1
|
Ploypetch S, Pornthummawat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Wardhani SW, Lacharoje S, Techangamsuwan S. Salivary peptidomic profiling of chronic gingivostomatitis in cats by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry and nanoscale liquid chromatography-tandem mass spectrometry. J Vet Intern Med 2025; 39:e17247. [PMID: 39576047 PMCID: PMC11627522 DOI: 10.1111/jvim.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Chronic gingivostomatitis in cats (FCGS) is a moderately to severely painful condition, potentially caused by inadequate immune response to oral antigenic stimulation. Salivary peptidome analysis can identify inflammatory protein mediators and pathways involved in oral mucosal immune activation and may indicate potential therapeutic options for FCGS. OBJECTIVE Evaluate the diversity and abundance of salivary peptides in cats with FCGS using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and nanoscale liquid chromatography-tandem mass spectrometry (nano LC-MS/MS). ANIMALS Thirty-two cats with FCGS and 18 healthy controls. METHODS Case-control cross-sectional study. We compared the salivary peptide profiles of diseased and healthy cats. The diagnosis of FCGS was confirmed by histopathology. Saliva samples were analyzed for viral infections using polymerase chain reaction (PCR), peptide mass fingerprint (PMF) using MALDI-TOF MS, and peptide identification using nano LC-MS/MS. RESULTS Distinct clusters of peptide profiles were observed between groups. In FCGS, 26 salivary peptides were altered, including apolipoprotein A1, nuclear receptor subfamily 1 group I member 3, fibrinogen alpha chain, interleukin 2 receptor gamma, interleukin 23 receptor, hemoglobin subunit alpha, and serpin peptidase inhibitor clade A (alpha-1 antiproteinase, antitrypsin) member 12, protein-tyrosine-phosphatase, and cholinergic receptor nicotinic alpha 10 subunit. Protein-anti-inflammatory drug interaction networks were observed. CONCLUSIONS AND CLINICAL IMPORTANCE Peptide mass fingerprint and peptide profiles identified distinct clusters between FCGS and healthy cats. The 9 novel salivary peptide markers were associated with the JAK/STAT and PI3K/Akt pathways and immune responses. These potentially noninvasive biomarkers may facilitate understanding of FCGS pathophysiology and guide future therapeutic research.
Collapse
Affiliation(s)
- Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
| | - Apisit Pornthummawat
- Department of Pre‐Clinic and Applied Animal Science, Faculty of Veterinary ScienceMahidol UniversityNakhon PathomThailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development AgencyPathum ThaniThailand
| | - Sabrina Wahyu Wardhani
- Department of Pathology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Sitthichok Lacharoje
- Department of Pathology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
| |
Collapse
|
2
|
Paphussaro W, Roytrakul S, Phaonakrop N, Buthasane W, Rungsipipat A, Tharasanit T, Suriyaphol G. Analysis of serum peptidome profiles of non-metastatic and metastatic feline mammary carcinoma using liquid chromatography-tandem mass spectrometry. BMC Vet Res 2024; 20:280. [PMID: 38951817 PMCID: PMC11218297 DOI: 10.1186/s12917-024-04148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/18/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Feline mammary carcinoma (FMC) is a common aggressive and highly metastatic cancer affecting female cats. Early detection is essential for preventing local and distant metastasis, thereby improving overall survival rates. While acquiring molecular data before surgery offers significant potential benefits, the current protein biomarkers for monitoring disease progression in non-metastatic FMC (NmFMC) and metastatic FMC (mFMC) are limited. The objective of this study was to investigate the serum peptidome profiles of NmFMC and mFMC using liquid chromatography-tandem mass spectrometry. A cross-sectional study was conducted to compare serum peptidome profiles in 13 NmFMC, 23 mFMC and 18 healthy cats. The liquid chromatography-tandem mass spectrometry analysis was performed on non-trypsinized samples. RESULTS Out of a total of 8284 expressed proteins observed, several proteins were found to be associated with human breast cancer. In NmFMC, distinctive protein expressions encompassed double-stranded RNA-binding protein Staufen homolog 2 (STAU2), associated with cell proliferation, along with bromodomain adjacent to zinc finger domain 2A (BAZ2A) and gamma-aminobutyric acid type A receptor subunit epsilon (GABRE), identified as potential treatment targets. Paradoxically, positive prognostic markers emerged, such as complement C1q like 3 (C1QL3) and erythrocyte membrane protein band 4.1 (EPB41 or 4.1R). Within the mFMC group, overexpressed proteins associated with poor prognosis were exhibited, including B-cell lymphoma 6 transcription repressor (BCL6), thioredoxin reductase 3 (TXNRD3) and ceruloplasmin (CP). Meanwhile, the presence of POU class 5 homeobox (POU5F1 or OCT4) and laminin subunit alpha 1 (LAMA1), reported as metastatic biomarkers, was noted. CONCLUSION The presence of both pro- and anti-proliferative proteins was observed, potentially indicating a distinctive characteristic of NmFMC. Conversely, proteins associated with poor prognosis and metastasis were noted in the mFMC group.
Collapse
Affiliation(s)
- Weejarin Paphussaro
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wannapol Buthasane
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Gunnaporn Suriyaphol
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Yu J, Boland L, Catt M, Puk L, Wong N, Krockenberger M, Bennett P, Ruaux C, Wasinger VC. Serum proteome profiles in cats with chronic enteropathies. J Vet Intern Med 2023; 37:1358-1367. [PMID: 37279179 PMCID: PMC10365053 DOI: 10.1111/jvim.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Serum protein biomarkers are used to diagnose, monitor treatment response, and to differentiate various forms of chronic enteropathies (CE) in humans. The utility of liquid biopsy proteomic approaches has not been examined in cats. HYPOTHESIS/OBJECTIVES To explore the serum proteome in cats to identify markers differentiating healthy cats from cats with CE. ANIMALS Ten cats with CE with signs of gastrointestinal disease of at least 3 weeks duration, and biopsy-confirmed diagnoses, with or without treatment and 19 healthy cats were included. METHODS Cross-sectional, multicenter, exploratory study with cases recruited from 3 veterinary hospitals between May 2019 and November 2020. Serum samples were analyzed and evaluated using mass spectrometry-based proteomic techniques. RESULTS Twenty-six proteins were significantly (P < .02, ≥5-fold change in abundance) differentially expressed between cats with CE and controls. Thrombospondin-1 (THBS1) was identified with >50-fold increase in abundance in cats with CE (P < 0.001) compared to healthy cats. CONCLUSIONS AND CLINICAL IMPORTANCE Damage to the gut lining released marker proteins of chronic inflammation that were detectable in serum samples of cats. This early-stage exploratory study strongly supports THBS1 as a candidate biomarker for chronic inflammatory enteropathy in cats.
Collapse
Affiliation(s)
- Jane Yu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Lara Boland
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Melissa Catt
- Paddington Cat Hospital, Paddington, New South Wales, Australia
| | - Leah Puk
- Paddington Cat Hospital, Paddington, New South Wales, Australia
| | - Nadia Wong
- McIvor Road Veterinary Centre, Bendigo, Victoria, Australia
| | - Mark Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Craig Ruaux
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Bai Z, Wang H, Li X, Shen X, Chen Y, Fu Y, Li W. Presence of immune factors in freshwater mussel ( Hyriopsis cumingii) entails autologous serum an essential component in the culture of mantle cells. Front Immunol 2023; 14:1173184. [PMID: 37215128 PMCID: PMC10196017 DOI: 10.3389/fimmu.2023.1173184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Mussel cell culture is a challenging problem and serum serves a crucial biological role in cell culture as an autologous supply and an immunizing agent. In this study, the biology (calcium ions, total protein, pH, and osmotic pressure) of fetal bovine serum (FBS) and Hyriopsis cumingii serum (HCS) was investigated, and the development of Hyriopsis cumingii (H. cumingii) mantle cells in HCS and FBS systems was examined. The results showed that total protein, calcium ions, and osmotic pressure varied significantly (p<0.05). The activity of mantle cells was superior in the HCS culture system to that in the FBS culture system. The label-free technique was used to distinguish the two serum proteins to investigate the supportive effect of autologous serum on cell culture. These were examined for 109 unique proteins and 35 particular HCS proteins. Most differentially expressed proteins (DEPs) were involved in immune response, cell differentiation, and calcium ion binding. Furthermore, immune factors such as HSP, CALR, APOB, C3 were identified with significant differences. HSP was significantly more present in HCS than in FBS as an endogenous protective protein that regulates immune system function, cell differentiation, transport, and activity regulation. Parallel reaction monitoring (PRM) analysis was carried out to validate the expression levels of 19 DEPs, indicating high reliability of the proteomic results. This study reveals the important role of immune factors in mussel cell culture, providing a theoretical basis for explaining the applicability of autologous serum in cell culture. It is also helpful in improving the cell culture conditions of mussels.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai, China
| | - He Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture Animals, Shanghai, China
| | - Xuenan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Xiaoya Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yige Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Wenjuan Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Rossi G. Acute phase proteins in cats: Diagnostic and prognostic role, future directions, and analytical challenges. Vet Clin Pathol 2023; 52 Suppl 1:37-49. [PMID: 36740231 DOI: 10.1111/vcp.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
While clinical studies on acute phase proteins (APPs) have significantly increased in the last decade, and most commercial labs are now offering major APPs in their biochemical profiles, APP testing has not been widely adopted by veterinary clinical pathologists and veterinarians. Measurement of APP concentration is a useful marker for detecting the presence or absence of inflammation in cats with various diseases. APPs can also be reliably measured in different biological fluids (eg, effusions and urine) to improve their diagnostic utility. Measurement of APPs can be extremely beneficial in cats with feline infectious peritonitis (FIP) to discriminate between FIP and non-FIP cats with similar clinical presentations. Additional benefits come from multiple and sequential measurements of APPs, particularly in the assessment of therapeutic efficacy. APPs are more sensitive than WBC counts for early detection of inflammation and to demonstrate an early remission or recurrence of the diseases. Given the potential utility of APPs, more studies are warranted, with a particular focus on the applications of APPs to guide the length of antimicrobial therapies, as suggested by the antimicrobial stewardship policy. New inflammatory markers have been discovered in human medicine, with a higher specificity for distinguishing between septic versus nonseptic inflammatory diseases. It is desirable that these new markers be investigated in veterinary medicine, to further test the power of APPs in diagnostic setting.
Collapse
Affiliation(s)
- Gabriele Rossi
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.,Centre for Animal Production and Health, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
6
|
Huang X, Hou Z. Label-free quantitative proteomics analysis of jujube ( Ziziphus jujuba Mill.) during different growth stages. RSC Adv 2021; 11:22106-22119. [PMID: 35480818 PMCID: PMC9034241 DOI: 10.1039/d1ra02989d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Chinese jujube (Zizyphus jujuba Mill.), a member of the Rhamnaceae family with favorable nutritional and flavor quality, exhibited characteristic climacteric changes during its fruit growth stage. Therefore, fruit samples were harvested at four developmental stages on days 55 (young fruits), 76 (white-mature fruits), 96 (half-red fruits), and 116 (full-red fruits) after flowering (DAF). This study then investigated those four growth stage changes of the jujube proteome using label-free quantification proteomics. The results identified 4762 proteins in the samples, of which 3757 proteins were quantified. Compared with former stages, the stages examined were designated as "76 vs. 55 DAF" group, "96 vs. 76 DAF" group, and "116 vs. 96 DAF" group. Gene Ontology (GO) and KEGG annotation and enrichment analysis of the differentially expressed proteins (DEPs) showed that 76 vs. 55 DAF group pathways represented amino sugar, nucleotide sugar, ascorbate, and aldarate metabolic pathways. These pathways were associated with cell division and resistance. In the study, the jujube fruit puffing slowed down and attained a stable growth stage in the 76 vs. 55 DAF group. However, fatty acid biosynthesis and phenylalanine metabolism was mainly enriched in the 96 vs. 76 DAF group. Fatty acids are precursors of aromatic substances and fat-soluble pigments in fruit. The upregulation of differential proteins at this stage indicates that aromatic compounds were synthesized in large quantities at this stage and that fruit would enter the ripening stage. During the ripening stage, 55 DEPs were identified to be involved in photosynthesis and flavonoid biosynthesis in the 116 vs. 96 DAF group. Also, the fruit entered the mature stage, which showed that flavonoids were produced in large quantities. Furthermore, the color of jujube turned red, and photosynthesis was significantly reduced. Hence, a link was established between protein profiles and growth phenotypes, which will help improve our understanding of jujube fruit growth at the proteomic level.
Collapse
Affiliation(s)
- Xiaoli Huang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) No. 3501 Daxue Road, Changqing District Ji'nan Shandong Province 250353 P. R. China +86 531 89631191 +86 188 66151356
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) No. 3501 Daxue Road, Changqing District Ji'nan Shandong Province 250353 P. R. China +86 531 89631191 +86 188 66151356
| |
Collapse
|