibited CTSK activity under cell-free conditions. This is the first study, to our knowledge, that has found that 10-gingerol in GHE could suppress osteoclastic activity in both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Kazuhiro Kagotani
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu, Japan
- Tsuji Oil Mills Co., Ltd., Matsusaka, Japan
| | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | | | | | - Ryoji Sono
- Tsuji Oil Mills Co., Ltd., Matsusaka, Japan
| | - Hirotaka Katsuzaki
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
- Department of Bioinformatics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
| |
Collapse
|
14
|
Zou R, Huang X, Xu P. The study of gp130/the inflammatory factors regulating osteoclast differentiation in rheumatoid arthritis. Biochem Biophys Rep 2021; 26:100934. [PMID: 33604457 PMCID: PMC7872970 DOI: 10.1016/j.bbrep.2021.100934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease characterized by synovitis and bone destruction. The osteoclasts play a critical role in pathologic bone loss during inflammatory arthritis. In this paper, we report that Interleukin (IL)-6, IL-6Rα/gp130, IL-11, IL-27, and Matrix Metallo Proteinases (MMP)-9 expression results in serum of the RA group were significantly higher than that of the control group. The gp130 positive cells in peripheral blood mononuclear cell (PBMC) and osteoclast-like cells (OLC) which had been induced with receptor activator of nuclear factor κB ligand (RANKL) in RA group were also higher than that in the control group. In addition, after OLC in RA group is cultured with anti-gp130 Monoclonal antibody (McAb), the IL-6 and MMP-9 expression in osteoclast supernatant insignificantly decreased. Meanwhile, the expression results of Tartrate Resistant Acid Phosphatase (TRAP)-positive cells and osteoclasts were also decreased significantly. Our study suggests that regulating gp130 receptor can be used to control the differentiation and formation of osteoclasts, which provides a new clinical strategy for RA patients in the future. The concentration of IL-6, IL-11, IL-27 and the ratio of IL-6Rα to gp130 in RA patients were significantly higher than the control group. After inducing with RANKL, gp130, IL-6 and MMP-9 and the TRAP-positive osteoclasts in PBMC from RA increased. IL-6 and MMP-9 in PBMC and osteoclasts in RA patients decreased after treatment with anti-gp130 McAb
Collapse
Affiliation(s)
- Renling Zou
- College of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiayang Huang
- The University of British Columbia, Vancouver, Canada
| | - Peng Xu
- College of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Zhang X, Yu X, Zhao Z, Yuan Z, Ma P, Ye Z, Guo L, Xu S, Xu L, Liu T, Liu H, Yu S. MicroRNA-429 inhibits bone metastasis in breast cancer by regulating CrkL and MMP-9. Bone 2020; 130:115139. [PMID: 31706051 DOI: 10.1016/j.bone.2019.115139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/24/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Bone metastasis is common in late-stage breast cancer patients and leads to skeletal-related events that affect the quality of life and decrease survival. Numerous miRNAs have been confirmed to be involved in metastatic breast cancer, such as the miR200 family. Our previous study identified microRNA-429 (miR-429) as a regulatory molecule in breast cancer bone metastasis. However, the effects of miR-429 and its regulatory axis in the metastatic breast cancer bone microenvironment have not been thoroughly investigated. We observed a positive correlation between miR-429 expression in clinical tissues and the bone metastasis-free interval and a negative correlation between miR-429 expression and the degree of bone metastasis. We cultured bone metastatic MDA-MB-231 cells and used conditioned medium (CM) to detect the effect of miR-429 on osteoblast and osteoclast cells in vitro. We constructed an orthotopic bone destruction model and a left ventricle implantation model to examine the effect of miR-429 on the metastatic bone environment in vivo. The transfection experiments showed that the expression levels of V-crk sarcoma virus CT10 oncogene homolog-like (CrkL) and MMP-9 were negatively regulated by miR-429. The in vitro coculture experiments showed that miR-429 promoted osteoblast differentiation and that CrkL promoted osteoclast differentiation. The two animal models showed that miR-429 diminished local bone destruction and distant bone metastasis but CrkL enhanced these effects. Furthermore, CrkL and MMP-9 expression decreased simultaneously in response to increased miR-429 expression. These findings further reveal the possible mechanism and effect of the miR-429/CrkL/MMP-9 regulatory axis in the bone microenvironment in breast cancer bone metastasis.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiying Yu
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenguo Zhao
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhennan Yuan
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiqing Ma
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhibin Ye
- Department of Gastrointestinal Surgery, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Liping Guo
- State Key Laboratory of Molecular Oncology and Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songfeng Xu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libin Xu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Liu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanmei Liu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- Department of Orthopaedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Guo J, Zeng X, Miao J, Liu C, Wei F, Liu D, Zheng Z, Ting K, Wang C, Liu Y. MiRNA-218 regulates osteoclast differentiation and inflammation response in periodontitis rats through Mmp9. Cell Microbiol 2019; 21:e12979. [PMID: 30444938 DOI: 10.1111/cmi.12979] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/06/2018] [Accepted: 11/01/2018] [Indexed: 01/11/2023]
Abstract
Periodontitis is a multiple infection and inflammatory disease featured by connective tissue homeostasis loss, periodontal inflammation, and alveolar bone resorption. MicroRNAs (miRNAs) are involved in the mediation of a large scale of pathological processes. Here, we show that miRNA-218 provides protective effect on periodontitis via regulation of matrix metalloproteinase-9 (Mmp9). This pathway is aberrant in periodontium from rats with periodontitis and human periodontal ligament progenitor cells stimulated by lipopolysaccharide, with downregulation of miR-218 and higher levels of Mmp9 compared with periodontium from healthy rats and cells without stimulation. Overexpression of miR-218 can suppress the degradation of Collagen Types I and IV and dentin sialoprotein (DSP), attenuate osteoclast formation, and inhibit the secretion of proinflammatory cytokines. On the other hand, overexpression of Mmp9 promotes the degradation of Collagen Types I and IV and DSP as well as RANKL-induced osteoclast formation and elevates inflammatory factors levels. Furthermore, the inhibitory effect of miR-218 was prevented by rescuing the Mmp9 expression. In addition, we also have showed that miR-218 was able to attenuate bone resorption and inflammation in a periodontitis rat model. Collectively, our findings therefore suggest that miR-218 acts as a protective role in periodontitis through the regulation of Mmp9.
Collapse
Affiliation(s)
- Jie Guo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Xuemin Zeng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Jie Miao
- Department of Stomatology, The 5th People's Hospital of Ji'nan, Jinan, China
| | - Chunpeng Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Fulan Wei
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Dongxu Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Zhong Zheng
- Department of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA.,UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Kang Ting
- Department of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA.,UCLA Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, USA
| | - Chunling Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Yi Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, China.,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
17
|
Xu H, Cai L, Zhang L, Wang G, Xie R, Jiang Y, Yuan Y, Nie H. Paeoniflorin ameliorates collagen-induced arthritis via suppressing nuclear factor-κB signalling pathway in osteoclast differentiation. Immunology 2018; 154:593-603. [PMID: 29453823 PMCID: PMC6050213 DOI: 10.1111/imm.12907] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/01/2018] [Accepted: 01/31/2018] [Indexed: 12/27/2022] Open
Abstract
Paeoniflorin (PF), extracted from the root of Paeonia lactiflora Pall, exhibits anti-inflammatory properties in several autoimmune diseases. Osteoclast, the only somatic cell with bone resorbing capacity, was the direct cause of bone destruction in rheumatoid arthritis (RA) and its mouse model, collagen-induced arthritis (CIA). The objective of this study was to estimate the effect of PF on CIA mice, and explore the mechanism of PF in bone destruction. We demonstrated that PF treatment significantly ameliorated CIA through inflammatory response inhibition and bone destruction suppression. Furthermore, PF treatment markedly decreased osteoclast number through the altered RANKL/RANK/OPG ratio and inflammatory cytokines profile. Consistently, we found that osteoclast differentiation was significantly inhibited by PF through down-regulation of nuclear factor-κB activation in vitro. Moreover, we found that PF suppressed nuclear factor-κB activation by decreasing its translocation to the nucleus in osteoclast precursor cells. Taken together, our new findings provide insights into a novel function of PF in osteoclastogenesis and demonstrate that PF would be a new therapeutic modality as a natural agent for RA treatment and other autoimmune conditions with bone erosion.
Collapse
Affiliation(s)
- Haiyan Xu
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Cai
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Allergy and ImmunologyShanghai Children's Medical CentreShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lili Zhang
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guojue Wang
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rongli Xie
- Department of General SurgeryRuijin Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yongshuai Jiang
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanyang Yuan
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong Nie
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
18
|
Koizumi H, Suzuki H, Ikezaki S, Ohbuchi T, Hashida K, Sakai A. Osteoclasts are not activated in middle ear cholesteatoma. J Bone Miner Metab 2016; 34:193-200. [PMID: 25796629 DOI: 10.1007/s00774-015-0655-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/12/2015] [Indexed: 10/23/2022]
Abstract
It is unclear whether osteoclasts are present and activated in cholesteatomas. We explored the expression of messenger RNA (mRNA) for osteoclast biomarkers and regulating factors in middle ear cholesteatomas to elucidate the level of osteoclast activity in this disease. Bone powder was collected from 14 patients with cholesteatomatous and noncholesteatomatous chronic otitis media during tympanomastoidectomy, separately from cortical bone of the mastoid (clean bone powder), from bone neighboring cholesteatoma (cholesteatomatous bone powder), and from bone of the air cells and antrum of noncholesteatomatous chronic otitis media patients (noncholesteatomatous bone powder). The samples collected were soaked in TRIzol reagent, and total RNA was extracted and purified by the acid guanidinium thiocyanate-phenol-chloroform method, followed by the use of magnetic bead technology. The sample was then subjected to quantitative reverse transcription polymerase chain reaction for receptor activator of nuclear factor κB (RANK), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), osteoclast-associated receptor (OSCAR), calcitonin receptor (CALCR), matrix metalloproteinase 9 (MMP9), receptor activator of nuclear factor κB ligand (RANKL), and osteoprotegerin (OPG). There was no significant difference in the expression of TRAP, CTSK, OSCAR, CALCR, MMP9, or OPG among the clean, cholesteatomatous, and noncholesteatomatous bone powder. On the other hand, the expression of RANK and RANKL was significantly lower in the cholesteatomatous bone powder than in the noncholesteatomatous bone powder (P = 0.003 and P = 0.028, respectively). The RANKL mRNA/OPG mRNA ratio did not differ among the three samples. These results indicate that osteoclasts are unlikely to be activated in cholesteatomas. Bone resorption mechanisms not mediated by osteoclasts may need to be reappraised in cholesteatoma research in future studies.
Collapse
Affiliation(s)
- Hiroki Koizumi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideaki Suzuki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Shoji Ikezaki
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Toyoaki Ohbuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Koichi Hashida
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
19
|
Wang D, Gu JH, Chen Y, Zhao HY, Liu W, Song RL, Bian JC, Liu XZ, Yuan Y, Liu ZP. 1α,25-Dihydroxyvitamin D 3 inhibits the differentiation and bone resorption by osteoclasts generated from Wistar rat bone marrow-derived macrophages. Exp Ther Med 2015; 10:1039-1044. [PMID: 26622436 DOI: 10.3892/etm.2015.2632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/22/2015] [Indexed: 11/05/2022] Open
Abstract
The steroid hormone 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3] plays an important role in maintaining a balance in calcium and bone metabolism. To study the effects of 1α,25-(OH)2D3 on osteoclast (OC) formation and bone resorption, OC differentiation was induced in bone marrow-derived mononuclear cells from Wistar rats with the addition of macrophage colony stimulating factor and receptor activator for nuclear factor-κB ligand in vitro. Cells were then treated with 1α,25-(OH)2D3 at 10-9, 10-8 or 10-7 mol/l. OCs were identified using tartrate-resistant acid phosphatase staining and activity was monitored in the absorption lacunae by scanning electron microscopy. Expression levels of functional proteins associated with bone absorption, namely carbonic anhydrase II, cathepsin K and matrix metalloproteinase-9 were evaluated by western blot analysis. The results showed that 1α,25-(OH)2D3 inhibited the formation and activation of OCs in a dose-dependent manner and downregulated the expression levels of bone absorption-associated proteins.
Collapse
Affiliation(s)
- Dong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Jian-Hong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Yang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Hong-Yan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Rui-Long Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Jian-Chun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Xue-Zhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| | - Zong-Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China ; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|