1
|
Wang MY, Zhao SB, Wang SY, Du MH, Ming SL, Zeng L. Feline Panleukopenia Virus ZZ202303 Strain: Molecular Characterization and Structural Implications of the VP2 Gene Phylogenetic Divergence. Int J Mol Sci 2025; 26:4573. [PMID: 40429717 PMCID: PMC12110955 DOI: 10.3390/ijms26104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Feline panleukopenia virus (FPV), the etiological agent of a highly contagious multispecies disease, demonstrates concerning phylogenetic divergence that compromises vaccine cross-protection. This study aimed to characterize a novel FPV strain through integrated virological and molecular analyses to assess epidemiological implications. From seven clinical specimens obtained from feline hosts with panleukopenia in Henan Province, China, we isolated FPV ZZ202303 using an F81 cell culture coupled with PCR verification, demonstrating potent cytopathic effects (TCID50: 10-5.72/0.1 mL) and rapid replication kinetics (viral peak at 12-24 h post-infection). Comparative virulence assessments revealed a 1.8- to 2.3-fold greater pathogenicity versus contemporary field strains (2021-2023). Phylogenetic reconstruction based on complete VP2 gene sequences positioned FPV ZZ202303 within an emerging clade sharing 97.5-98.2% identity with canine parvovirus strains versus 98.8-99.7% with FPV references, forming a distinct cluster (bootstrap = 94%) diverging from vaccine lineages. Critical structural analysis identified a prevalent I101T mutation (89.13% prevalence) in the VP2 capsid protein's antigenic determinant region, with molecular modeling predicting altered surface charge distribution potentially affecting host receptor binding. Our findings substantiate FPV ZZ202303 as an evolutionarily divergent strain exhibiting enhanced virulence and unique genetic signatures that may underlie vaccine evasion mechanisms, providing critical data for updating prophylactic strategies against this economically impactful pathogen.
Collapse
Affiliation(s)
- Ming-Yang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (M.-Y.W.); (S.-B.Z.); (S.-Y.W.); (M.-H.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Shi-Bo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (M.-Y.W.); (S.-B.Z.); (S.-Y.W.); (M.-H.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Shu-Yi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (M.-Y.W.); (S.-B.Z.); (S.-Y.W.); (M.-H.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng-Hua Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (M.-Y.W.); (S.-B.Z.); (S.-Y.W.); (M.-H.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (M.-Y.W.); (S.-B.Z.); (S.-Y.W.); (M.-H.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (M.-Y.W.); (S.-B.Z.); (S.-Y.W.); (M.-H.D.)
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Campoy A, Gomez-Lucia E, Garcia T, Crespo E, Olmeda S, Valcarcel F, Fandiño S, Domenech A. First Description of a Carnivore Protoparvovirus Associated with a Clinical Case in the Iberian Lynx ( Lynx pardinus). Animals (Basel) 2025; 15:1026. [PMID: 40218419 PMCID: PMC11988045 DOI: 10.3390/ani15071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/22/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
One of the main threats for the survival of the Iberian lynx is infectious disease. Feline parvoviruses cause often fatal diseases in cats and have been isolated from different species of Felidae and other carnivores. The present study is the first description of a parvoviral sequence isolated from the brain of an Iberian lynx which died four weeks after being transferred to a quarantine centre from a hunting estate in Castilla-La-Mancha (southern border of the Iberian plateau). Four days prior to death, it had developed anorexia and muscle weakness. The nucleotide sequence, at 4589 nt long (GenBank PP781551), was most proximal to that isolated from a Eurasian badger in Italy but also showed great homology with others from cats and other carnivores isolated in Spain and Italy, including that from a cat sequenced by us to elucidate the origin of the infection, which has not been clarified. The phylogenetic analysis of the capsid protein, VP2, which determines tropism and host range, confirmed that the lynx sequence was most proximal to feline than to canine parvoviruses, and was thus typed as Protoparvovirus carnivoran1. More studies, including serology, are needed to understand the pathogenesis of this infection.
Collapse
Affiliation(s)
- Almudena Campoy
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (A.C.); (E.G.-L.); (T.G.); (S.O.); (S.F.)
- Research Group of “Animal Viruses”, Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (A.C.); (E.G.-L.); (T.G.); (S.O.); (S.F.)
- Research Group of “Animal Viruses”, Complutense University of Madrid, 28040 Madrid, Spain
| | - Tania Garcia
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (A.C.); (E.G.-L.); (T.G.); (S.O.); (S.F.)
| | - Elena Crespo
- Wildlife Recovery Centre “El Chaparrillo”, 13071 Ciudad Real, Castilla-La-Mancha, Spain;
| | - Sonia Olmeda
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (A.C.); (E.G.-L.); (T.G.); (S.O.); (S.F.)
| | - Felix Valcarcel
- Group of Animal Parasitology, Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain;
| | - Sergio Fandiño
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (A.C.); (E.G.-L.); (T.G.); (S.O.); (S.F.)
- Research Group of “Animal Viruses”, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Domenech
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (A.C.); (E.G.-L.); (T.G.); (S.O.); (S.F.)
- Research Group of “Animal Viruses”, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Loor-Giler A, Santander-Parra S, Castillo-Reyes S, Campos M, Mena-Pérez R, Prado-Chiriboga S, Nuñez L. Characterization, Quantification, and Molecular Identification of Co-Infection of Canine Parvovirus (CPV-2) Variants in Dogs Affected by Gastroenteritis in Ecuador During 2022-2023. Vet Sci 2025; 12:46. [PMID: 39852921 PMCID: PMC11769545 DOI: 10.3390/vetsci12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Canine parvovirus (CPV-2) is a highly contagious virus in canines, and it is mostly spread by touching infected feces. Dogs of all ages can catch it, but puppies are more likely to suffer from it. Severe signs include vomiting, diarrhea with blood, feeling tired, and not drinking enough water. There are three different types of the original CPV-2 that have been found so far, which are CPV-2a, 2b, and 2c. The genome of CPV-2 is about 5.2 kb long and has two open reading frames (ORFs), namely the VP region and the NS region. Based on changes in amino acids at position 426, the VP2 protein distinguishes the gene apart in the VP region. Using a molecular method, this study contemplated the presence of CPV-2 and its variants in dogs that had gastroenteritis, as well as other infections. There were 511 samples tested, and 401 (78.47%) of them were positive for CPV-2. Of these, 144 (25.91%) were positive for the original genotype, 258 (64.34%) for genotype 2a, 343 (85.54%) for genotype 2b, and 167 (41.65%) for genotype 2c. Using the multiplex qPCR for genotyping, CPV-2a and CPV-2b were determined as the most frequent co-infections (16.45%). The three genotypes (2a, 2b, and 2c) were found in the samples examined based on the amino acids at position 426 of the VP2 protein, as demonstrated by the VP2 gene sequencing. Furthermore, it was discovered that in certain samples, a genetic modification at position 297 was connected to the virus's pathogenicity.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador;
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador
| | - Silvana Santander-Parra
- Facultad de Ciencias de La Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.S.-P.); (S.C.-R.); (R.M.-P.); (S.P.-C.)
| | - Sara Castillo-Reyes
- Facultad de Ciencias de La Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.S.-P.); (S.C.-R.); (R.M.-P.); (S.P.-C.)
| | - Martin Campos
- Facultad de Industrias Agropecuarias y Ciencias Ambientales, Carrera de Medicina Veterinaria, Universidad Politécnica Estatal del Carchi (UPEC), Antisana S/N y Av. Universitaria, Tulcán EC 040102, Ecuador;
- Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario (UNR), Boulevard Ovidio Lagos y Ruta 33 Casilda, Santa Fe S2000, Argentina
| | - Renán Mena-Pérez
- Facultad de Ciencias de La Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.S.-P.); (S.C.-R.); (R.M.-P.); (S.P.-C.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Gatto Sobral y Jerónimo Leiton, Quito EC 170521, Ecuador
| | - Santiago Prado-Chiriboga
- Facultad de Ciencias de La Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.S.-P.); (S.C.-R.); (R.M.-P.); (S.P.-C.)
- Clínica Veterinaria Docente, Universidad de Las Américas (UDLA), Calle Shuara N40-55y Av. De Los Granados, Quito EC 170503, Ecuador
| | - Luis Nuñez
- Facultad de Ciencias de La Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador; (S.S.-P.); (S.C.-R.); (R.M.-P.); (S.P.-C.)
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador
| |
Collapse
|
4
|
Jayappa K, Rajkhowa TK, Gaikwad SS. Canine parvovirus in North-East India: a phylogenetic and evolutionary analysis. Vet Q 2024; 44:1-13. [PMID: 39350725 PMCID: PMC11445921 DOI: 10.1080/01652176.2024.2408742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Canine parvovirus type 2 (CPV-2) infection in dogs is considered as one of the most common cause of morbidity and mortality in young dogs and continues to occur with high incidence worldwide. Despite a single-stranded DNA virus, CPV-2 possesses a high mutation rate which has led to the development of new variants from time to time. These variants are classically classified based on the amino acid markers present in the VP2 gene. In this study, we examined 20 different cases of CPV-2 infection from seven different states of the North East region (NER) of India. The near-complete genome sequences of all these isolates were subjected to phylodynamic and phylogeographic analysis to evaluate the genetic diversity and geographical spread of CPV-2 variants. Analysis of the deduced amino acid sequences revealed residues characteristic of the 'Asian CPV-2c lineage' in all the 20 sequences confirming it as the dominant strain circulating in NER, India. The phylogenetic analysis based on the whole genome showed that all 20 sequences formed a monophyletic clade together with other Asian CPV-2c sequences. Furthermore, phylogeographic analysis based on the VP2 gene showed the likely introduction of Asian CPV-2c strain to India from China. This study marks the first comprehensive report elucidating the molecular epidemiology of CPV-2 in India.
Collapse
Affiliation(s)
- Kiran Jayappa
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| | - Tridib Kumar Rajkhowa
- Department of Veterinary Pathology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, Mizoram, India
| | | |
Collapse
|
5
|
Grecco S, Condon E, Bucafusco D, Bratanich AC, Panzera Y, Pérez R. Comparative genomics of canine parvovirus in South America: Diversification patterns in local populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105633. [PMID: 38969193 DOI: 10.1016/j.meegid.2024.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Canine parvovirus (CPV) is a significant pathogen in domestic dogs worldwide, causing a severe and often fatal disease. CPV comprises three antigenic variants (2a, 2b, and 2c) distributed unevenly among several phylogenetic groups. The present study compared genetic variability and evolutionary patterns in South American CPV populations. We collected samples from puppies suspected of CPV infection in the neighboring Argentina and Uruguay. Antigenic variants were preliminarily characterized using PCR-RFLP and partial vp2 sequencing. Samples collected in Argentina during 2008-2018 were mainly of the 2c variant. In the Uruguayan strains (2012-2019), the 2a variant wholly replaced the 2c from 2014. Full-length coding genome and vp2 sequences were compared with global strains. The 2c and 2a strains fell by phylogenetic analysis into two phylogroups (Europe I and Asia I). The 2c strains from Argentina and Uruguay clustered in the Europe I group, with strains from America, Europe, Asia, and Oceania. Europe I is widely distributed in South America in the dog population and is also being detected in the wildlife population. The 2a strains from Uruguay formed the distinct Asia I group with strains from Asia, Africa, America, and Oceania. This Asia I group is increasing its distribution in South America and worldwide. Our research reveals high genetic variability in adjacent synchronic samples and different evolutionary patterns in South American CPV. We also highlight the importance of ancestral migrations and local diversification in the evolution of global CPV strains.
Collapse
Affiliation(s)
- Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Emma Condon
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Danilo Bucafusco
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Virología. Av. Chorroarín 280, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - Ana Cristina Bratanich
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Virología. Av. Chorroarín 280, C1427CWO, Ciudad Autónoma de Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
6
|
Yu Z, Wang W, Yu C, He L, Ding K, Shang K, Chen S. Molecular Characterization of Feline Parvovirus from Domestic Cats in Henan Province, China from 2020 to 2022. Vet Sci 2024; 11:292. [PMID: 39057976 PMCID: PMC11281718 DOI: 10.3390/vetsci11070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Carnivore protoparvovirus-1, feline parvovirus (FPV), and canine parvovirus (CPV) continue to spread in companion animals all over the world. As a result, FPV and CPV underwent host-to-host transfer in carnivorous wild-animal hosts. Here, a total of 82 fecal samples of suspected cat FPV infections were collected from Henan Province from 2020 to 2022. The previously published full-length sequence primers of VP2 and NS1 genes were used to amplify the targeted genes of these samples, and the complete gene sequences of 11 VP2 and 21 NS1 samples were obtained and analyzed. Analysis showed that the amino acid homology of the VP2 and NS1 genes of these isolates was 96.1-100% and 97.6-100%, respectively. The phylogenetic results showed that the VP2 and NS1 genes of the local isolates were mainly concentrated in the G1 subgroup, while the vaccine strains were distributed in the G3 subgroup. Finally, F81 cells were inoculated with the local endemic isolate Luoyang-01 (FPV-LY strain for short) for virus amplification, purification, and titer determination, and the pathogenesis of FPV-LY was detected. After five generations of blind transmission in F81 cells, cells infected with FPV-LY displayed characteristic morphological changes, including a round, threadlike, and wrinkled appearance, indicative of viral infection. The virus titer associated with this cytopathic effect (CPE) was measured at 1.5 × 106 TCID50/mL. Subsequent animal regression tests confirmed that the virus titer of the PFV-LY isolate remained at 1.5 × 106 TCID50/mL, indicating its highly pathogenic nature. Cats exposed to the virus exhibited typical clinical symptoms and pathological changes, ultimately succumbing to the infection. These results suggest that the gene mutation rate of FPV is increasing, resulting in a complex pattern of gene evolution in terms of host preference, geographical selection, and novel genetic variants. The data also indicate that continuous molecular epidemiological surveillance is required to understand the genetic diversity of FPV isolates.
Collapse
Affiliation(s)
- Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenjie Wang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chuan Yu
- Pet & Human Health Engineering Technology Center, Luoyang Polytechnic, Luoyang 471900, China
| | - Lei He
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
7
|
Leng C, Tian X, Zhai H, Ji J, Yao L. Molecular epidemiological investigation and recombination analysis of Cachavirus prevalent in China. Front Vet Sci 2024; 11:1375948. [PMID: 38751804 PMCID: PMC11094709 DOI: 10.3389/fvets.2024.1375948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Chaphamaparvovirus carnivoran1 (canine Chaphamaparvovirus, also known as Cachavirus [CachaV]) is a novel parvovirus first reported in dog feces collected from the United States in 2017 and China in 2019. To continuously track its infection and evolution status, 276 canine anal swabs were obtained from pet hospitals in central, northern, and eastern China between 2021 and 2023 and screened via polymerase chain reaction; subsequently, a systematic study was conducted. Of these samples, nine (3.3%) were positive for CachaV. Using polymerase chain reaction, whole genome sequences of the nine CachaV-positive strains were amplified. The NS1 amino acid sequence identity between CachaV strains from China and other countries was 96.23-99.85%, whereas the VP1 protein sequence identity was 95.83-100%. CHN230521 demonstrated the highest identity for NS1 amino acids (99.85%) and VP1 amino acids (100%) with NWT-W88 and CP-T015. According to the model prediction of CHN220916-VP1 protein, Met64Thr, Thr107Ala, and Phe131Ser mutations may cause tertiary structural changes in VP1 protein. Interestingly, each of the nine CachaV strains harbored the same site mutations in NS1 (Ser252Cys, Gly253Leu, and Gly254Thr). Although no explicit recombination events were predicted, the clustering and branching of the phylogenetic tree were complicated. Based on the evolution trees for VP1 and NS1, the nine CachaV strains identified from 2021 to 2023 were closely related to those identified in gray wolves and cats. This study may be beneficial for evaluating the prevalence of CachaVs in China, thereby understanding the evolution trend of CachaVs.
Collapse
Affiliation(s)
| | | | | | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | | |
Collapse
|
8
|
Condon E, Grecco S, Marandino A, Aldaz J, Enciso J, Alfaro L, Bucafusco D, Pérez R, Panzera Y. Development of an accurate and rapid method for whole genome characterization of canine parvovirus. J Virol Methods 2024; 325:114870. [PMID: 38086433 DOI: 10.1016/j.jviromet.2023.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
Canine parvovirus is a highly contagious pathogen affecting domestic dogs and other carnivores globally. Monitoring CPV through continuous genomic surveillance is crucial for mapping variability and developing effective control measures. Here, we developed a method using multiplex-PCR-next-generation sequencing to obtain full-length CPV genomes directly from clinical samples. This approach utilizes tiling and tailed amplicons to amplify overlapping fragments of roughly 250 base pairs. This enables the creation of Illumina libraries by conducting two PCR reaction runs. We tested the assay in 10 fecal samples from dogs diagnosed with CPV and one CPV-2 vaccine strain. Furthermore, we applied it to a feline sample previously diagnosed with the feline panleukopenia virus. The assay provided 100 % genome coverage and high sequencing depth across all 12 samples. It successfully provided the sequence of the coding regions and the left and right non-translated regions, including tandem and terminal repeats. The assay effectively amplified viral variants from divergent evolutionary groups, including the antigenic variants (2a, 2b, and 2c) and the ancestral CPV-2 strain included in vaccine formulations. Moreover, it successfully amplified the entire genome of the feline panleukopenia virus found in cat feces. This method is cost-effective, time-efficient, and does not require lab expertise in Illumina library preparation. The multiplex-PCR-next-generation methodology facilitates large-scale genomic sequencing, expanding the limited number of complete genomes currently available in databases and enabling real-time genomic surveillance. Furthermore, the method helps identify and track emerging CPV viral variants, facilitating molecular epidemiology and control. Adopting this approach can enhance our understanding of the evolution and genetic diversity of Protoparvovirus carnivoran1.
Collapse
Affiliation(s)
- Emma Condon
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Jaime Aldaz
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Estatal de Bolívar, Av. Ernesto Che Guevara s/n, Guaranda, Ecuador
| | - Javier Enciso
- Universidad Científica del Sur, Lima, Perú and Clínica Veterinaria Enciso, Peru
| | - Luis Alfaro
- Universidad Científica del Sur, Lima, Perú and Clínica Veterinaria Enciso, Peru
| | - Danilo Bucafusco
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Argentina
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
9
|
Xie Q, Sun Z, Xue X, Pan Y, Zhen S, Liu Y, Zhan J, Jiang L, Zhang J, Zhu H, Yu X, Zhang X. China-origin G1 group isolate FPV072 exhibits higher infectivity and pathogenicity than G2 group isolate FPV027. Front Vet Sci 2024; 11:1328244. [PMID: 38288138 PMCID: PMC10822907 DOI: 10.3389/fvets.2024.1328244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Introduction Feline parvovirus (FPV), a single-stranded DNA virus, is accountable for causing feline panleukopenia, a highly contagious and often lethal disease that primarily affects cats. The epidemiology prevalence and pathogenicity of FPV in certain regions of China, however, remains unclear. The aim of this research was to investigate the epidemiology of FPV in different regions of China in 2021 and compare its infectivity and pathogenicity. Methods In this research, a total of 36 FPV strains were obtained from diverse regions across China. Phylogenetic analysis was performed based on the VP2 and NS1 sequences, and two representative strains, FPV027 and FPV072, which belonged to different branches, were selected for comparative assessment of infectivity and pathogenicity. Results and discussion The results revealed that all strains were phylogenetically classified into two groups, G1 and G2, with a higher prevalence of G1 strains in China. Both in vitro and in vivo experiments demonstrated that FPV072 (G1 group) exhibited enhanced infectivity and pathogenicity compared to FPV027 (G2 Group). The structural alignment of the VP2 protein between the two viruses revealed mutations in residues 91, 232, and 300 that may contribute to differences in infectivity and pathogenicity. The findings from these observations will contribute significantly to the overall understanding of the molecular epidemiology of FPV in China and facilitate the development of an effective FPV vaccine.
Collapse
Affiliation(s)
- Qiaoqiao Xie
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Zhen Sun
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Xiu Xue
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Yajie Pan
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Shuye Zhen
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Yang Liu
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Jiuyu Zhan
- School of Life Sciences, Ludong University, Yantai, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Collaborative Innovation Center for the Pet Infectious Diseases and Public Health in the Middle and Lower Stream Regions of the Yellow River, Yantai, China
- Provincial Engineering Research Center for Pet Animal Vaccines, Yantai, China
| |
Collapse
|
10
|
Zhao S, Hu H, Lan J, Yang Z, Peng Q, Yan L, Luo L, Wu L, Lang Y, Yan Q. Characterization of a fatal feline panleukopenia virus derived from giant panda with broad cell tropism and zoonotic potential. Front Immunol 2023; 14:1237630. [PMID: 37662912 PMCID: PMC10469695 DOI: 10.3389/fimmu.2023.1237630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Represented by feline panleukopenia virus (FPV) and canine parvovirus (CPV), the species carnivore protoparvovirus 1 has a worldwide distribution through continuous ci13rculation in companion animals such as cats and dogs. Subsequently, both FPV and CPV had engaged in host-to-host transfer to other wild animal hosts of the order Carnivora. In the present study, we emphasized the significance of cross-species transmission of parvoviruses with the isolation and characterization of an FPV from giant panda displaying severe and fatal symptoms. The isolated virus, designated pFPV-sc, displayed similar morphology as FPV, while phylogenetic analysis indicated that the nucleotide sequence of pFPV-sc clades with Chinese FPV isolates. Despite pFPV-sc is seemingly an outcome of a spillover infection event from domestic cats to giant pandas, our study also provided serological evidence that FPV or other parvoviruses closely related to FPV could be already prevalent in giant pandas in 2011. Initiation of host transfer of pFPV-sc is likely with association to giant panda transferrin receptor (TfR), as TfR of giant panda shares high homology with feline TfR. Strikingly, our data also indicate that pFPV-sc can infect cell lines of other mammal species, including humans. To sum up, observations from this study shall promote future research of cross-host transmission and antiviral intervention of Carnivore protoparvovirus 1, and necessitate surveillance studies in thus far unacknowledged potential reservoirs.
Collapse
Affiliation(s)
- Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huanyuan Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | | | - Qianling Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liheng Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Luo
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Lin Wu
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Le SJ, Xin GY, Wu WC, Shi M. Genetic Diversity and Evolution of Viruses Infecting Felis catus: A Global Perspective. Viruses 2023; 15:1338. [PMID: 37376637 DOI: 10.3390/v15061338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cats harbor many important viral pathogens, and the knowledge of their diversity has been greatly expanded thanks to increasingly popular molecular sequencing techniques. While the diversity is mostly described in numerous regionally defined studies, there lacks a global overview of the diversity for the majority of cat viruses, and therefore our understanding of the evolution and epidemiology of these viruses was generally inadequate. In this study, we analyzed 12,377 genetic sequences from 25 cat virus species and conducted comprehensive phylodynamic analyses. It revealed, for the first time, the global diversity for all cat viruses known to date, taking into account highly virulent strains and vaccine strains. From there, we further characterized and compared the geographic expansion patterns, temporal dynamics and recombination frequencies of these viruses. While respiratory pathogens such as feline calicivirus showed some degree of geographical panmixes, the other viral species are more geographically defined. Furthermore, recombination rates were much higher in feline parvovirus, feline coronavirus, feline calicivirus and feline foamy virus than the other feline virus species. Collectively, our findings deepen the understanding of the evolutionary and epidemiological features of cat viruses, which in turn provide important insight into the prevention and control of cat pathogens.
Collapse
Affiliation(s)
- Shi-Jia Le
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Gen-Yang Xin
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Wei-Chen Wu
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mang Shi
- State Key Laboratory for Biocontrol, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
12
|
Capozza P, Buonavoglia A, Pratelli A, Martella V, Decaro N. Old and Novel Enteric Parvoviruses of Dogs. Pathogens 2023; 12:pathogens12050722. [PMID: 37242392 DOI: 10.3390/pathogens12050722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Parvovirus infections have been well known for around 100 years in domestic carnivores. However, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus species and/or variants in dogs. Although some evidence suggests that these emerging canine parvoviruses may act as primary causative agents or as synergistic pathogens in the diseases of domestic carnivores, several aspects regarding epidemiology and virus-host interaction remain to be elucidated.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| |
Collapse
|
13
|
Liu C, Si F, Li H, Gao J, Sun F, Liu H, Yi J. Identification and Genome Characterization of Novel Feline Parvovirus Strains Isolated in Shanghai, China. Curr Issues Mol Biol 2023; 45:3628-3639. [PMID: 37185760 PMCID: PMC10136790 DOI: 10.3390/cimb45040236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Feline panleukopenia virus (FPV) is the causative agent of hemorrhagic gastroenteritis in feline animals. FPV has been evolving over time, and there have been several different strains of the virus identified. Some of these strains may be more virulent or more resistant to current vaccines than others, which highlights the importance of ongoing research and monitoring of FPV evolution. For FPV genetic evolution analysis, many studies focus on the main capsid protein (VP2), but limited information is available on the nonstructural gene NS1 and structural gene VP1. In the present study, we firstly isolated two novel FPV strains circulating in Shanghai, China, and performed full-length genome sequencing for the desired strains. Subsequently, we focused on analyzing the NS1, VP1 gene, and the encoding protein, and conducted a comparative analysis among the worldwide circulating FPV and Canine parvovirus Type 2 (CPV-2) strains, which included the strains isolated in this study. We found that the 2 structural viral proteins, VP1 and VP2, are splice variants, and VP1 has a 143 amino-acid-long N-terminal compared to VP2. Furthermore, phylogenetic analysis showed that divergent evolution between FPV and CPV-2 virus strains were clustered mostly by country and year of detection. In addition, much more continuous antigenic type changes happened in the process of CPV-2 circulating and evolution compared to FPV. These results stress the importance of the continuous study of viral evolution and provide a comprehensive perspective of the association between viral epidemiology and genetic evolution.
Collapse
Affiliation(s)
- Chengqian Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hong Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jun Gao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fengping Sun
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jianzhong Yi
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
14
|
Leopardi S, Milani A, Cocchi M, Bregoli M, Schivo A, Leardini S, Festa F, Pastori A, de Zan G, Gobbo F, Beato MS, Palei M, Bremini A, Rossmann MC, Zucca P, Monne I, De Benedictis P. Carnivore protoparvovirus 1 (CPV-2 and FPV) Circulating in Wild Carnivores and in Puppies Illegally Imported into North-Eastern Italy. Viruses 2022; 14:v14122612. [PMID: 36560617 PMCID: PMC9788561 DOI: 10.3390/v14122612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The illegal trade of animals poses several health issues to the global community, among which are the underestimated risk for spillover infection and the potential for an epizootic in both wildlife and domestic naïve populations. We herein describe the genetic and antigenic characterization of viruses of the specie Carnivore protoparvovirus 1 detected at high prevalence in puppies illegally introduced in North Eastern Italy and compared them with those circulating in wild carnivores from the same area. We found evidence of a wide diversity of canine parvoviruses (CPV-2) belonging to different antigenic types in illegally imported pups. In wildlife, we found a high circulation of feline parvovirus (FPV) in golden jackals and badgers, whereas CPV-2 was observed in one wolf only. Although supporting a possible spillover event, the low representation of wolf samples in the present study prevented us from inferring the origin, prevalence and viral diversity of the viruses circulating in this species. Therefore, we suggest performing more thorough investigations before excluding endemic CPV-2 circulation in this species.
Collapse
Affiliation(s)
- Stefania Leopardi
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Adelaide Milani
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Monia Cocchi
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione Territoriale di Udine, 33030 Basaldella di Campoformido, Italy
| | - Marco Bregoli
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione Territoriale di Udine, 33030 Basaldella di Campoformido, Italy
| | - Alessia Schivo
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Sofia Leardini
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Francesca Festa
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Ambra Pastori
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Gabrita de Zan
- Istituto Zooprofilattico Sperimentale Delle Venezie, Sezione Territoriale di Udine, 33030 Basaldella di Campoformido, Italy
| | - Federica Gobbo
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Maria Serena Beato
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Manlio Palei
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy
| | - Alessandro Bremini
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria
| | - Marie-Christin Rossmann
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria
- Agiculture, Forestry, Rural Areas Veterinary Department, Land Carinthia, 9020 Klagenfurt, Austria
| | - Paolo Zucca
- Central Directorate for Health, Social Policies and Disabilities, Friuli Venezia Giulia Region, 34123 Trieste, Italy
- Biocrime Veterinary Medical Intelligence Centre, c/o International Police and Custom Cooperation Centre, Thörl-Maglern, 9602 Arnoldstein, Austria
| | - Isabella Monne
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
| | - Paola De Benedictis
- National Reference Centre/WOAH Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy
- Correspondence:
| |
Collapse
|
15
|
Bahoussi AN, Wang PH, Ma ZH, Rani N, Wu C, Xing L. Identification of novel recombinants and proposed standard reference genomes for phylogenetic classification of canine parvovirus-2 (CPV-2): Comprehensive analysis revealing global evolutionary trait. Front Vet Sci 2022; 9:1030522. [DOI: 10.3389/fvets.2022.1030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Sustained spread and continuous evolution of CPV-2 generate new genetic information; nevertheless, there is no adopted phylogenetic tool, and parvo virologists still refer to the three antigenic variants. Herein, this report attempted to review the evolutionary trait of CPV-2 and proposed standard reference genomes using the Maximum Likelihood-based phylogenetic analysis and Parsimony-Informative Sites. The analysis revealed three main evolutionary pathways where CPV-2 strains cluster into distinct clades depicted as GI, GII, or GIII, respectively. Furthermore, novel CPV-2 natural recombinants were detected, occurring only between the newly identified strains (2017–2020). Those findings provide unique insights into the evolutionary relatedness of CPV-2, clarify discrepancies between different geographic areas and will contribute to achieving a more reliable CPV-2 genetic and evolutionary genotyping classification.
Collapse
|
16
|
Jing Z, Ji P, Wei Y, Hao F, Wei Y. Isolation and identification of a novel canine parvovirus type 2c strain in domestic cats in Dalian, China. Front Vet Sci 2022; 9:1001604. [PMID: 36311677 PMCID: PMC9611770 DOI: 10.3389/fvets.2022.1001604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022] Open
Abstract
Canine parvovirus (CPV) and feline panleukopenia virus (FPV) are highly contagious and cause severe enteric diseases, with high mortality rates in dogs and cats. In the present study, we isolated and identified a novel CPV-2c strain (FPV-DL04 strain) from 18 cats with gastroenteritis symptoms and a positive parvovirus PCR test result in Dalian, China. Molecular characterization, sequence analysis, and phylogeny determination were performed on the VP2 gene of this strain. The results showed that the FPV-DL04 strain had 99.4% homology with the CPV-2c CN/HN1708 strain, and both strains had S297A and A300G key mutation sites. Interestingly, we also found that the DL04 strain has a A5G mutation site, but no F267Y and Y324I mutation sites. This study provided new important findings regarding the evolution of parvovirus infection in domestic cats in China.
Collapse
Affiliation(s)
- Zheng Jing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanquan Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,*Correspondence: Yanquan Wei
| | - Fuxing Hao
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China,Yanming Wei
| |
Collapse
|
17
|
Ndiana LA, Lanave G, Zarea AAK, Desario C, Odigie EA, Ehab FA, Capozza P, Greco G, Buonavoglia C, Decaro N. Molecular characterization of carnivore protoparvovirus 1 circulating in domestic carnivores in Egypt. Front Vet Sci 2022; 9:932247. [PMID: 35937285 PMCID: PMC9354892 DOI: 10.3389/fvets.2022.932247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Canine parvovirus (CPV) and feline panleukopenia virus (FPV), now included in the unique species Carnivore protoparvovirus 1 (CPPV1), have been circulating in dogs and cats for several decades and are considered the causes of clinically important diseases, especially in young animals. While genetic evidence of the circulation of parvoviruses in Egyptian domestic carnivores has been provided since 2016, to date, all available data are based on partial fragments of the VP2 gene. This study reports the molecular characterization of CPPV strains from Egypt based on the full VP2 gene. Overall, 196 blood samples were collected from dogs and cats presented at veterinary clinics for routine medical assessment in 2019 in Egypt. DNA extracts were screened and characterized by real-time PCR. Positive samples were amplified by conventional PCR and then were sequenced. Nucleotide and amino acid changes in the sequences were investigated and phylogeny was inferred. Carnivore protoparvovirus DNA was detected in 18 out of 96 dogs (18.8%) and 7 of 100 cats (7%). Phylogenetic analyses based on the full VP2 gene revealed that 9 sequenced strains clustered with different CPV clades (5 with 2c, 2 with 2a, 1 with 2b, and 1 with 2) and 1 strain with the FPV clade. All three CPV variants were detected in dog and cat populations with a predominance of CPV-2c strains (7 of 18, 38.9%) in dog samples, thus mirroring the circulation of this variant in African, European, and Asian countries. Deduced amino acid sequence alignment revealed the presence of the previously unreported unique mutations S542L, H543Q, Q549H, and N557T in the Egyptian CPV-2c strains.
Collapse
Affiliation(s)
- Linda A. Ndiana
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- *Correspondence: Gianvito Lanave
| | - Aya A. K. Zarea
- Department of Veterinary Medicine, University of Bari, Bari, Italy
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | | | - Eugene A. Odigie
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Fouad A. Ehab
- Department of Microbiology and Immunology, National Research Centre, Veterinary Research Institute, Giza, Egypt
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| | | | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Bari, Italy
| |
Collapse
|
18
|
de Oliveira Santana W, Silveira VP, Wolf JM, Kipper D, Echeverrigaray S, Canal CW, Truyen U, Lunge VR, Streck AF. Molecular phylogenetic assessment of the canine parvovirus 2 worldwide and analysis of the genetic diversity and temporal spreading in Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105225. [PMID: 35101636 DOI: 10.1016/j.meegid.2022.105225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Canine parvovirus type 2 (CPV-2) is a relevant pathogen for dogs and causes a severe disease in carnivore species. CPV-2 reached pandemic proportions after the 1970s with the worldwide dissemination, generating antigenic and genetic variants (CPV-2a, CPV-2b, and CPV-2c) with different pathobiology in comparison with the original type CPV-2. The present study aimed to assess the current global CPV-2 molecular phylogeny and to analyze genetic diversity and temporal spreading of variants from Brazil. A total of 284 CPV-2 whole-genome sequences (WGS) and 684 VP2 complete genes (including 23 obtained in the present study) were compared to analyze phylogenetic relationships. Bayesian coalescent analysis estimated the time to the most recent common ancestor (tMRCA) and the population dynamics of the different CPV-2 lineages in the last decades. The WGS phylogenetic tree demonstrated two main clades disseminated worldwide today. The VP2 gene tree showed a total of four well-defined clades distributed in different geographic regions, including one with CPV-2 sequences exclusive from Brazil. These clades do not have a relationship with the previous classification into CPV-2a, CPV-2b, and CPV-2c, despite some having a predominance of one or more antigenic types. Temporal analysis demonstrated that the main CPV-2 clades evolved within a few years (from the 1980s to 1990s) in North America and they spread worldwide afterwards. Population dynamics analysis demonstrated that CPV-2 presented a major dissemination increase at the end of the 1980s / beginning of the 1990s followed by a period of stability and a second minor increase from 2000 to 2004.
Collapse
Affiliation(s)
- Weslei de Oliveira Santana
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Vinicius Proença Silveira
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Jonas Michel Wolf
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Diéssy Kipper
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Sergio Echeverrigaray
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Uwe Truyen
- Institut für Tierhygiene und Öffentliches Veterinärwesen, Leipzig, Germany
| | - Vagner Ricardo Lunge
- Laboratório de Diagnóstico Molecular, Programa de Pós-Graduação em Biologia Celular e Molecular aplicada à Saúde, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil; Simbios Biotecnologia, Cachoeirinha, Rio Grande do Sul, Brazil.
| | - André Felipe Streck
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Galvis CC, Jimenez-Villegas T, Reyes Romero DP, Velandia A, Taniwaki S, Oliveira de Souza Silva S, Brandão P, Santana-Clavijo NF. Molecular diversity of the VP2 of Carnivore protoparvovirus 1 (CPV-2) of fecal samples from Bogotá. J Vet Sci 2022; 23:e14. [PMID: 34931505 PMCID: PMC8799948 DOI: 10.4142/jvs.21181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Carnivore protoparvovirus 1, also known as canine parvovirus type 2 (CPV-2), is the main pathogen in hemorrhagic gastroenteritis in dogs, with a high mortality rate. Three subtypes (a, b, c) have been described based on VP2 residue 426, where 2a, 2b, and 2c have asparagine, aspartic acid, and glutamic acid, respectively. OBJECTIVES This study examined the presence of CPV-2 variants in the fecal samples of dogs diagnosed with canine parvovirus in Bogotá. METHODS Fecal samples were collected from 54 puppies and young dogs (< 1 year) that tested positive for the CPV through rapid antigen test detection between 2014-2018. Molecular screening was developed for VP1 because primers 555 for VP2 do not amplify, it was necessary to design a primer set for VP2 amplification of 982 nt. All samples that were amplified were sequenced by Sanger. Phylogenetics and structural analysis was carried out, focusing on residue 426. RESULTS As a result 47 out of 54 samples tested positive for VP1 screening, and 34/47 samples tested positive for VP2 980 primers as subtype 2a (n = 30) or 2b (n = 4); subtype 2c was not detected. All VP2 sequences had the amino acid, T, at 440, and most Colombian sequences showed an S514A substitution, which in the structural modeling is located in an antigenic region, together with the 426 residue. CONCLUSIONS The 2c variant was not detected, and these findings suggest that Colombian strains of CPV-2 might be under an antigenic drift.
Collapse
Affiliation(s)
- Cristian Camilo Galvis
- College of Veterinary Medicine, Antonio Nariño University, Bogotá 111511, Colombia
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Tatiana Jimenez-Villegas
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
- DIBYPA, Fauna Care Sub-Direction, Bogotá 111121, Colombia
| | | | | | - Sueli Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Sheila Oliveira de Souza Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Paulo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Nelson Fernando Santana-Clavijo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
- University of Applied and Environmental Sciences, Bogotá 111166, Colombia.
| |
Collapse
|
20
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
21
|
Emerging Parvoviruses in Domestic Cats. Viruses 2021; 13:v13061077. [PMID: 34200079 PMCID: PMC8229815 DOI: 10.3390/v13061077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus infections in cats have been well known for around 100 years. Recently, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus lineages and/or species infecting the feline host. However, the involvement of emerging parvoviruses in the onset of gastroenteritis or other feline diseases is still uncertain.
Collapse
|
22
|
Galvis CC, Jimenez-Villegas T, Reyes Romero DP, Velandia A, Taniwaki S, Oliveira de Souza Silva S, Brandão P, Santana-Clavijo NF. Molecular diversity of the VP2 of C arnivore protoparvovirus 1 (CPV-2) of fecal samples from Bogotá. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Cristian Camilo Galvis
- College of Veterinary Medicine, Antonio Nariño University, Bogotá 111511, Colombia
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Tatiana Jimenez-Villegas
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | | | | | - Sueli Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Sheila Oliveira de Souza Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Paulo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Nelson Fernando Santana-Clavijo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
- University of Applied and Environmental Sciences, Bogotá 111166, Colombia
| |
Collapse
|