1
|
Maged G, Abdelsamed MA, Wang H, Lotfy A. The potency of mesenchymal stem/stromal cells: does donor sex matter? Stem Cell Res Ther 2024; 15:112. [PMID: 38644508 PMCID: PMC11034072 DOI: 10.1186/s13287-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a promising therapeutic tool in cell therapy and tissue engineering because of their multi-lineage differentiation capacity, immunomodulatory effects, and tissue protective potential. To achieve optimal results as a therapeutic tool, factors affecting MSC potency, including but not limited to cell source, donor age, and cell batch, have been investigated. Although the sex of the donor has been attributed as a potential factor that can influence MSC potency and efficacy, the impact of donor sex on MSC characteristics has not been carefully investigated. In this review, we summarize published studies demonstrating donor-sex-related MSC heterogeneity and emphasize the importance of disclosing donor sex as a key factor affecting MSC potency in cell therapy.
Collapse
Affiliation(s)
- Ghada Maged
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Menna A Abdelsamed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, 29425, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, 29425, Charleston, SC, USA.
| |
Collapse
|
2
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
3
|
Knewtson KE, Ohl NR, Robinson JL. Estrogen Signaling Dictates Musculoskeletal Stem Cell Behavior: Sex Differences in Tissue Repair. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:789-812. [PMID: 34409868 PMCID: PMC9419932 DOI: 10.1089/ten.teb.2021.0094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sexual dimorphisms in humans and other species exist in visually evident features such as body size and less apparent characteristics, including disease prevalence. Current research is adding to a growing understanding of sex differences in stem cell function and response to external stimuli, including sex hormones such as estrogens. These differences are proving significant and directly impact both the understanding of stem cell processes in tissue repair and the clinical implementation of stem cell therapies. Adult stem cells of the musculoskeletal system, including those used for development and repair of muscle, bone, cartilage, fibrocartilage, ligaments, and tendons, are no exception. Both in vitro and in vivo studies have found differences in stem cell number, proliferative and differentiation capabilities, and response to estrogen treatment between males and females of many species. Maintaining the stemness and reducing senescence of adult stem cells is an important topic with implications in regenerative therapy and aging. As such, this review discusses the effect of estrogens on musculoskeletal system stem cell response in multiple species and highlights the research gaps that still need to be addressed. The following evidence from investigations of sex-related phenotypes in adult progenitor and stem cells are pieces to the big puzzle of sex-related effects on aging and disease and critical information for both fundamental tissue repair and regeneration studies and safe and effective clinical use of stem cells. Impact Statement This review summarizes current knowledge of sex differences in and the effects of estrogen treatment on musculoskeletal stem cells in the context of tissue engineering. Specifically, it highlights the impact of sex on musculoskeletal stem cell function and ability to regenerate tissue. Furthermore, it discusses the varying effects of estrogen on stem cell properties, including proliferation and differentiation, important to tissue engineering. This review aims to highlight the potential impact of estrogens and the importance of performing sex comparative studies in the field of tissue engineering.
Collapse
Affiliation(s)
- Kelsey E. Knewtson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Nathan R. Ohl
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jennifer L. Robinson
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas, USA
- Address correspondence to: Jennifer L. Robinson, PhD, Department of Chemical and Petroleum Engineering, The University of Kansas, 1530 West 15th Street Room 4132, Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
5
|
Tousian H, Razavi BM, Hosseinzadeh H. In search of elixir: Pharmacological agents against stem cell senescence. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:868-880. [PMID: 34712416 PMCID: PMC8528253 DOI: 10.22038/ijbms.2021.51917.11773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Stem cell senescence causes different complications. In addition to the aging phenomenon, stem cell senescence has been investigated in various concepts such as cancer, adverse drug effects, and as a limiting factor in cell therapy. This manuscript examines protective medicines and supplements which are capable of hindering stem cell senescence. We searched the databases such as EMBASE, PubMed, and Web of Science with the keywords "stem cell," "progenitor cell," "satellite," "senescence" and excluded the keywords "cancer," "tumor," "malignancy" and "carcinoma" until June 2020. Among these results, we chose 47 relevant studies. Our investigation indicates that most of these studies examined endothelial progenitor cells, hematopoietic stem cells, mesenchymal stem cells, adipose-derived stem cells, and a few others were about less-discussed types of stem cells such as cardiac stem cells, myeloblasts, and induced pluripotent stem cells. From another aspect, 17β-Estradiol, melatonin, metformin, rapamycin, coenzyme Q10, N-acetyl cysteine, and vitamin C were the most studied agents, while the main protective mechanism was through telomerase activity enhancement or oxidative damage ablation. Although many of these studies are in vitro, they are still worthwhile. Stem cell senescence in the in vitro expansion stage is an essential concern in clinical procedures of cell therapy. Moreover, in vitro studies are the first step for further in vivo and clinical studies. It is noteworthy to mention the fact that these protective agents have been used in the clinical setting for various purposes for a long time. Given that, we only need to examine their systemic anti-senescence effects and effective dosages.
Collapse
Affiliation(s)
- Hourieh Tousian
- Vice-chancellery of Food and Drug,Shahroud University of Medical Sciences, Shahroud, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
A cross-species analysis of systemic mediators of repair and complex tissue regeneration. NPJ Regen Med 2021; 6:21. [PMID: 33795702 PMCID: PMC8016993 DOI: 10.1038/s41536-021-00130-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Regeneration is an elegant and complex process informed by both local and long-range signals. Many current studies on regeneration are largely limited to investigations of local modulators within a canonical cohort of model organisms. Enhanced genetic tools increasingly enable precise temporal and spatial perturbations within these model regenerators, and these have primarily been applied to cells within the local injury site. Meanwhile, many aspects of broader spatial regulators of regeneration have not yet been examined with the same level of scrutiny. Recent studies have shed important insight into the significant effects of environmental cues and circulating factors on the regenerative process. These observations highlight that consideration of more systemic and possibly more broadly acting cues will also be critical to fully understand complex tissue regeneration. In this review, we explore the ways in which systemic cues and circulating factors affect the initiation of regeneration, the regenerative process, and its outcome. As this is a broad topic, we conceptually divide the factors based on their initial input as either external cues (for example, starvation and light/dark cycle) or internal cues (for example, hormones); however, all of these inputs ultimately lead to internal responses. We consider studies performed in a diverse set of organisms, including vertebrates and invertebrates. Through analysis of systemic mediators of regeneration, we argue that increased investigation of these "systemic factors" could reveal novel insights that may pave the way for a diverse set of therapeutic avenues.
Collapse
|
7
|
Easterling MR, Engbrecht KM, Crespi EJ. Endocrine Regulation of Epimorphic Regeneration. Endocrinology 2019; 160:2969-2980. [PMID: 31593236 DOI: 10.1210/en.2019-00321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Studies aiming to uncover primary mechanisms of regeneration have predominantly focused on genetic pathways regulating specific stages in the regeneration process: wound healing, blastema formation, and pattern formation. However, studies across organisms show that environmental conditions and the physiological state of the animal can affect the rate or quality of regeneration, and endocrine signals are likely the mediators of these effects. Endocrine signals acting directly on receptors expressed in the tissue or via neuroendocrine pathways can affect regeneration by regulating the immune response to injury, allocation of energetic resources, or by enhancing or inhibiting proliferation and differentiation pathways involved in regeneration. This review discusses the cumulative knowledge in the literature about endocrine regulation of regeneration and its importance in future research to advance biomedical research.
Collapse
Affiliation(s)
- Marietta R Easterling
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Kristin M Engbrecht
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
- Pacific Northwest National Laboratory, Richland, Washington
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington
| |
Collapse
|
8
|
Easterling MR, Engbrecht KM, Crespi EJ. Endocrine regulation of regeneration: Linking global signals to local processes. Gen Comp Endocrinol 2019; 283:113220. [PMID: 31310748 DOI: 10.1016/j.ygcen.2019.113220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
Regeneration in amphibians and reptiles has been explored since the early 18th century, giving us a working in vivo model to study epimorphic regeneration in vertebrates. Studies aiming to uncover primary mechanisms of regeneration have predominantly focused on genetic pathways regulating specific stages of the regeneration process: wound healing, blastema formation and growth, and pattern formation. However, studies across organisms show that environmental conditions and physiological state of the animal can affect the rate or quality of regeneration, and endocrine signals are likely the mediators of these effects. Endocrine signals working/acting directly on receptors expressed in the structure or via neuroendocrine pathways can affect regeneration by modulating immune response to injury, allocation of energetic resources, or by enhancing or inhibiting proliferation and differentiation pathways in regenerating tissue. This review discusses the cumulative knowledge known about endocrine regulation of regeneration and important future research directions of interest to both ecological and biomedical research.
Collapse
Affiliation(s)
- Marietta R Easterling
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States.
| | - Kristin M Engbrecht
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States; Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Erica J Crespi
- Washington State University, School of Biological Sciences, Center for Reproductive Biology, Pullman, WA 99164, United States
| |
Collapse
|
9
|
Isolation and Characterization of Synovial Mesenchymal Stem Cell Derived from Hip Joints: A Comparative Analysis with a Matched Control Knee Group. Stem Cells Int 2017; 2017:9312329. [PMID: 28115945 PMCID: PMC5237455 DOI: 10.1155/2017/9312329] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/26/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
Purpose. To determine the characteristics of MSCs from hip and compare them to MSCs from knee. Methods. Synovial tissues were obtained from both the knee and the hip joints in 8 patients who underwent both hip and knee arthroscopies on the same day. MSCs were isolated from the knee and hip synovial samples. The capacities of MSCs were compared between both groups. Results. The number of cells per unit weight at passage 0 of synovium from the knee was significantly higher than that from the hip (P < 0.05). While it was possible to observe the growth of colonies in all the knee synovial fluid samples, it was impossible to culture cells from any of the hip samples. In adipogenesis experiments, the frequency of Oil Red-O-positive colonies and the gene expression of adipsin were significantly higher in knee than in hip. In osteogenesis experiments, the expression of COL1A1 and ALPP was significantly less in the knee synovium than in the hip synovium. Conclusions. MSCs obtained from hip joint have self-renewal and multilineage differentiation potentials. However, in matched donors, adipogenesis and osteogenesis potentials of MSCs from the knees are superior to those from the hips. Knee synovium may be a better source of MSC for potential use in hip diseases.
Collapse
|