1
|
T N VV, Premnath M, Stanley JV, Paul N, Mathew J, Radhakrishnan EK. Whole genome sequencing based prediction of antimicrobial resistance evolution among the predominant bacterial pathogens of diabetic foot ulcer. World J Microbiol Biotechnol 2025; 41:161. [PMID: 40312599 DOI: 10.1007/s11274-025-04362-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/03/2025]
Abstract
Emerging antibiotic resistance among bacterial pathogens of diabetic foot ulcers (DFUs) cause a significant threat to the human health. In the study, deep ulcer swabs were collected from 70 diabetic patients with foot ulcer. Among the 187 bacterial strains purified from the same, major representations were identified to be from Klebsiella pneumoniae and Staphylococcus spp. Here, polymicrobial infection (87.14%) was found to be more prevalent than monomicrobial (12.86%). From the antibiotic susceptibility test results, 34 bacterial isolates were identified as MDR pathogens with resistance to β-lactam and carbapenem classes of antibiotics. Furthermore, molecular screening has revealed the presence of antibiotic resistance gene such as blaSHV,blaCTX-M, blaTEM,blaOXA-48, NDM-1, mecA and blaZ genes among the isolates studied. Biofilm analysis has further revealed 31 strains to have strong and 3 with moderate biofilm production property. Among the MDR strains, K. pneumoniae (DFU2.2) and methicillin-resistant S. aureus (MRSA) (DFU24.3) were subjected to the whole-genome sequencing (WGS) based analysis due to their significant role in the chronicity of DFUs. The resistome prediction from the WGS data of DFU2.2 has revealed it to have the presence of a novel extended β-lactamase gene blaSHV-106 which has not been reported previously from India. Pan-genome analysis of DFU2.2 and DFU24.3 has also provided detailed insight into the genetic diversity, evolution, and pathogenic potential of the selected strains. The findings of this study hence suggest the emerging AMR to be one of the major risk factors challenging the therapeutic response of DFUs, the incidence of which is alarmingly high.
Collapse
Affiliation(s)
- Vipina Vinod T N
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Manjusha Premnath
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Jos V Stanley
- Department of General Surgery, Government Medical College, Kottayam, Kerala, 686008, India
| | - Nimmy Paul
- Department of Microbiology, Government Medical College, Kottayam, Kerala, 686008, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
2
|
Sievers T, Blumenberg JA, Hölzel CS. Invited review: Antimicrobial resistance genes in milk-A 10-year systematic review and critical comment. J Dairy Sci 2025; 108:4508-4543. [PMID: 39647632 DOI: 10.3168/jds.2024-25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/12/2024] [Indexed: 12/10/2024]
Abstract
The occurrence of antibiotic resistance genes (ARG) in milk is eagerly discussed as a public health risk, and frequently investigated. Here, we perform a systematic review on the abundance of antimicrobial resistance genes in milk from primary production over a 10-year period. We aim to provide a comprehensive dataset on known and emerging antimicrobial resistance genes in major mastitis pathogens, occurring worldwide in milk at primary production, and to critically discuss the relevance and constraints of these findings. We searched PubMed for peer-reviewed studies published between 2012 and 2022 that fit fixed combinations of key words and did not meet exclusion criteria such as "mixed with other sources." For synthesis, data on occurrence was extracted from studies and supplements. To address plausibility issues, we performed an National Center of Biotechnology Information Basic Local Alignment Search Tool (BLAST) search. Our search revealed 2,222 publications in total. Of them, 500 studies were eligible for full-text reads and 306 publications were included in data compilation. An overwhelming majority of studies dealt with mecA in Staphylococcus aureus, followed by extended-spectrum β-lactamase-encoding genes such as blaCTXM in Escherichia coli, while other mastitis pathogens, such as Streptococcus spp., were scarcely investigated. In most cases, <5% of milk samples were positive for major pathogens bearing the antimicrobial resistance gene of interest. However, huge study-to-study differences were found between regions, but also on a national level. For instance, the estimate prevalence of Escherichia coli-borne blaCTXM in mastitis milk samples ranged from 0.0% to 55%, with a median value of 7.3%, but in healthy individuals and bulk milk, the prevalence ranged from 0.0% to 20.0%, with a median value of 0.8%. Several studies reported antimicrobial resistance genes for the very first time in a species, but did not stand up to scrutiny. As an example, frequent detection of blaTEM-genes in streptococci is most likely attributed to contamination of molecular reagents, as reported elsewhere. Despite the large amount of data, there is a need for more quality control, more representative sampling of milk, more quantitative research, and deeper insights into bacterial genomics, to identify relevant or emerging antimicrobial resistance genes in milk. Considering a low percentage of contaminated milk samples, unknown ARG concentrations, and an unproven role in human disease, the risk attributed to ARG in milk seems to be exaggerated by far. However, the risk of ARG selection on farm, resulting in low treatment success in cattle, is a real one and should be met by prudent use of antibiotics.
Collapse
Affiliation(s)
- Theresa Sievers
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, 24098 Kiel, Germany
| | - Julia A Blumenberg
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, 24098 Kiel, Germany.
| | - Christina S Hölzel
- Institute for Animal Breeding & Husbandry, Faculty for Agricultural & Nutritional Sciences, Kiel University, 24098 Kiel, Germany
| |
Collapse
|
3
|
Lubna, Hussain T, Shami A, Rafiq N, Khan S, Kabir M, Khan NU, Khattak I, Kamal M, Usman T. Antimicrobial Usage and Detection of Multidrug-Resistant Staphylococcus aureus: Methicillin- and Tetracycline-Resistant Strains in Raw Milk of Lactating Dairy Cattle. Antibiotics (Basel) 2023; 12:673. [PMID: 37107035 PMCID: PMC10135139 DOI: 10.3390/antibiotics12040673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
Staphylococcus aureus is a prominent cause of food-borne diseases worldwide. Enterotoxigenic strains of this bacteria are frequently found in raw milk, and some of these strains are resistant to antimicrobials, posing a risk to consumers. The main objectives of this study were to determine the antimicrobial resistance pattern of S. aureus in raw milk and to detect the presence of mecA and tetK genes in it. A total of 150 milk samples were obtained aseptically from lactating cattle, including Holstein Friesian, Achai, and Jersey breeds, maintained at different dairy farms. The milk samples were checked for the presence of S. aureus, and it was detected in 55 (37%) of them. The presence of S. aureus was verified by culturing on selective media, gram staining, and performing coagulase and catalase tests. Further confirmation was performed through PCR with a species-specific thermonuclease (nuc) gene. Antimicrobial susceptibility testing of the confirmed S. aureus was then determined by using the Kirby-Bauer disc diffusion technique. Out of the 55 confirmed S. aureus isolates, 11 were determined to be multidrug-resistant (MDR). The highest resistance was found to penicillin (100%) and oxacillin (100%), followed by tetracycline (72.72%), amikacin (27.27%), sulfamethoxazole/trimethoprim (18.18%), tobramycin (18.18%), and gentamycin (9.09%). Amoxicillin and ciprofloxacin were found to be susceptible (100%). Out of 11 MDR S. aureus isolates, the methicillin resistance gene (mecA) was detected in 9 isolates, while the tetracycline resistance gene (tetK) was found in 7 isolates. The presence of these methicillin- and tetracycline-resistant strains in raw milk poses a major risk to public health, as they can cause food poisoning outbreaks that can spread rapidly through populations. Our study concludes that out of nine empirically used antibiotics, amoxicillin, ciprofloxacin, and gentamicin were highly effective against S. aureus compared to penicillin, oxacillin, and tetracycline.
Collapse
Affiliation(s)
- Lubna
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Tahir Hussain
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Ashwag Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Naseem Rafiq
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Shehryar Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Kabir
- Department of Biological Sciences, Thal University Bhakkar, University of Sargodha, (Ex-Sub Campus Bhakkar), Bhakkar 30000, Punjab, Pakistan
| | - Naimat Ullah Khan
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Irfan Khattak
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mustafa Kamal
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Tahir Usman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
4
|
Ambrosio M, Nocera FP, Garofalo F, De Luca P, Grinberg A, De Martino L. Staphylococcus microti Strains Isolated from an Italian Mediterranean Buffalo Herd. Animals (Basel) 2023; 13:ani13010182. [PMID: 36611790 PMCID: PMC9817920 DOI: 10.3390/ani13010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
S. microti is a new species among non-aureus staphylococci (NAS) frequently found in bovine milk samples and associated with subclinical mastitis (SCM). The aim of this study was to analyze the presence of S. microti in 200 composite milk samples and 104 milking parlor surface swabs collected at a buffalo farm in Southern Italy to define its presence in milk and a milking parlor environment. The samples were inoculated onto different agar plates, and the isolates were identified by MALDI-TOF MS. The strains identified as S. microti (54/304 samples, 17.8%) were collected, and their purified genomic DNA was subjected to PCR amplification and whole 16S rRNA gene sequencing. Furthermore, their phenotypic resistance profiles were evaluated by a disk diffusion method, and the genotypic characterization of the tetracycline resistance was performed for the tetM and tetK genes by multiplex PCR. Four and forty-seven S. microti isolates from milk samples of lactating animals with subclinical mastitis (SCM) and intramammary infection (IMI), respectively, and three isolates from milking parlor surfaces were recovered. The genomic DNA was purified from the bacterial isolates, and the amplification and sequencing of the 16S gene further supported the proteomic identification as S. microti. No clinical mastitis was detected in the herd during the study period. The antimicrobial susceptibility testing revealed a worrisome 100% resistance to tetracyclines, genotypically mediated by the tetM gene for all strains. This study highlights that S. microti may be commonly isolated from dairy buffalo milk and milking parlor equipment. Its association with SCM or IMI remains to be established.
Collapse
Affiliation(s)
- Monica Ambrosio
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via Delpino 1, 80137 Naples, Italy
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via Delpino 1, 80137 Naples, Italy
- Correspondence:
| | - Francesca Garofalo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Pasquale De Luca
- Stazione Zoologica Anton Dohrn of Naples, Villa Comunale, 80121 Naples, Italy
| | - Alex Grinberg
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples ‘Federico II’, Via Delpino 1, 80137 Naples, Italy
- Task Force on Microbiome Studies, University of Naples ‘Federico II’, 80131 Naples, Italy
| |
Collapse
|
5
|
Deddefo A, Mamo G, Leta S, Amenu K. Prevalence and molecular characteristics of Staphylococcus aureus in raw milk and milk products in Ethiopia: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Staphylococcus aureus is an important opportunistic pathogen of raw milk and milk products, and the enterotoxins cause food poisoning. Milk and milk products are important reservoirs of enterotoxin-producing S. aureus. The aims of this systematic review were to estimate the pooled prevalence of S. aureus, including methicillin-resistant Staphylococcus aureus (MRSA), and to summarize their molecular characteristics, assess the potential sources of S. aureus contamination in bulk milk and analyse the antimicrobial resistance patterns of the isolates.
Methods
Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched publicly available scientific online databases and search engines: PubMed, Research for Life, African Journal Online (AJOL), and Google Scholar. In addition, the reference lists of the identified studies were manually checked for relevant literature. A random effects model using the DerSimonian method was used to compute pooled prevalence estimates, and the data were transformed using variance stabilizing Freeman-Tukey double arcsine transformation.
Results
A total of 38 studies were included in this systematic review. The pooled prevalence of S. aureus was highest in raw cow milk (30.7%), followed by camel milk (19.3%), goat milk (13.6%) and pasteurized milk (3.8%). The pooled prevalence of S. aureus in locally produced soft cheese (ayib) and traditional fermented milk (ergo) was 18.6% and 14.9%, respectively. The pooled prevalence of MRSA in milk and milk products was 0.73%. In this study, 58.9% of S. aureus isolates recovered from milk and milk products harbored at least one type of enterotoxin gene. Raw milk of the three species (cow, goat and camel) showed the highest S. aureus pooled prevalence rate at processing plants (50.3%), followed by milk collection centers (MCCs) (47.1%), selling points (34.5%), farm bulk milk (25.8%), milking buckets (24.8%) and udder milk (20.3%). Water for washing milking utensils (39.3%) was more contaminated than swab samples from farm workers’ nares (31.5%), milkers’ hands (25.9%), MCCs containers (23.8%), bulk tanks (20.4%), udders (15.6%), milking buckets (14.2%) and towels (10%). S. aureus isolates were highly resistant to penicillin G (92%), followed by ampicillin (82%) and amoxicillin (62.6%). The pooled multidrug resistance (MDR) was high (62.1%).
Conclusion
This systematic review revealed a high and increasing level of S. aureus contamination of raw milk from udder to MCCs or processing plants. Enterotoxin genes and MRSA were reported in milk, milk products and samples from farm workers. S. aureus showed resistance to different antimicrobial agents, with β-lactams showing the highest pooled antimicrobial resistance and the level of MDR was high. The results of this study indicated that the consumption of raw milk and milk products may predispose consumers to staphylococcal food poisoning. Application of good hygiene and handling practices across the dairy value chain starting from farm, udder health, milk cooling, heat treatment of milk before drinking and rational use of antibiotics in veterinary medicine can reduce the potential health risks from S. aureus and MRSA contamination of milk and milk products.
Collapse
|