1
|
Yin Y, Kan X, Miao X, Sun Y, Chen S, Qin T, Ding C, Peng D, Liu X. H5 subtype avian influenza virus induces Golgi apparatus stress response via TFE3 pathway to promote virus replication. PLoS Pathog 2024; 20:e1012748. [PMID: 39652582 PMCID: PMC11627363 DOI: 10.1371/journal.ppat.1012748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
During infection, avian influenza virus (AIV) triggers endoplasmic reticulum (ER) stress, a well-established phenomenon in previous research. The Golgi apparatus, situated downstream of the ER and crucial for protein trafficking, may be impacted by AIV infection. However, it remains unclear whether this induces Golgi apparatus stress (GAS) and its implications for AIV replication. We investigated the morphological changes in the Golgi apparatus and identified GAS response pathways following infection with the H5 subtype AIV strain A/Mallard/Huadong/S/2005. The results showed that AIV infection induced significant swelling and fragmentation of the Golgi apparatus in A549 cells, indicating the presence of GAS. Among the analyzed GAS response pathways, TFE3 was significantly activated during AIV infection, while HSP47 was activated early in the infection process, and CREB3-ARF4 remained inactive. The blockade of the TFE3 pathway effectively inhibited AIV replication in A549 cells and attenuated AIV virulence in mice. Additionally, activation of the TFE3 pathway promoted endosome acidification and upregulated transcription levels of glycosylation enzymes, facilitating AIV replication. These findings highlight the crucial role of the TFE3 pathway in mediating GAS response during AIV infection, shedding light on its significance in viral replication.
Collapse
Affiliation(s)
- Yuncong Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Xianjin Kan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xinyu Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| | - Chan Ding
- Shanghai Jiaotong University School of Agriculture and Biology, Shanghai, PR China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, PR China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu, PR China
| |
Collapse
|
2
|
Zhao W, Liu X, Zhang X, Qiu Z, Jiao J, Li Y, Gao R, Wang X, Hu J, Liu X, Hu S, Jiao X, Peng D, Gu M, Liu X. Virulence and transmission characteristics of clade 2.3.4.4b H5N6 subtype avian influenza viruses possessing different internal gene constellations. Virulence 2023; 14:2250065. [PMID: 37635408 PMCID: PMC10464537 DOI: 10.1080/21505594.2023.2250065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Clade 2.3.4.4 H5N6 avian influenza virus (AIV) has been predominant in poultry in China, and the circulating haemagglutinin (HA) gene has changed from clade 2.3.4.4h to clade 2.3.4.4b in recent years. In 2021, we isolated four H5N6 viruses from ducks during the routine surveillance of AIV in China. The whole-genome sequencing results demonstrated that the four isolates all belonged to the currently prevalent clade 2.3.4.4b but had different internal gene constellations, which could be divided into G1 and G2 genotypes. Specifically, G1 possessed H9-like PB2 and PB1 genes on the H5-like genetic backbone while G2 owned an H3-like PB1 gene and the H5-like remaining internal genes. By determining the characteristics of H5N6 viruses, including growth performance on different cells, plaque-formation ability, virus attachment ability, and pathogenicity and transmission in different animal models, we found that G1 strains were more conducive to replication in mammalian cells (MDCK and A549) and BALB/c mice than G2 strains. However, G2 strains were more advantageously replicated in avian cells (CEF and DF-1) and slightly more transmissible in waterfowls (mallards) than G1 strains. This study enriched the epidemiological data of H5 subtype AIV to further understand its dynamic evolution, and laid the foundation for further research on the mechanism of low pathogenic AIV internal genes in generating novel H5 subtype reassortants.
Collapse
Affiliation(s)
- Wanchen Zhao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xin Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Zhang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiwei Qiu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Li
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Chang N, Zhang C, Mei X, Du F, Li J, Zhang L, Du H, Yun F, Aji D, Shi W, Bi Y, Ma Z. Novel reassortment 2.3.4.4b H5N8 highly pathogenic avian influenza viruses circulating in Xinjiang, China. Prev Vet Med 2021; 199:105564. [PMID: 34959041 DOI: 10.1016/j.prevetmed.2021.105564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/25/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022]
Abstract
In 2016, H5N8 avian influenza viruses of clade 2.3.4.4b were detected at Qinghai Lake, China. Afterwards, the viruses of this clade rapidly spread to Asia, Europe, and Africa via migratory birds, and caused massive deaths in poultry and wild birds globally. In this study, four H5N8 isolates (abbreviated as 001, 002, 003, and 004) were isolated from the live poultry market in Xinjiang in 2017. Phylogenetic analysis showed that the hemagglutinin genes of the four isolates belonged to clade 2.3.4.4b, while the viral gene segments were from multiple geographic origins. For 002, the polymerase acidic gene had the highest sequence homology (99.55 %) with H5N8 virus identified from green-winged teal in Egypt in 2016, and the remaining genes exhibited the highest sequence homologies (99.18-100 %) with those of H5N8 viruses isolated from domestic duck sampled in Siberia in 2016. The polymerase basic 1 gene clustered together with H5N8 virus identified from painted stork of India in 2016, and the remaining genes had relatively close genetic relationships with H5N8 viruses identified from the duck of Siberia in 2016 and turkey in Italy in 2017. For the other three isolates, the nucleoprotein gene of 001 had the highest sequence homology (98.82 %) and relatively close genetic relationship with H9N2 viruses identified from poultry in Vietnam and Cambodia in 2015-2017, and all the remaining genes had the highest sequence homologies (99.18 %-99.58 %) and relatively close genetic relationships with H5N8 viruses identified from poultry and waterfowl sampled in African countries in 2017 and swan sampled in China in 2016. Multiple basic amino acids were observed at cleavage sites in the hemagglutinin proteins of the H5N8 isolates, indicating high pathogenicity. In addition, the L89V, G309D, R477G, I495V, A676T and I504V mutations in the polymerase basic 2 protein, N30D and T215A mutations in the matrix 1 protein, P42S mutation, and 80-84 amino acid deletion in the nonstructural 1 protein were detected in all isolates. These mutations were associated with increased virulence and polymerase activity in mammals. Therefore, our results indicate that the H5N8 isolates involved multiple introductions of reassorted viruses, and also revealed that the wetlands of Northern Tianshan Mountain may play a key role in H5N8 AIVs disseminating among Central China, the Eurasian continent, and East African Countries.
Collapse
Affiliation(s)
- Nana Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Cheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, 100101, China
| | - Xindi Mei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Fei Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Juan Li
- Key Laboratory of Etiology and Emerging Infections Disease in Shandong First Medical University, Taian, 271016, China
| | - Lijuan Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Han Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Fengze Yun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Dilihuma Aji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Emerging Infections Disease in Shandong First Medical University, Taian, 271016, China
| | - Yuhai Bi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Science, Beijing, 100101, China.
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
4
|
Aji D, Chang N, Zhang C, Du F, Li J, Yun F, Shi W, Bi Y, Ma Z. Rapid Emergence of the Reassortant 2.3.4.4b H5N2 Highly Pathogenic Avian Influenza Viruses in a Live Poultry Market in Xinjiang, Northwest China. Avian Dis 2021; 65:578-583. [PMID: 35068101 DOI: 10.1637/aviandiseases-d-21-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Dilihuma Aji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Nana Chang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Cheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fei Du
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juan Li
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Tai an 271016, China
| | - Fengze Yun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Emerging infections Disease in Shandong First Medical University, Tai an 271016, China
| | - Yuhai Bi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
5
|
Tian J, Li M, Bai X, Li Y, Wang X, Wang F, Shi J, Zeng X, Tian G, Li Y. H5 low pathogenic avian influenza viruses maintained in wild birds in China. Vet Microbiol 2021; 263:109268. [PMID: 34781191 DOI: 10.1016/j.vetmic.2021.109268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
Low pathogenic avian influenza virus, H5 or H7 subtype, possesses the potential capability to change to highly pathogenic variant, which damages wild waterfowl, domestic poultry, and mammalian hosts. In regular active surveillance of avian influenza virus from wild birds in China in 2020, we isolated six H5 avian influenza viruses, including one H5N2, two H5N3, and three H5N8. Phylogenetic analysis indicated that the H5N2 and H5N3 isolates clustered into Eurasian lineage, whereas the H5N8 viruses were originated in North America. The HA proteins of six viruses carried the cleavage-site motif PQRETR↓GLF, which indicated low pathogenicity of the viruses in chickens. However, the N30D, I43M, and T215A mutations in M1 protein and the P42S, I106M, and C138F residues changed in NS1 protein, implying all viruses could exhibit increased virulence in mice. Viral replication kinetics in mammalian cells demonstrated that the three representative viruses had the ability to replicate in both MDCK cells and A549 cells with low titers. Even though two of three representatives, WS/SX/S3-620/2020(H5N3) and ML/AH/A3-770/2020(H5N8), did not replicate and transmit efficiently in poultry (chickens), they did replicate and transmit efficiently in waterfowl (ducks). Viral pathogenicity in mice indicated that both H5N2 and H5N3 viruses are able to replicate in the nasal turbinates and lungs of mice without prior adaptation, while the H5N8 virus could not. The intercontinental and cross-species transmission of viruses may continuously exist in China, thereby providing constant opportunities for virus reassortment with local resident AIVs. Thus, it is crucial to continuously monitor migration routes for AIVs by systematic surveillance.
Collapse
Affiliation(s)
- Jingman Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Minghui Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoli Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | - Fuhong Wang
- Caizihu National Wetland Park, Anqing, China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|