1
|
Wu X, Jiang X, Liu Z, Xue P, Chen Y, Cao L, Wen Z, Tang Y. Effect of photodynamic therapy on peripheral immune system for unresectable cholangiocarcinoma. Photodiagnosis Photodyn Ther 2024; 49:104279. [PMID: 39168069 DOI: 10.1016/j.pdpdt.2024.104279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) has been emerging as a promising treatment for unresectable cholangiocarcinoma (CCA). A number of experiments have demonstrated that PDT could enhance antitumor immunity significantly. However, the impact of PDT on peripheral immune system for unresectable CCA remains unclear. METHODS In a clinical trial comparing the perioperative and long-term outcomes of PDT+stent treatment and stent alone treatment for unresectable CCA, we tested the levels of lymphocytes (CD4+ T cells, CD8+ T cells, NK cells, B cells and Treg cells) and immune-related cytokines (IL-4, IL-6, IL-10, TNF-α, TGF-β, perforin, GM-CSF and IFN-γ) in peripheral blood before and after PDT+stent treatment or stent alone treatment and analyzed the influence of PDT on peripheral immune system for unresectable CCA. RESULTS Before treatment, the levels of all the immune cells and immune-related cytokines did not show significant differences between the PDT+stent group and stent alone group. The ratio of CD8+ T cells increased significantly after PDT treatment, but other kinds of lymphocytes did not show significant difference. Increased level of IL-6 and decreased level of perforin and TGF-β after PDT treatment were demonstrated, whereas no significant changes were found for other immune-related cytokines. CONCLUSION PDT altered the levels of immune cells and immune-related cytokines in the peripheral blood of unresectable CCA patients, potentially correlating with the therapeutic efficacy of PDT in unresectable CCA treatment. Future studies could delve deeper into this aspect to explore how PDT can be more effectively utilized in the management of unresectable CCA.
Collapse
Affiliation(s)
- Xinqiang Wu
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zhaoyuan Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yubin Chen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Zilong Wen
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China
| | - Yunqiang Tang
- Department of Hepatobiliary Surgery, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510095, PR China.
| |
Collapse
|
2
|
Turna O, Deveci Ozkan A, Guney Eskiler G, Baykal A, Ozten O, Yildirim F, Armutak EI, Kamanli AF, Lim HS, Kaleli S, Kasikci G, Yildiz SZ. Comparison of the anti-cancer activity of 5-aminolevulinic acid-mediated photodynamic therapy after continuous wave and pulse irradiation in different histological types of canine mammary sarcoma tumors. Lasers Med Sci 2023; 38:70. [PMID: 36780027 DOI: 10.1007/s10103-023-03732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/05/2023] [Indexed: 02/14/2023]
Abstract
Canine mammary sarcoma tumors (CMST) are the most aggressive tumors with poor prognosis in dogs. Due to inadequate treatment options for CMST, recent studies have focused on alternative treatment strategies. We previously determined the optimized protocol of 5-ALA-based photodynamic therapy (PDT) in canine liposarcoma. However, its molecular mechanisms in the treatment of different histological types of CMST remain unclear.In this context, we, for the first time, assessed 5-aminolevulinic acid (5-ALA)-PDT-mediated anti-cancer activity and its molecular mechanism after continuous wave (CW) and pulse radiation (PR) on three different histological types (liposarcoma, chondrosarcoma, and osteosarcoma) of CMST cells by WST-1, Annexin V, ROS, acridine orange/propidium iodide staining, RT-PCR, and western blot analysis.Our findings showed that 5-ALA/PDT significantly suppressed the proliferation of CMST cells (p < 0.01) and induced apoptosis via increased ROS level and overexpression of Caspase-9 and Caspase-3 mRNA and cleaved protein levels in especially liposarcoma and chondrosarcoma cells following CW and PR irradiation at 9 J/cm2. However, the response of CMST cells to 5-ALA was different upon CW and PR irradiation due to differences in their origin.Collectively, our findings provided the first evidence that 5-ALA-based PDT could be used as an alternative treatment strategy, especially liposarcoma and chondrosarcoma. However, further in vitro and in vivo studies are required to elucidate the underlying molecular mechanism of the efficacy of 5-ALA in CMST cells at the molecular level.
Collapse
Affiliation(s)
- Ozge Turna
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Aslihan Baykal
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozge Ozten
- Department of Biomedical Engineering, Institute of Natural Sciences, Sakarya University of Applied Science, Sakarya, Turkey
| | - Funda Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ali Furkan Kamanli
- Department of Electric and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Hyun Soo Lim
- Department of Electric and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Guven Kasikci
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Salih Zeki Yildiz
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya, Turkey
| |
Collapse
|
3
|
Eskiler GG, Turna O, Ozkan AD, Baykal A, Gurgen HO, Erk B, Armutak EI, Lim HS. The response of the canine mammary simple carcinoma and carcinosarcoma cells to 5-aminolaevulinic acid-based photodynamic therapy: An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112509. [PMID: 35810598 DOI: 10.1016/j.jphotobiol.2022.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUNDS Canine mammary gland tumors (CMGTs) are heterogeneous tumors and share many similar features with human breast cancer. Despite the improvement of current treatment options, new treatment modalities are required to effectively kill tumor cells without general toxicity in the treatment of CMGTs. Photodynamic therapy (PDT) is a promising method for cancer treatment. However, there is a limited study evaluating the therapeutic efficacy of PDT in the treatment of CMGTs. METHODS In this context, we, for the first time, investigated the therapeutic potential of 5-aminolaevulinic acid (5-ALA) mediated PDT at 6 and 12 J/cm2 in two different subtypes [Tubulopapillary carcinoma (TPC) and carcinosarcoma (CS)] cells via different molecular analysis. The cytotoxic effects of 5-ALA/PDT on these cells were analyzed by intracellular PpIX level, WST-1 and ROS analysis. Furthermore, the underlying moleculer mechanism of 5-ALA/PDT mediated apoptotic effects on TPC and CS cells were evaluated Annexin V, AO/PI, RT-PCR and western blot analysis. RESULTS The 5-ALA/PDT treatment upon irradiation considerably inhibited the viability of both TPC and CS cells (p<0.01) and caused apoptotic death through elevated ROS levels, the activation of Caspase-9, and Caspase-3, and the overexpression of Bax. However, the response of TPC and CS cells to 5-ALA/PDT was different. CONCLUSIONS Our preliminary in vitro findings provide novel insights into the molecular mechanisms underlying 5-ALA/PDT mediated apoptosis in both TPC and CS cells. However, the therapeutic response of CMGT cells to 5-ALA/PDT is limited.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Ozge Turna
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Aslihan Baykal
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hazal Ozturk Gurgen
- Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Beyzanur Erk
- Department of Biomedical Engineering, Institute of Natural Sciences, Sakarya University, Sakarya, Turkey
| | - Elif Ilkay Armutak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hyun Soo Lim
- Department of Electric and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Sakarya, Turkey
| |
Collapse
|
4
|
Hematoporphyrin monomethyl ether mediated photodynamic therapy inhibits oral squamous cell carcinoma by regulating the P53-miR-21-PDCD4 axis via singlet oxygen. Lasers Med Sci 2022; 37:1-9. [PMID: 35260928 DOI: 10.1007/s10103-022-03529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
The objective of this study was to determine the mechanism and effect of hematoporphyrin monomethyl ether mediated photodynamic therapy (HMME-PDT) on oral squamous cell carcinoma (OSCC). Human OSCC CAL-27 cells were randomly divided into four groups: control group, HMME group, laser group, and HMME-PDT group. Cell viability was detected by the CCK-8 method. Cell cycle distribution was evaluated by flow cytometry. GEO database was used to screen differentially expressed microRNAs (DEMs), and TCGA database was performed to verify DEM expression in OSCC and normal tissues. The effects of HMME-PDT on DEM expression were assayed by real-time PCR, and the expressions of miRNAs target genes were measured by western blot. Fluorescence probes were used to determine the production of singlet oxygen (1O2). Compared with the other three groups, HMME-PDT dramatically inhibited CAL-27 cell proliferation and induced G0/G1 cycle arrest. The expressions of miR-21 and miR-155 were significantly upregulated in OSCC. HMME-PDT downregulated the expression of miR-21 but had no obvious effect on miR-155. HMME-PDT remarkably upregulated the levels of P53 and miR-21 target proteins, such as PDCD4, RECK, and SPRY2. 1O2 was generated during HMME-PDT, and inhibition of 1O2 production could reverse the regulation of HMME-PDT on P53, miR-21, and its target proteins, thus restoring cell viability. HMME-PDT can significantly inhibit the growth of OSCC cells, and the mechanism of this effect is related to the regulation of the P53-miR-21-PDCD4 axis via 1O2 induced by HMME-PDT.
Collapse
|
5
|
Panja K, Buranapraditkun S, Roytrakul S, Kovitvadhi A, Lertwatcharasarakul P, Nakagawa T, Limmanont C, Jaroensong T. Scorpion Venom Peptide Effects on Inhibiting Proliferation and Inducing Apoptosis in Canine Mammary Gland Tumor Cell Lines. Animals (Basel) 2021; 11:ani11072119. [PMID: 34359246 PMCID: PMC8300387 DOI: 10.3390/ani11072119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
The most common neoplasms in intact female dogs are CMGTs. BmKn-2, an antimicrobial peptide, is derived from scorpion venom and has published anticancer effects in oral and colon human cancer cell lines. Thus, it is highly likely that BmKn-2 could inhibit CMGT cell lines which has not been previously reported. This study investigated the proliferation and apoptotic properties of BmKn-2 via Bax and Bcl-2 relative gene expression in two CMGT cell lines, metastatic (CHMp-5b) and non-metastatic (CHMp-13a). The results showed that BmKn-2 inhibited proliferation and induced apoptosis in the CMGT cell lines. The cell morphology clearly changed and increased apoptosis in a dose dependent of manner. The half maximum inhibitory concentration (IC50) was 30 µg/mL for CHMp-5b cell line and 54 µg/mL for CHMp-13a cell line. The induction of apoptosis was mediated through Bcl-2 and Bax expression after BmKn-2 treatment. In conclusion, BmKn-2 inhibited proliferation and induced apoptosis in both CHMp-5b and CHMp-13a cell lines via down-regulation of Bcl-2 and up-regulation of Bax relative mRNA expression. Therefore, BmKn-2 could be feasible as candidate treatment for CMGTs.
Collapse
Affiliation(s)
- Kamonporn Panja
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkhen Campus, Bangkok 10900, Thailand; (K.P.); (C.L.)
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Bangpra, Chonburi 20110, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Attawit Kovitvadhi
- Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| | - Chunsumon Limmanont
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkhen Campus, Bangkok 10900, Thailand; (K.P.); (C.L.)
| | - Tassanee Jaroensong
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkhen Campus, Bangkok 10900, Thailand; (K.P.); (C.L.)
- Correspondence: ; Tel.: +66-86-797-4270
| |
Collapse
|
6
|
Turna O, Baykal A, Sozen Kucukkara E, Ozten O, Deveci Ozkan A, Guney Eskiler G, Kamanli AF, Bilir C, Yildiz SZ, Kaleli S, Ucmak M, Kasikci G, Lim HS. Efficacy of 5-aminolevulinic acid-based photodynamic therapy in different subtypes of canine mammary gland cancer cells. Lasers Med Sci 2021; 37:867-876. [PMID: 33937952 DOI: 10.1007/s10103-021-03324-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Canine mammary gland tumors (CMGTs) are heterogeneous disease and subclassified [sarcomas (S), carcinomas (C), and carcinosarcomas (CS)] according to histopathological differentiation. Photodynamic therapy (PDT) is a promising treatment strategy based on the use of a photosensitizer (PS) activated by light. However, the therapeutic potential of PDT in the treatment of CMGTs has not been investigated, yet. Therefore, the aim of this study was to determine the in vitro protocol of 5-ALA-based-PDT for the treatment of three subtypes of CMGTs, for the first time. The intracellular PpIX florescence intensity was measured for 5-ALA (0.5 and 1 mM). After irradiation with different light doses (6, 9, 12, 18, and 24 J/cm2) for two different modes [continuous wave (CW) and pulse radiation (PR)], the cytotoxic effects of 5-ALA (0.5 and 1 mM) on the subtypes (C, S, and CS) of CMGTs were analyzed by WST-1. Finally, the optimal PDT treatment protocol was validated through Annexin V and AO/EtBr staining. Our results showed that 1 mM 5-ALA for 4-h incubation was the best treatment condition in all subtypes of CMGTs due to higher intracellular PpIX level. After irradiation with different light doses, PR mode was more effective in S primary cells at 9 J/cm2. However, a significant decrease in the viability of C and CS cells was detected at 12 /cm2 in CW mode (p < 0.05). Additionally, 1 mM 5-ALA induced apoptotic cell death in each subtype of CMGTs. Our preliminary findings suggest that (i) each subtype of CMGTs differentially responds to PDT and (ii) the light dose and mode could play an important role in the effective PDT treatment. However, further studies are needed to investigate the role of the different light sources and PDT-based apoptotic cell death in CMGTs cells.
Collapse
Affiliation(s)
- Ozge Turna
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul-Cerrahpasa University, Istanbul, Turkey
| | - Aslihan Baykal
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul-Cerrahpasa University, Istanbul, Turkey
| | - Elif Sozen Kucukkara
- Department of Medical Biochemistry, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Ozge Ozten
- Department of Biomedical Engineering, Institute of Graduate Education, Sakarya University of Applied Science, Sakarya, Turkey
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Korucuk Campus, 54290, Sakarya, Turkey
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Korucuk Campus, 54290, Sakarya, Turkey.
| | - Ali Furkan Kamanli
- Department of Electric and Electronics Engineering, Technology Faculty, Sakarya University of Applied Sciences, Sakarya, Turkey
| | - Cemil Bilir
- Department of Medical Oncology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Salih Zeki Yildiz
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Sakarya, Turkey
| | - Suleyman Kaleli
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Korucuk Campus, 54290, Sakarya, Turkey
| | - Melih Ucmak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul-Cerrahpasa University, Istanbul, Turkey
| | - Guven Kasikci
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Istanbul-Cerrahpasa University, Istanbul, Turkey
| | - Hyun Soo Lim
- Department of Electric and Electronics Engineering, Technology Faculty, Sakarya University of Applied Sciences, Sakarya, Turkey
| |
Collapse
|
7
|
Tricholoma matsutake Aqueous Extract Induces Hepatocellular Carcinoma Cell Apoptosis via Caspase-Dependent Mitochondrial Pathway. BIOMED RESEARCH INTERNATIONAL 2016. [PMID: 28018916 DOI: 10.1155/2016/9014364.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tricholoma matsutake, one of widely accepted functional mushrooms, possesses various pharmacological activities, and its antitumor effect has become an important research point. Our study aims to evaluate the cytotoxicity activities of T. matsutake aqueous extract (TM) in HepG2 and SMMC-7721 cells. In in vitro experiments, TM strikingly reduced cell viability, promoted cell apoptosis, inhibited cell migration ability, induced excessive generation of ROS, and caused caspases cascade and mitochondrial membrane potential dissipation in hepatocellular carcinoma cells. In in vivo experiments, 14-day TM treatment strongly suppressed tumor growth in HepG2 and SMMC-7721-xenografted nude mice without influence on their body weights and liver function. Furthermore, TM increased the levels of cleaved poly-ADP-ribose polymerase (PARP), Bad, and Bax and reduced the expressions of B-cell lymphoma 2 (Bcl-2) in treated cells and tumor tissues. All aforementioned results suggest that caspase-dependent mitochondrial apoptotic pathways are involved in TM-mediated antihepatocellular carcinoma.
Collapse
|
8
|
Tricholoma matsutake Aqueous Extract Induces Hepatocellular Carcinoma Cell Apoptosis via Caspase-Dependent Mitochondrial Pathway. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9014364. [PMID: 28018916 PMCID: PMC5149606 DOI: 10.1155/2016/9014364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/09/2016] [Indexed: 12/19/2022]
Abstract
Tricholoma matsutake, one of widely accepted functional mushrooms, possesses various pharmacological activities, and its antitumor effect has become an important research point. Our study aims to evaluate the cytotoxicity activities of T. matsutake aqueous extract (TM) in HepG2 and SMMC-7721 cells. In in vitro experiments, TM strikingly reduced cell viability, promoted cell apoptosis, inhibited cell migration ability, induced excessive generation of ROS, and caused caspases cascade and mitochondrial membrane potential dissipation in hepatocellular carcinoma cells. In in vivo experiments, 14-day TM treatment strongly suppressed tumor growth in HepG2 and SMMC-7721-xenografted nude mice without influence on their body weights and liver function. Furthermore, TM increased the levels of cleaved poly-ADP-ribose polymerase (PARP), Bad, and Bax and reduced the expressions of B-cell lymphoma 2 (Bcl-2) in treated cells and tumor tissues. All aforementioned results suggest that caspase-dependent mitochondrial apoptotic pathways are involved in TM-mediated antihepatocellular carcinoma.
Collapse
|