1
|
Kaczmarek-Szczepańska B, Wekwejt M, Pałubicka A, Michno A, Zasada L, Alsharabasy AM. Cold plasma treatment of tannic acid as a green technology for the fabrication of advanced cross-linkers for bioactive collagen/gelatin hydrogels. Int J Biol Macromol 2024; 258:128870. [PMID: 38141705 DOI: 10.1016/j.ijbiomac.2023.128870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/25/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Tannic acid (TA) is a natural compound studied as the cross-linker for biopolymers due to its ability to form hydrogen bonds. There are different methods to improve its reactivity and effectiveness to be used as a modifier for biopolymeric materials. This work employed plasma to modify tannic acid TA, which was then used as a cross-linker for fabricating collagen/gelatin scaffolds. Plasma treatment did not cause any significant changes in the structure of TA, and the resulting oxidized TA showed a higher antioxidant activity than that without treatment. Adding TA to collagen/gelatin scaffolds improved their mechanical properties and stability. Moreover, the obtained plasma-treated TA-containing scaffolds showed antibacterial properties and were non-hemolytic, with improved cytocompatibility towards human dermal fibroblasts. These results suggest the suitability of plasma treatment as a green technology for the modification of TA towards the development of advanced TA-crosslinked hydrogels for various biomedical applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland.
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
2
|
Tong Y, Lin Y, Di B, Yang G, He J, Wang C, Guo P. Effect of Hydrolyzed Gallotannin on Growth Performance, Immune Function, and Antioxidant Capacity of Yellow-Feather Broilers. Animals (Basel) 2022; 12:2971. [PMID: 36359094 PMCID: PMC9656923 DOI: 10.3390/ani12212971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 08/16/2023] Open
Abstract
Tannins were traditionally considered as anti-nutritional factors in poultry production. Recent studies found that the addition of hydrolyzed gallotannin (HGT) could improve animal health; however, the proper dosage of HGT in chickens' diet is still unknown. Hence, our study aims to recommend its optimal dose by exploring the effects of HGT from Chinese gallnuts on the growth performance, immune function, and antioxidant capacity of yellow-feather broilers. A total of 288 male yellow-feather broilers (34.10 ± 0.08 g) were randomly allocated to four diet treatments, the basal diet with 0 (CON), 150, 300, and 450 mg/kg HGT for 63 days, respectively, with six replications per treatment and 12 birds per replication. The growth performance, slaughter performance, immune organ index, liver antioxidant-related indicators, and serum immune-related factors were evaluated. Results show that HGT supplementation did not influence the growth performance of broilers, but the diets supplemented with 300 and 450 mg/kg HGT increased the semi-eviscerated rate. Furthermore, HGT increased the content of liver T-AOC and the ratio of GSH/GSSG, which can protect against oxidative damage of birds. Additionally, supplementing HGT raised the contents of serum IL-10, IL-4, IL-6, IgA, and IgM. In conclusion, diet supplemented with 450 mg/kg HGT may be the optimal to the health of yellow-feather broilers on the whole.
Collapse
Affiliation(s)
| | | | | | | | | | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 250003, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 250003, China
| |
Collapse
|
3
|
Irais CM, María-de-la-Luz SG, Dealmy DG, Agustina RM, Nidia CH, Mario-Alberto RG, Luis-Benjamín SG, María-Del-Carmen VM, David PE. Plant Phenolics as Pathogen-Carrier Immunogenicity Modulator Haptens. Curr Pharm Biotechnol 2020; 21:897-905. [PMID: 31965941 PMCID: PMC7536807 DOI: 10.2174/1389201021666200121130313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022]
Abstract
Background Pathogens use multiple mechanisms to disrupt cell functioning in their host and allow pathogenesis. These mechanisms involve communication between the pathogen and the host cell through protein-protein interactions. Methods Protein-protein interactions chains referred to as signal transduction pathways are the processes by which a chemical or physical signal transmits through a cell as series of molecular events so the pathogen needs to intercept these molecular pathways at few positions to induce pathogenesis such as pathogen viability, infection or hypersensitivity. Results The pathogen nodes of interception are not necessarily the most immunogenic; so that novel immunogenicity-improvement strategies need to be developed thought a chemical conjugation of the pathogen-carrier nodes to develop an efficient immune response in order to block pathogenesis. On the other hand, if pathogen-carriers are immunogens; toleration ought to be induced by this conjugation avoiding hypersensitivity. Thus, this paper addresses the biological plausibility of plant-phenolics as pathogen-carrier immunogenicity modulator haptens. Conclusion The plant-phenolic compounds have in their structure functional groups such as hydroxyl, carbonyl, carboxyl, ester, or ether, capable of reacting with the amino or carbonyl groups of the amino acids of a pathogen-carrier to form conjugates. Besides, the varied carbon structures these phenolic compounds have; it is possible to alter the pathogen-carrier related factors that determine the immunogenicity: 1) Structural complexity, 2) Molecular size, 3) Structural heterogeneity, 4) Accessibility to antigenic determinants or epitopes, 5) Optical configuration, 6) Physical state, or 7) Molecular rigidity.
Collapse
Affiliation(s)
- Castillo-Maldonado Irais
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | | | - Delgadillo-Guzmán Dealmy
- Department of Pharmacology, Faculty of Torreon Unit Medicine, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Ramírez-Moreno Agustina
- School of Sciences Biological Unit Torreon, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Cabral-Hipólito Nidia
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Rivera-Guillén Mario-Alberto
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | - Serrano-Gallardo Luis-Benjamín
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| | | | - Pedroza-Escobar David
- Department of Biochemistry, Center for Biomedical Research of the Faculty of Medicine, Torreon Unit, Autonomous University of Coahuila (UA de C), Torreon, Mexico
| |
Collapse
|
4
|
Reyna-Margarita HR, Irais CM, Mario-Alberto RG, Agustina RM, Luis-Benjamín SG, David PE. Plant Phenolics and Lectins as Vaccine Adjuvants. Curr Pharm Biotechnol 2019; 20:1236-1243. [DOI: 10.2174/1389201020666190716110705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 11/22/2022]
Abstract
Background:
The immune system is responsible for providing protection to the body
against foreign substances. The immune system divides into two types of immune responses to study
its mechanisms of protection: 1) Innate and 2) Adaptive. The innate immune response represents the
first protective barrier of the organism that also works as a regulator of the adaptive immune response,
if evaded the mechanisms of the innate immune response by the foreign substance the adaptive immune
response takes action with the consequent antigen neutralization or elimination. The adaptive
immune response objective is developing a specific humoral response that consists in the production of
soluble proteins known as antibodies capable of specifically recognizing the foreign agent; such protective
mechanism is induced artificially through an immunization or vaccination. Unfortunately, the
immunogenicity of the antigens is an intrinsic characteristic of the same antigen dependent on several
factors.
Conclusion:
Vaccine adjuvants are chemical substances of very varied structure that seek to improve
the immunogenicity of antigens. The main four types of adjuvants under investigation are the following:
1) Oil emulsions with an antigen in solution, 2) Pattern recognition receptors activating molecules,
3) Inflammatory stimulatory molecules or activators of the inflammasome complex, and 4) Cytokines.
However, this paper addresses the biological plausibility of two phytochemical compounds as vaccine
adjuvants: 5) Lectins, and 6) Plant phenolics whose characteristics, mechanisms of action and disadvantages
are addressed. Finally, the immunological usefulness of these molecules is discussed through
immunological data to estimate effects of plant phenolics and lectins as vaccine adjuvants, and current
studies that have implanted these molecules as vaccine adjuvants, demonstrating the results of this
immunization.
Collapse
Affiliation(s)
- Hernández-Ramos Reyna-Margarita
- Departamento de Bioquimica, Centro de Investigacion Biomedica de la Facultad de Medicina Unidad Torreon. Universidad Autonoma de Coahuila (UA de C), Torreon, Mexico
| | - Castillo-Maldonado Irais
- Departamento de Bioquimica, Centro de Investigacion Biomedica de la Facultad de Medicina Unidad Torreon. Universidad Autonoma de Coahuila (UA de C), Torreon, Mexico
| | - Rivera-Guillén Mario-Alberto
- Departamento de Bioquimica, Centro de Investigacion Biomedica de la Facultad de Medicina Unidad Torreon. Universidad Autonoma de Coahuila (UA de C), Torreon, Mexico
| | - Ramírez-Moreno Agustina
- Facultad de Ciencias Biologicas Unidad Torreon, Universidad Autonoma de Coahuila (UA de C), Torreon, Mexico
| | - Serrano-Gallardo Luis-Benjamín
- Departamento de Bioquimica, Centro de Investigacion Biomedica de la Facultad de Medicina Unidad Torreon. Universidad Autonoma de Coahuila (UA de C), Torreon, Mexico
| | - Pedroza-Escobar David
- Departamento de Bioquimica, Centro de Investigacion Biomedica de la Facultad de Medicina Unidad Torreon. Universidad Autonoma de Coahuila (UA de C), Torreon, Mexico
| |
Collapse
|
5
|
Wang J, Xiao H, Zhu Y, Liu S, Yuan Z, Wu J, Wen L. Tannic Acid Induces the Mitochondrial Pathway of Apoptosis and S Phase Arrest in Porcine Intestinal IPEC-J2 Cells. Toxins (Basel) 2019; 11:397. [PMID: 31323908 PMCID: PMC6669611 DOI: 10.3390/toxins11070397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 12/03/2022] Open
Abstract
The presence of tannic acid (TA), which is widely distributed in plants, limits the utilization of non-grain feed. Illustrating the toxicity mechanism of TA in animals is important for preventing poisoning and for clinical development of TA. The aim of the present study was to evaluate the toxic effects and possible action mechanism of TA in porcine intestinal IPEC-J2 cells, as well as cell proliferation, apoptosis, and cell cycle. We investigated the toxic effects of TA in IPEC-J2 cells combining the analysis of TA-induced apoptotic responses and effect on the cell cycle. The results revealed that TA is highly toxic to IPEC-J2 cells. The stress-inducible factors reactive oxygen species, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine were increased in response to TA. Furthermore, TA suppressed mitochondrial membrane potential, reduced adenosine triphosphate production, and adversely affected B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein, caspase-9, caspase-3, cytochrome c, cyclin A, cyclin-dependent kinases, ataxia-telangiectasia mutated, and P53 expression in a dose-dependent manner. We suggest that TA induces the mitochondrial pathway of apoptosis and S phase arrest in IPEC-J2 cells.
Collapse
Affiliation(s)
- Ji Wang
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Haisi Xiao
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuanyuan Zhu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Shuiping Liu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhihang Yuan
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wu
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Lixin Wen
- Laboratory of Animal Clinical Toxicology, Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- Hunan Collaborative Innovation Center of Animal Production Safety, Changsha 410128, China.
| |
Collapse
|