1
|
Gong C, Li W, Wu J, Li YY, Ma Y, Tang LW. AKBA inhibits radiotherapy resistance in lung cancer by inhibiting maspin methylation and regulating the AKT/FOXO1/p21 axis. JOURNAL OF RADIATION RESEARCH 2023; 64:33-43. [PMID: 36300343 PMCID: PMC9855320 DOI: 10.1093/jrr/rrac064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Indexed: 06/16/2023]
Abstract
Acetyl-keto-b-boswellic acid (AKBA) functions in combating human malignant tumors, including lung cancer. However, the function of AKBA in regulating the radioresistance of lung cancer and its underlying mechanism still need to be elucidated. Radiation-resistant lung cancer cells (RA549) were established. Quantitative real-time polymerase chain reaction (QRT-PCR) and Western blot were employed to examine the messenger RNA (mRNA) and protein expressions. After being treated with AKBA and different doses of X-ray, cell proliferation and survival were examined using colony formation assay and cell-counting kit-8 (CCK-8) assay. The cellular localization of Forkhead box 1 (FOXO1) was measured by immunofluorescence (IF). Flow cytometry was employed to analyze cell cycle and apoptosis. In addition, in vivo experiment was performed to determine the effect of AKBA on the sensitivity of tumors to radiation. Herein, we found that AKBA could enhance the radiosensitivity in RA549, suppress cell proliferation, induce cell apoptosis and arrest cell cycle. It was observed that maspin was lowly expressed and hypermethylated in RA549 cells compared to that in A549 cells, while these changes were all eliminated by AKBA treatment. Maspin knockdown could reverse the regulatory effects of AKBA on radioresistance and cellular behaviors of RA549 cells. In addition, we found that AKBA treatment could repress the phosphorylation of Serine/Threonine Kinase (AKT), and FOXO1, increase the translocation of FOXO1 and p21 level in RA549 cells, which was abolished by maspin knockdown. Moreover, results of tumor xenograft displayed that AKBA could enhance the sensitivity of tumor to radiation through the maspin/AKT/FOXO1/p21 axis. We discovered that AKBA enhanced the radiosensitivity of radiation-resistant lung cancer cells by regulating maspin-mediated AKT/FOXO1/p21 axis.
Collapse
Affiliation(s)
| | | | - Jing Wu
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Yao-Yao Li
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Yi Ma
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Li-Wen Tang
- Corresponding author. Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95, Shaoshan Middle Road, Yuhua District, Changsha 410007, Hunan Province, P.R. China. Tel: +86-13739072892;
| |
Collapse
|
2
|
Li X, Liu H, Dun MD, Faulkner S, Liu X, Jiang CC, Hondermarck H. Proteome and secretome analysis of pancreatic cancer cells. Proteomics 2022; 22:e2100320. [PMID: 35388624 DOI: 10.1002/pmic.202100320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/07/2022]
Abstract
Pancreatic cancer is a lethal malignancy and no screening biomarker or targeted therapy is currently available. Here, we performed a shotgun proteomic label-free quantification (LFQ) to define protein changes in the cellular proteome and secretome of four pancreatic cancer cell lines (PANC1, Paca44, Paca2, and BXPC3) versus normal human pancreatic ductal epithelial cells (HPDE). In the cellular proteome and secretome, 149 and 43 proteins were dysregulated in the most cancer cell lines, respectively. Using Ingenuity Pathway Analysis (IPA), the most dysregulated signaling pathways in pancreatic cancer cells included the activation of epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), extracellular regulated kinase (ERK), and the deactivation of type-I interferon (IFN) pathways, which could promote cancer cell progression and decrease antitumor immunity. Parallel reaction monitoring (PRM) mass spectrometry was used to confirm the changes of seven regulated proteins quantified by LFQ: EGFR, growth/differentiation factor 15 (GDF15), protein-glutamine gamma-glutamyltransferase 2 (TGM2), leukemia inhibitory factor (LIF), interferon-induced GTP-binding protein Mx1 (MX1), signal transducer and activator of transcription 1 (STAT1), and serpin B5 (SERPINB5). Together, this proteomic analysis highlights protein changes associated with pancreatic cancer cells that should be further investigated as potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Xiang Li
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Xiaoming Liu
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chen Chen Jiang
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| |
Collapse
|
3
|
AF8c, a Multi-Kinase Inhibitor Induces Apoptosis by Activating DR5/Nrf2 via ROS in Colorectal Cancer Cells. Cancers (Basel) 2022; 14:cancers14133043. [PMID: 35804815 PMCID: PMC9264837 DOI: 10.3390/cancers14133043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary AF8c, a lapatinib hybrid quinazoline-based EGFR/HER2 inhibitor, was chosen to scrutinize its antiproliferative activity in colorectal cancer (CRC) cells. We found that AF8cinduced apoptosis in CRC cells via diverse mechanisms. In addition to inhibiting the phosphorylation of the ErbB family, AF8c increased the mRNA and protein levels of death receptor 5 (DR5) in vitro and in vivo. In addition, AF8c upregulated several ER stress proteins and the redox-sensitive nuclear respiratory factor 2 alpha subunit (Nrf2) in a p53-dependent manner. We also found that the AF8c-induced increase in the levels of Nrf2, DR5, and apoptosis was diminished by p53 downregulation or knockdown. Furthermore, AF8c showed higher antiproliferative activity than lapatinib in the CRC mouse model in vivo. Therefore, our results suggest AF8c as a highly effective polypharmacological small molecule with an encouraging safety profile, both in vitro and in vivo, for further evaluation as a treatment of CRC. Abstract Our team has previously reported a series of quinazoline-based lapatinib hybrids as potent kinase-targeting anticancer agents. Among them, AF8c showed a relatively safe profile in colorectal cancer (CRC) cells. In this study, we delineate a novel anticancer activity of AF8c in CRC cells. AF8c mediated p53-dependent apoptosis of CRC cells via the generation of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS), as well as activation of nuclear respiratory factor 2 alpha subunit (Nrf2) and death receptor 5 (DR5), among others. The silencing of DR5 attenuated the expression levels of Nrf2 and partially inhibited AF8c-induced apoptosis. Additionally, upregulation of Nrf2 by AF8c evoked apoptosis through a decrease in antioxidant levels. Treatment of a CRC mice model with AF8c also resulted in the upregulation of DR5, Nrf2, and CHOP proteins, subsequently leading to a significant decrease in tumor burden. In comparison with lapatinib, AF8c showed higher cellular antiproliferative activity at the tested concentrations in CRC cells and synergized TRAIL effects in CRC cells. Overall, our results suggest that AF8c-induced apoptosis may be associated with DR5/Nrf2 activation through ER stress and ROS generation in CRC cells. These findings indicate that AF8c represents a promising polypharmacological molecule for the treatment of human CRC.
Collapse
|
4
|
Matsushige T, Sakabe T, Umekita Y. Investigation of the Subcellular Localization-Dependent Anti- or Pro-Tumor Functions of Maspin in Human Lung Adenocarcinoma Cell Line. Yonago Acta Med 2022; 65:44-52. [DOI: 10.33160/yam.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Takahiro Matsushige
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Tomohiko Sakabe
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Yoshihisa Umekita
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
5
|
Sakabe T, Wakahara M, Shiota G, Umekita Y. Role of cytoplasmic localization of maspin in promoting cell invasion in breast cancer with aggressive phenotype. Sci Rep 2021; 11:11321. [PMID: 34059749 PMCID: PMC8166868 DOI: 10.1038/s41598-021-90887-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Mammary serine protease inhibitor (maspin) is a tumor suppressor gene that is downregulated during carcinogenesis and breast cancer progression. While the nuclear localization of maspin is essential for tumor suppression, we previously reported that the cytoplasmic localization of maspin was significantly correlated with poor prognosis in breast cancer patients. To understand the mechanisms that underlie oncogenic role of cytoplasmic maspin, we studied its biological function in breast cancer cell lines. Subcellular localization of maspin in MDA-MB-231 breast cancer cells was mainly detected in the cytoplasm, whereas in MCF10A mammary epithelial cells, maspin was present in both cytoplasm and nucleus. In MDA-MB-231 cells, maspin overexpression promoted cell proliferation and cell invasion, whereas maspin downregulation resulted in the opposite effect. Further, we observed that SRGN protein levels were increased in MDA-MB-231 cells stably overexpressing maspin. Finally, maspin overexpression in MDA-MB-231 cells resulted in the N-cadherin and epithelial mesenchymal transition (EMT)-related transcription factors upregulation, and TGFβ signaling pathway activation. These results suggested that cytoplasmic maspin enhances the invasive and metastatic potential in breast cancer cells with aggressive phenotype by inducing EMT via SRGN/TGFβ axis. This study demonstrated a novel biological function of cytoplasmic maspin in progression of breast cancer cells with an aggressive phenotype.
Collapse
Affiliation(s)
- Tomohiko Sakabe
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Makoto Wakahara
- Division of General Thoracic Surgery and Breast and Endocrine Surgery, Department of Surgery, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | - Yoshihisa Umekita
- Department of Pathology, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan.
| |
Collapse
|
6
|
Wang XF, Liang B, Zeng DX, Lei W, Chen C, Chen YB, Huang JA, Gu N, Zhu YH. The roles of MASPIN expression and subcellular localization in non-small cell lung cancer. Biosci Rep 2020; 40:BSR20200743. [PMID: 32391558 PMCID: PMC7251327 DOI: 10.1042/bsr20200743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulating studies have confirmed that mammary serine protease inhibitor (MASPIN) plays an essential role in non-small cell lung cancer (NSCLC). However, results are still controversial or inconsistent. In the present study, we attempted to identify the clinical significance of MASPIN and its potential molecular roles in NSCLC. The correlation of MASPIN with prognosis and clinicopathological characteristics was assessed by meta-analysis. Additionally, the potential molecular mechanisms of MASPIN in NSCLC was also investigated through several online databases. A total of 2220 NSCLC patients from 12 high quality studies were included and the results indicated that up-regulated MASPIN nucleus and cytoplasm expression was associated with poor overall survival (OS) (hazard ratio (HR) = 1.43, 95% confidence interval (CI) = 1.01-2.04, P<0.05), elevated MASPIN cytoplasm expression was associated with poor OS (HR = 1.45, 95% CI = 1.01-2.07, P<0.05), disease-free survival (DFS) (HR = 1.95, 95% CI = 1.31-2.88, P=0.001), and disease-specific survival (DSS) (HR = 2.17, 95% CI = 1.18-3.99, P=0.013). MASPIN both nucleus and cytoplasm location were associated with clinicopathological characteristics. Bioinformatics analysis validated the above results and suggested that human serpin family B member 5 (SERPINB5) hypomethylated levels were negatively correlated with its mRNA expression. Bioinformatics analysis also revealed the 85 most frequently altered neighboring genes of SERPINB5, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed 20 GO terms and 3 KEGG pathways with statistical significance. MASPIN had a statistically negative correlation with NSCLC prognosis, functioning as an oncoprotein by hypomethylation and influencing specific pathways involving the 85 genes identified herein. MASPIN might be a promising prognostic signature in NSCLC.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Da-Xiong Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Lei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan-Bin Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye-Han Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Wang N, Chang LL. The potential function of IKKα in gastric precancerous lesion via mediating Maspin. Tissue Cell 2020; 65:101349. [PMID: 32746986 DOI: 10.1016/j.tice.2020.101349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To know the potential role of IKKα (an NF-κB noncanonical pathway) in gastric precancerous lesion via mediating Maspin. METHODS Gastric cancer, precancerous lesion and control tissues (chronic non-atrophic gastritis) were collected for determining the expression of IKKα and Maspin by immunohistochemistry. Thereafter, gastric precancerous models were established and divided into the Control group, Model group and Model + shIKKα group. All rats were subjected to observe the pathological changes and ultramicro structure of the gastric mucosa by HE staining or electron microscope, and to measure the serum levels of inflammatory cytokines by ELISA, the expression of apoptosis-related proteins by immunohistochemistry, as well as the expression of IKKα and Maspin by quantitative real-time PCR and Western blotting. RESULTS Precancerous lesion and gastric cancer tissues manifested significant upregulation of IKKα positive expression, concomitant with downregulation of the positive expression of Maspin, and these changes were more evident in the gastric cancer tissues. In comparison with the Control group, rats in the Model group had significant increases in serum levels of TNF-α, IL-1β, IL-6 and COX-2, with up-regulations of Bcl-2, CyclinD1, IKKα and p-IKKα, and down-regulations of Bax, Caspase-3 and Maspin. shIKKα treatment attenuate inflammation and apoptosis in gastric precancerous lesion (GPL) rat, with the downregulation of IKKα and p-IKKα, and upregulation of Maspin. CONCLUSION Inhibiting IKKα, via upregulating Maspin, can mitigate the inflammation and promote cell apoptosis in precancerous rats, thereby delaying the development of the precancerous lesions.
Collapse
Affiliation(s)
- Ning Wang
- Department of Gastroenterology No.1 Ward, ShiJiaZhuang No. 1 Hospital, Shijiazhuang 050011, China
| | - Li-Li Chang
- Department of Gastroenterology No.1 Ward, ShiJiaZhuang No. 1 Hospital, Shijiazhuang 050011, China.
| |
Collapse
|
8
|
Fodor K, Dobos N, Schally A, Steiber Z, Olah G, Sipos E, Szekvolgyi L, Halmos G. The targeted LHRH analog AEZS-108 alters expression of genes related to angiogenesis and development of metastasis in uveal melanoma. Oncotarget 2020; 11:175-187. [PMID: 32010430 PMCID: PMC6968782 DOI: 10.18632/oncotarget.27431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma (UM) is the most common malignant tumor of the eye. Recently, we have established that 46% of UM specimens express LHRH receptors. This finding supports the idea of a LHRH receptor-targeted therapy of UM patients. Cytotoxic analog of LHRH, AEZS-108 exhibits effective anti-cancer activity in LHRH-receptor positive cancers. AEZS-108 is a hybrid molecule, composed of a synthetic peptide carrier and the cytotoxic doxorubicin (DOX). In the present study, we investigated AEZS-108 induced cytotoxicity and the altered mRNA expression profile of regulatory factors related to angiogenesis and metastasis in LHRH receptor positive OCM3 cells. Our results show that AEZS-108 upregulates the expression of MASPIN/SERPINB5 tumor suppressor gene, which is downregulated in normal uvea and UM specimens independently from the LHRH receptor-ligand interaction. AEZS-108 also substantially downregulates hypoxia-inducible factor 1 alpha (HIF1A) expression. In order to investigate the mechanism of the induction of MASPIN by AEZS-108, OCM3 cells were treated with free DOX, D-Lys6 LHRH analog, or AEZS-108. qRT- PCR analysis revealed in OCM3 cells that AEZS-108 is a more potent inducer of MASPIN than free DOX. In conclusion, we show for the first time that AEZS-108 has a major impact in the regulation of angiogenesis thus plays a potential role in tumor suppression. Taken together, our results support the development of novel therapeutic strategies for UM focusing on LHRH receptors.
Collapse
Affiliation(s)
- Klara Fodor
- University of Debrecen, Department of Biopharmacy, Debrecen, Hungary
| | - Nikoletta Dobos
- University of Debrecen, Department of Biopharmacy, Debrecen, Hungary
| | - Andrew Schally
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Insitute, Miami, FL, USA.,University of Miami, Miller School of Medicine, Department of Pathology and Department of Medicine, Divisions of Oncology and Endocrinology, Sylvester Comprehensive Center, Miami, FL, USA
| | - Zita Steiber
- University of Debrecen, Department of Ophthalmology, Debrecen, Hungary
| | - Gabor Olah
- University of Debrecen, Department of Biopharmacy, Debrecen, Hungary
| | - Eva Sipos
- University of Debrecen, Department of Biopharmacy, Debrecen, Hungary
| | - Lorant Szekvolgyi
- University of Debrecen, Faculty of Medicine, Department of Biochemistry and Molecular Biology, MTA-DE Momentum, Genome Architecture and Recombination Research Group, Debrecen, Hungary
| | - Gabor Halmos
- University of Debrecen, Department of Biopharmacy, Debrecen, Hungary.,Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Insitute, Miami, FL, USA
| |
Collapse
|
9
|
Chang JH, Cheng CW, Yang YC, Chen WS, Hung WY, Chow JM, Chen PS, Hsiao M, Lee WJ, Chien MH. Downregulating CD26/DPPIV by apigenin modulates the interplay between Akt and Snail/Slug signaling to restrain metastasis of lung cancer with multiple EGFR statuses. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:199. [PMID: 30134935 PMCID: PMC6104010 DOI: 10.1186/s13046-018-0869-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Metastasis rather than the primary cancer determines the survival of cancer patients. Activation of Akt plays a critical role in the epithelial-to-mesenchymal transition (EMT), the initial step in lung cancer metastasis. Apigenin (API), a flavonoid with a potent Akt-inhibitory effect, shows oncostatic activities in various cancers. However, the effects of API on metastasis of non-small cell lung cancer (NSCLC) remain unclear. METHODS NSCLC cell lines with different epidermal growth factor receptor (EGFR) statuses and in vivo orthotopic bioluminescent xenograft model were employed to determine antitumor activity of API. Western blot and genetic knockdown by shRNA or genetic overexpression by DNA plasmids were performed to explore the underlying mechanisms. The Cancer Genome Atlas (TCGA) database was used to investigate the prognosis of API-targeted genes. RESULTS API was demonstrated to inhibit the migration/invasion of NSCLC cells harboring different EGFR statuses via suppressing the Snail/Slug-mediated EMT. Mechanistic investigations showed that CD26/dipeptidyl peptidase IV (DPPIV) was downregulated by API following suppressive interplay of Akt and Snail/Slug signaling to modulate the EMT and the invasive ability of NSCLC cells. CD26 expression was positively correlated with the invasive abilities of NSCLC cells and a worse prognosis of lung cancer patients. Furthermore, we observed that patients with CD26high/Akthigh tumors had the shortest recurrence-free survival times. In vivo, API drastically reduced the growth and metastasis of A549 xenografts through targeting CD26. CONCLUSIONS CD26 may be a useful biomarker for predicting NSCLC progression. API effectively suppressed lung cancer progression by targeting the CD26-Akt-Snail/Slug signaling pathway.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wan-Shen Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan. .,Department of Urology, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Qiu F, Tong H, Wang Y, Tao J, Wang H, Chen L. Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin. Biosci Biotechnol Biochem 2018; 82:1366-1376. [PMID: 29658404 DOI: 10.1080/09168451.2018.1459179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study is to investigate the role of miR-21-5p in angiogenesis of human retinal microvascular endothelial cells (HRMECs). HRMECs were incubated with 5 mM glucose, 30 mM glucose or 30 mM mannitol for 24 h, 48 h or 72 h. Then, HRMECs exposed to 30 mM glucose were transfected with miR-21-5p inhibitor. We found that high glucose increased the expression of miR-21-5p, VEGF, VEGFR2 and cell proliferation activity. Inhibition of miR-21-5p reduced high glucose-induced proliferation, migration, tube formation of HRMECs, and reversed the decreased expression of maspin as well as the abnormal activation of PI3K/AKT and ERK pathways. Down-regulation of maspin by siRNA significantly increased the activities of PI3K/AKT and ERK pathways. In conclusion, inhibition of miR-21-5p could suppress high glucose-induced proliferation and angiogenesis of HRMECs, and these effects may partly dependent on the regulation of PI3K/AKT and ERK pathways via its target protein maspin.
Collapse
Affiliation(s)
- Feng Qiu
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China.,b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Huijuan Tong
- c Department of Nursing , Shenyang Medical College , Shenyang , People's Republic of China
| | - Yawen Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Jun Tao
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Hailin Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Lei Chen
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China
| |
Collapse
|
11
|
Chang JH, Lai SL, Chen WS, Hung WY, Chow JM, Hsiao M, Lee WJ, Chien MH. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28648644 DOI: 10.1016/j.bbamcr.2017.06.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metastasis is the major cause of death from lung cancer. Quercetin, a widely distributed bioflavonoid, is well known to induce growth inhibition in a variety of human cancer cells, but how it affects lung cancer cell invasion and metastasis is unclear. Herein, we found that quercetin inhibited the migration/invasion of non-small cell lung cancer (NSCLC) cell lines and bone metastasis in an orthotopic A549 xenograft model by suppressing the Snail-mediated epithelial-to-mesenchymal transition (EMT). Moreover, survival times of animals were also prolonged after quercetin treatment. Mechanistic investigations found that quercetin suppressed Snail-dependent Akt activation by upregulating maspin and Snail-independent a disintegrin and metalloproteinase (ADAM) 9 expression pathways to modulate the invasive ability of NSCLC cells. In clinical samples, we observed that patients with Snailhigh/p-Akthigh tumors had the shortest survival times. In addition, a lower survival rate was also found in ADAM9high patients than in ADAM9low patients. Overall, our results provide new insights into the role of quercetin-induced molecular regulation in suppressing NSCLC metastasis and suggest that quercetin has potential therapeutic applications for metastatic NSCLC.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shu-Leung Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wan-Shen Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Urology, School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Leopizzi M, Cocchiola R, Milanetti E, Raimondo D, Politi L, Giordano C, Scandurra R, Scotto d'Abusco A. IKKα inibition by a glucosamine derivative enhances Maspin expression in osteosarcoma cell line. Chem Biol Interact 2016; 262:19-28. [PMID: 27931795 DOI: 10.1016/j.cbi.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 01/01/2023]
Abstract
Chronic inflammation has been associated to cancer development by the alteration of several inflammatory pathways, such as Nuclear Factor-κB pathway. In particular, IκB kinase α (IKKα), one of two catalytic subunit of IKK complex, has been described to be associated to cancer progression and metastasis in a number of cancers. The molecular mechanism by which IKKα affects cancer progression is not yet completely clarified, anyway an association between IKKα and the expression of Maspin (Mammary Serine Protease Inhibitor or SerpinB5), a tumor suppressor protein, has been described. IKKα shuttles between cytoplasm and nucleus, and when is localized into the nuclei, IKKα regulates the expression of several genes, among them Maspin gene, whose expression is repressed by high amount of nuclear IKKα. Considering that high levels of Maspin have been associated with reduced metastatic progression, it could be hypothesized that the repression of IKKα nuclear translocation could be associated with the repression of metastatic phenotype. The present study is aimed to explore the ability of a glucosamine derivative, 2-(N-Carbobenzyloxy)l-phenylalanylamido-2-deoxy-β-d-glucose (NCPA), synthesized in our laboratory, to stimulate the production of Maspin in an osteosarcoma cell line, 143B. Immunofluorescence and Western blotting experiments showed that NCPA is able to inhibit IKKα nuclear translocation, and to stimulate Maspin production. Moreover, in association with stimulation of Maspin production we found the decrease of β1 Integrin expression, the down-regulation of metalloproteases MMP-9 and MMP-13 production and cell migration inhibition. Taking in account that β1 Integrin and MMP-9 and -13 have been correlated with the invasiveness of osteosarcoma, considering that NCPA affects the invasiveness of 143B cell line, we suggest that this molecule could affect the osteosarcoma metastatic ability.
Collapse
Affiliation(s)
- Martina Leopizzi
- Dept of Medico-Surgical Sciences and Biotechnologies, Faculty of Medicine and Pharmacy, Sapienza University, Polo Pontino, Corso Della Repubblica 79, Latina, Italy
| | - Rossana Cocchiola
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy
| | - Edoardo Milanetti
- Dept. of Physics, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy
| | - Domenico Raimondo
- Dept. of Molecular Medicine, Sapienza University of Roma, Viale Regina Elena 324, 00161 Rome, Italy
| | - Laura Politi
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy
| | - Cesare Giordano
- Biomolecular Chemistry CNR Institute, P.le Aldo Moro, 5, 00185 Roma, Italy
| | - Roberto Scandurra
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy
| | - Anna Scotto d'Abusco
- Dept. of Biochemical Sciences, Sapienza University of Roma, P.le Aldo Moro, 5, 00185 Roma, Italy.
| |
Collapse
|
13
|
Mao C, Liu H, Chen P, Ye J, Teng L, Jia Z, Cao J. Cell-specific expression of artificial microRNAs targeting essential genes exhibit potent antitumor effect on hepatocellular carcinoma cells. Oncotarget 2016; 6:5707-19. [PMID: 25691059 PMCID: PMC4467396 DOI: 10.18632/oncotarget.3302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 12/15/2022] Open
Abstract
To achieve specific and potent antitumor effect of hepatocyte carcinoma cells, replication defective adenoviral vectors, namely rAd/AFP-amiRG, rAd/AFP-amiRE and rAd/AFP-amiRP, were constructed which were armed with artificial microRNAs (amiRs) targeting essential functional genes glyceraldehyde-3-phosphate dehydrogenase, eukaryotic translation initiation factor 4E and DNA polymerase α respectively under the control of a recombinant promoter comprised of human α-fetoprotein enhancer and basal promoter. The AFP enhancer/promoter showed specific high transcription activity in AFP-positive HCC cells Hep3B, HepG2 and SMMC7721, while low in AFP-negative cell Bcap37. All artificial microRNAs exhibited efficient knockdown of target genes. Decreased ATP production and protein synthesis was observed in rAd/AFP-amiRG and rAd/AFP-amiRE treated HCC cells. All three recombinant adenoviruses showed efficient blockage of cell cycle progression and significant suppression of HCC cells in vitro. In nude mice model bearing Hep3B xenograft, administration of rAd/AFP-amiRG showed potent antitumor effect. The strategy of tumor-specific knockdown of genes essential for cell survival and proliferation may suggest a novel promising approach for HCC gene therapy.
Collapse
Affiliation(s)
- Chenyu Mao
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China.,Cancer Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Hao Liu
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, P. R. China
| | - Ping Chen
- Sir Run Run Shaw Institute of Clinical Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Jingjia Ye
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Lisong Teng
- Cancer Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| | - Zhenyu Jia
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, P. R. China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
14
|
Zhou J, Hualong Q, Zhou P, Guo F. Different maspin functions in the lung adenocarcinoma A549 and SPC-A1 cell lines. Int J Mol Med 2015; 36:1440-8. [PMID: 26329803 DOI: 10.3892/ijmm.2015.2336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/24/2015] [Indexed: 11/06/2022] Open
Abstract
Mammary serine protease inhibitor (maspin) is a tumor suppressor gene that is silenced in the majority of cancer cells during metastatic progression by transcriptional and epigenetic mechanisms. The function of maspin in non‑small cell lung cancer cells (NSCLC) has not been clearly defined. In the present study, the expression of maspin in NSCLC cell lines, in particular, the adenocarcinoma cell lines, was heterogeneous. While the expression levels of maspin in PC‑9 and H460 cell lines were intact, the expression of maspin in the A549 and SPC‑A1 cells was hardly detected. Ectopic expression of maspin in A549 cells carrying the K‑ras gene point mutation significantly inhibited cell migration and invasion abilities, which was associated with downregulated expression of matrix metalloproteinase‑2 and integrin β1. Ectopic expression of maspin in SPC‑A1 cells harboring the wild‑type K‑ras gene predominantly affected cell growth via targeting the AKT signaling molecules. Maspin functions differently in lung adenocarcinoma cells, possibly due to the varied molecular characteristics.
Collapse
Affiliation(s)
- Jun Zhou
- Central Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qin Hualong
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peng Zhou
- Central Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Guo
- Central Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
15
|
Docosahexaenoic Acid Induces Cell Death in Human Non-Small Cell Lung Cancer Cells by Repressing mTOR via AMPK Activation and PI3K/Akt Inhibition. BIOMED RESEARCH INTERNATIONAL 2015; 2015:239764. [PMID: 26339598 PMCID: PMC4538321 DOI: 10.1155/2015/239764] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/07/2023]
Abstract
The anticancer properties and mechanism of action of omega-3 polyunsaturated fatty acids (ω3-PUFAs) have been demonstrated in several cancers; however, the mechanism in lung cancer remains unclear. Here, we show that docosahexaenoic acid (DHA), a ω3-PUFA, induced apoptosis and autophagy in non-small cell lung cancer (NSCLC) cells. DHA-induced cell death was accompanied by AMP-activated protein kinase (AMPK) activation and inactivated phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling. Knocking down AMPK and overexpressing Akt increased mTOR activity and attenuated DHA-induced cell death, suggesting that DHA induces cell death via AMPK- and Akt-regulated mTOR inactivation. This was confirmed in Fat-1 transgenic mice, which produce ω3-PUFAs. Lewis lung cancer (LLC) tumor cells implanted into Fat-1 mice showed slower growth, lower phospho-Akt levels, and higher levels of apoptosis and autophagy than cells implanted into wild-type mice. Taken together, these data suggest that DHA-induced apoptosis and autophagy in NSCLC cells are associated with AMPK activation and PI3K/Akt inhibition, which in turn lead to suppression of mTOR; thus ω3-PUFAs may be utilized as potential therapeutic agents for NSCLC treatment.
Collapse
|
16
|
Henderson V, Smith B, Burton LJ, Randle D, Morris M, Odero-Marah VA. Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression. Cell Adh Migr 2015. [PMID: 26207671 DOI: 10.1080/19336918.2015.1013383] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Snail, a zinc-finger transcription factor, induces epithelial-mesenchymal transition (EMT), which is associated with increased cell migration and metastasis in cancer cells. Rac1 is a small G-protein which upon activation results in formation of lamellipodia, the first protrusions formed by migrating cells. We have previously shown that Snail promotes cell migration through down-regulation of maspin tumor suppressor. We hypothesized that Snail's regulation of cell migration may also involve Rac1 signaling regulated by PI3K/AKT and/or MAPK pathways. We found that Snail overexpression in LNCaP and 22Rv1 prostate cancer cells increased Rac1 activity associated with increased cell migration, and the Rac1 inhibitor, NSC23766, could inhibit Snail-mediated cell migration. Conversely, Snail downregulation using shRNA in the aggressive C4-2 prostate cancer cells decreased Rac1 activity and cell migration. Moreover, Snail overexpression increased ERK and PI3K/AKT activity in 22Rv1 prostate cancer cells. Treatment of Snail-overexpressing 22Rv1 cells with LY294002, PI3K/AKT inhibitor or U0126, MEK inhibitor, decreased cell migration significantly, but only LY294002 significantly reduced Rac1 activity, suggesting that Snail promotes Rac1 activation via the PI3K/AKT pathway. Furthermore, 22Rv1 cells overexpressing Snail displayed decreased maspin levels, while inhibition of maspin expression in 22Rv1 cells with siRNA, led to increased PI3K/AKT, Rac1 activity and cell migration, without affecting ERK activity, suggesting that maspin is upstream of PI3K/AKT. Overall, we have dissected signaling pathways by which Snail may promote cell migration through MAPK signaling or alternatively through PI3K/AKT-Rac1 signaling that involves Snail inhibition of maspin tumor suppressor. This may contribute to prostate cancer progression.
Collapse
Affiliation(s)
- Veronica Henderson
- a Center for Cancer Research and Therapeutic Development; Department of Biological Sciences ; Clark Atlanta University ; Atlanta , GA USA
| | | | | | | | | | | |
Collapse
|
17
|
Berardi R, Morgese F, Savini A, Onofri A, Cascinu S. Maspin Staining and Its Use as Biomarker in Lung Cancer. BIOMARKERS IN CANCER 2015. [DOI: 10.1007/978-94-007-7681-4_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
McCarroll JA, Gan PP, Erlich RB, Liu M, Dwarte T, Sagnella SS, Akerfeldt MC, Yang L, Parker AL, Chang MH, Shum MS, Byrne FL, Kavallaris M. TUBB3/βIII-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res 2014; 75:415-25. [PMID: 25414139 DOI: 10.1158/0008-5472.can-14-2740] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
βIII-tubulin (encoded by TUBB3) expression is associated with therapeutic resistance and aggressive disease in non-small cell lung cancer (NSCLC), but the basis for its pathogenic influence is not understood. Functional and differential proteomics revealed that βIII-tubulin regulates expression of proteins associated with malignant growth and metastases. In particular, the adhesion-associated tumor suppressor maspin was differentially regulated by βIII-tubulin. Functionally, βIII-tubulin suppression altered cell morphology, reduced tumor spheroid outgrowth, and increased sensitivity to anoikis. Mechanistically, the PTEN/AKT signaling axis was defined as a critical pathway regulated by βIII-tubulin in NSCLC cells. βIII-Tubulin blockage in vivo reduced tumor incidence and growth. Overall, our findings revealed how βIII-tubulin influences tumor growth in NSCLC, defining new biologic functions and mechanism of action of βIII-tubulin in tumorigenesis.
Collapse
Affiliation(s)
- Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales Australia, New South Wales, Australia
| | - Pei Pei Gan
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Rafael B Erlich
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Marjorie Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Tanya Dwarte
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Sharon S Sagnella
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales Australia, New South Wales, Australia
| | - Mia C Akerfeldt
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Lu Yang
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Amelia L Parker
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Melissa H Chang
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Michael S Shum
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Frances L Byrne
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, University of New South Wales Australia, Sydney, New South Wales, Australia. ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales Australia, New South Wales, Australia.
| |
Collapse
|
19
|
Bodenstine TM, Seftor REB, Khalkhali-Ellis Z, Seftor EA, Pemberton PA, Hendrix MJC. Maspin: molecular mechanisms and therapeutic implications. Cancer Metastasis Rev 2013; 31:529-51. [PMID: 22752408 DOI: 10.1007/s10555-012-9361-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maspin, a non-inhibitory member of the serine protease inhibitor superfamily, has been characterized as a tumor suppressor gene in multiple cancer types. Among the established anti-tumor effects of Maspin are the inhibition of cancer cell invasion, attachment to extracellular matrices, increased sensitivity to apoptosis, and inhibition of angiogenesis. However, while significant experimental data support the role of Maspin as a tumor suppressor, clinical data regarding the prognostic implications of Maspin expression have led to conflicting results. This highlights the need for a better understanding of the context dependencies of Maspin in normal biology and how these are perturbed in the context of cancer. In this review, we outline the regulation and roles of Maspin in normal and developmental biology while discussing novel evidence and emerging theories related to its functions in cancer. We provide insight into the immense therapeutic potential of Maspin and the challenges related to its successful clinical translation.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
20
|
Berardi R, Morgese F, Onofri A, Mazzanti P, Pistelli M, Ballatore Z, Savini A, De Lisa M, Caramanti M, Rinaldi S, Pagliaretta S, Santoni M, Pierantoni C, Cascinu S. Role of maspin in cancer. Clin Transl Med 2013; 2:8. [PMID: 23497644 PMCID: PMC3602294 DOI: 10.1186/2001-1326-2-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/28/2013] [Indexed: 02/08/2023] Open
Abstract
Maspin (mammary serine protease inhibitor), is a member of the serine protease inhibitor/non-inhibitor superfamily. Its expression is down-regulated in breast, prostate, gastric and melanoma cancers but over-expressed in pancreatic, gallbladder, colorectal, and thyroid cancers suggesting that maspin may play different activities in different cell types. However, maspin expression seems to be correlated with better prognosis in prostate, bladder, lung, gastric, colorectal, head and neck, thyroid and melanoma cancer. In breast and ovarian cancer maspin significance is associated with its subcellular localization: nucleus maspin expression correlates with a good prognosis, whilst in pancreatic cancer it predicts a poor prognosis. Since tumor metastasis requires the detachment and invasion of tumor cells through the basement membrane and stroma, a selectively increased adhesion by the presence of maspin may contribute to the inhibition of tumor metastasis. Furthermore the different position of maspin inside the cell or its epigenetic modifications may explain the different behavior of the expression of maspin between tumors. The expression of maspin might be useful as a prognostic and possibly predictive factor for patients with particular types of cancer and data can guide physicians in selecting therapy. Its expression in circulating tumor cells especially in breast cancer, could be also useful in clinical practice along with other factors, such as age, comorbidities, blood examinations in order to select the best therapy to be carried out. Focusing on the malignancies in which maspin showed a positive prognostic value, therapeutic approaches studied so far aimed to re-activate a dormant tumor suppressor gene by designed transcription factors, to hit the system that inhibits the expression of maspin, to identify natural substances that can determine the activation and the expression of maspin or possible "molecules binds" to introduce maspin in cancer cell and gene therapy capable of up-regulating the maspin in an attempt to reduce primarily the risk of metastasis.Further studies in these directions are necessary to better define the therapeutic implication of maspin.
Collapse
Affiliation(s)
- Rossana Berardi
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Francesca Morgese
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Azzurra Onofri
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Paola Mazzanti
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Mirco Pistelli
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Zelmira Ballatore
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Agnese Savini
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Mariagrazia De Lisa
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Miriam Caramanti
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Silvia Rinaldi
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Silvia Pagliaretta
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Chiara Pierantoni
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| | - Stefano Cascinu
- Medical Oncology Unit, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi di Ancona, Via Conca, Ancona, 71-60126, Italy
| |
Collapse
|
21
|
Hrabakova R, Kollareddy M, Tyleckova J, Halada P, Hajduch M, Gadher SJ, Kovarova H. Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy. J Proteome Res 2012; 12:455-69. [PMID: 23151231 DOI: 10.1021/pr300819m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug resistance is the major obstacle to successful cancer therapy. Our study focuses on resistance to Aurora kinase inhibitors tested as anti-cancer drugs in clinical trials. We have used 2D electrophoresis in the pH ranges of 4-7 and 6-11 followed by protein identification using MALDI-TOF/TOF to compare the protein composition of HCT116 colon cancer cells either sensitive to CYC116 and ZM447439 inhibitors or resistant toward these drugs. The analysis also included p53(+/+) and p53(-/-) phenotypes of HCT116 cells. Our findings demonstrate that platelet-activating factor acetylhydrolase and GTP-binding nuclear protein Ran contribute to the development of resistance to ZM447439 only where resistance is related to p53. On the other hand, serine hydroxymethyltransferase was found to promote the tumor growth in cells resistant to CYC116 without the influence of p53. Computer modeling of interaction networks highlighted a direct link of the p53-independent mechanism of resistance to CYC116 with autophagy. Importantly, serine hydroxymethyltransferase, serpin B5, and calretinin represent the target proteins that may help overcome resistance in combination therapies. In addition, serpin B5 and calretinin appear to be candidate biomarkers that may be accessible in patients for monitoring of cancer therapy with ease.
Collapse
Affiliation(s)
- Rita Hrabakova
- Institute of Animal Physiology and Genetics, AS CR, vvi, Laboratory of Biochemistry and Molecular Biology of Germ Cells, Rumburska 89, 277 21 Libechov, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
22
|
Chuu CP, Lin HP, Ciaccio MF, Kokontis JM, Hause RJ, Hiipakka RA, Liao S, Jones RB. Caffeic acid phenethyl ester suppresses the proliferation of human prostate cancer cells through inhibition of p70S6K and Akt signaling networks. Cancer Prev Res (Phila) 2012; 5:788-97. [PMID: 22562408 DOI: 10.1158/1940-6207.capr-12-0004-t] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is a bioactive component derived from honeybee hive propolis. CAPE has been shown to have antimitogenic, anticarcinogenic, and other beneficial medicinal properties. Many of its effects have been shown to be mediated through its inhibition of NF-κB signaling pathways. We took a systematic approach to uncover the effects of CAPE from hours to days on the signaling networks in human prostate cancer cells. We observed that CAPE dosage dependently suppressed the proliferation of LNCaP, DU-145, and PC-3 human prostate cancer cells. Administration of CAPE by gavage significantly inhibited the tumor growth of LNCaP xenografts in nude mice. Using LNCaP cells as a model system, we examined the effect of CAPE on gene expression, protein signaling, and transcriptional regulatory networks using micro-Western arrays and PCR arrays. We built a model of the impact of CAPE on cell signaling which suggested that it acted through inhibition of Akt-related protein signaling networks. Overexpression of Akt1 or c-Myc, a downstream target of Akt signaling, significantly blocked the antiproliferative effects of CAPE. In summary, our results suggest that CAPE administration may be useful as an adjuvant therapy for prostate and potentially other types of cancers that are driven by the p70S6K and Akt signaling networks.
Collapse
Affiliation(s)
- Chih-Pin Chuu
- The Ben May Department for Cancer Research, The University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ganoderma tsugae Induces S Phase Arrest and Apoptosis in Doxorubicin-Resistant Lung Adenocarcinoma H23/0.3 Cells via Modulation of the PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:371286. [PMID: 22792123 PMCID: PMC3389685 DOI: 10.1155/2012/371286] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/26/2012] [Indexed: 01/28/2023]
Abstract
Ganoderma tsugae (GT) is a traditional Chinese medicine that exhibits significant antitumor activities against many types of cancer. This study investigated the molecular mechanism by which GT suppresses the growth of doxorubicin-resistant lung adenocarcinoma H23/0.3 cells. Our results reveal that GT inhibits the viability of H23/0.3 cells in vitro and in vivo and sensitizes the growth suppression effect of doxorubicin on H23/0.3 cells. The data also show that GT induces S phase arrest by interfering with the protein expression of cyclin A, cyclin E, CDK2, and CDC25A. Furthermore, GT induces cellular apoptosis via induction of a mitochondria/caspase pathway. In addition, we also demonstrate that the suppression of cell proliferation by GT is through down-regulation of the PI3K/Akt signaling pathway. In conclusion, this study suggests that GT may be a useful adjuvant therapeutic agent in the treatment of lung cancer.
Collapse
|
24
|
Wu S, Yu L, Cheng Z, Song W, Zhou L, Tao Y. Expression of maspin in non-small cell lung cancer and its relationship to vasculogenic mimicry. ACTA ACUST UNITED AC 2012; 32:346-352. [PMID: 22684556 DOI: 10.1007/s11596-012-0060-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Indexed: 01/02/2023]
Abstract
Maspin belongs to the serine protease inhibitor (serpin) family and has been proven to be a suppressor of tumor growth and metastasis in many types of tumors. The purpose of this study was to investigate the expression of maspin in non-small cell lung cancer (NSCLC) and its relationship to vasculogenic mimicry (VM). A total of 160 specimens of NSCLC were involved in this study and 20 specimens of normal lung tissue served as controls. VM, microvessel density (MVD) and the expression of maspin were detected by using immunohistochemical staining. The results showed that the positive rates of maspin and VM in the NSCLC group were 48.1% (77/160) and 36.9% (59/160), respectively, which were significantly different from those in the control group with the positive rates of maspin and VM being 100% and 0% respectively (P<0.05). VM, MVD and the expression level of maspin were significantly related to tumor differentiation, lymph node metastasis, clinical stages and postoperative survival time (all P<0.05). The maspin expression in patients with squamous cell carcinoma was significantly higher than that in those with adenocarcinoma (P<0.05). The maspin expression was negatively correlated with VM and MVD, and there was a positive correlation between VM and MVD. Maspin-negative expression, VM and high MVD score were negatively related to the 5-year-survival rate. PTNM stages, VM, MVD and maspin expression were independent prognostic factors for NSCLC (P<0.05). It was suggested that the loss of expression of maspin may participate in the invasion and metastasis of NSCLC and it has a positive relationship to VM in NSCLC. Combined detection of maspin, VM and MVD may help predict the progression and prognosis of NSCLC.
Collapse
Affiliation(s)
- Shiwu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Lan Yu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Zenong Cheng
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Wenqing Song
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Lei Zhou
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China
| | - Yisheng Tao
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
25
|
Abstract
INTRODUCTION The recent DNA methylation studies on cancers have revealed the necessity of profiling an entire human genome and not to restrict the profiling to specific regions of the human genome. It has been suggested that genome-wide DNA methylation analysis enables us to identify the genes that are regulated by DNA methylation in carcinogenesis. METHODS So, we performed whole-genome DNA methylation analysis for human lung squamous cell carcinoma (SCC), which is strongly related with smoking. We also performed microarrays using 21 pairs of normal lung tissues and tumors from patients with SCC. By combining these data, 30 hypermethylated and down-regulated genes, and 22 hypomethylated and up-regulated genes were selected. The gene expression level and DNA methylation pattern were confirmed by semiquantitative reverse-transcriptase polymerase chain reaction and pyrosequencing, respectively. RESULTS By these validations, we selected five hypermethylated and down-regulated genes and one hypomethylated and up-regulated gene. Moreover, these six genes were proven to be actually regulated by DNA methylation by confirming the recovery of their DNA methylation pattern and gene expression level using a demethylating agent. The DNA methylation pattern of the CYTL1 promoter region was significantly different between early and advanced stages of SCC. CONCLUSION In conclusion, by combining the whole-genome DNA methylation pattern and the gene expression profile, we identified the six genes (CCDC37, CYTL1, CDO1, SLIT2, LMO3, and SERPINB5) that are regulated by DNA methylation, and we suggest their value as target molecules for further study of SCC.
Collapse
|
26
|
Song KS, Jing K, Kim JS, Yun EJ, Shin S, Seo KS, Park JH, Heo JY, Kang JX, Suh KS, Wu T, Park JI, Kweon GR, Yoon WH, Hwang BD, Lim K. Omega-3-polyunsaturated fatty acids suppress pancreatic cancer cell growth in vitro and in vivo via downregulation of Wnt/Beta-catenin signaling. Pancreatology 2011; 11:574-84. [PMID: 22213040 DOI: 10.1159/000334468] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 10/06/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS ω3-polyunsaturated fatty acids (ω3- PUFAs) are known to possess anticancer properties. However, the relationship between ω3-PUFAs and β-catenin, one of the key components of the Wnt signaling pathway, in human pancreatic cancer remains poorly characterized. METHODS Human pancreatic cancer cells (SW1990 and PANC-1) were exposed to two ω3-PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), to investigate the relationship between ω3-PUFAs and the Wnt/β-catenin signaling pathway in vitro. Mouse pancreatic cancer (PANC02) cells were implanted into fat-1 transgenic mice, which express ω3 desaturases and result in elevated levels of ω3-PUFAs endogenously. The tumor size, levels of Wnt/β-catenin signaling molecules and apoptosis levels were analyzed to examine the influence of ω3-PUFAs in vivo. RESULTS DHA and EPA significantly inhibited cell growth and increased cell death in pancreatic cancer cells. DHA also reduced β-catenin expression, T cell factor/lymphoid-enhancing factor reporter activity and induced β-catenin/Axin/GSK-3β complex formation, a known precursor to β-catenin degradation. Furthermore, Wnt3a, a natural canonical Wnt pathway ligand, reversed DHA-induced growth inhibition in PANC-1 cells. Immunohistochemical analysis showed aberrant upregulation and increased nuclear staining of β-catenin in tumor tissues from pancreatic cancer patients. However, β-catenin levels in tumor tissues from fat-1 transgenic mice were reduced with a significant increase in apoptosis compared with those from control mice. CONCLUSION ω3-PUFAs may be an effective therapy for the chemoprevention and treatment of human pancreatic cancer. and IAP.
Collapse
Affiliation(s)
- Kyoung-Sub Song
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jing K, Song KS, Shin S, Kim N, Jeong S, Oh HR, Park JH, Seo KS, Heo JY, Han J, Park JI, Han C, Wu T, Kweon GR, Park SK, Yoon WH, Hwang BD, Lim K. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 2011; 7:1348-58. [PMID: 21811093 DOI: 10.4161/auto.7.11.16658] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Docosahexaenoic acid (DHA) has been reported to induce tumor cell death by apoptosis. However, little is known about the effects of DHA on autophagy, another complex well-programmed process characterized by the sequestration of cytoplasmic material within autophagosomes. Here, we show that DHA increased both the level of microtubule-associated protein light-chain 3 and the number of autophagic vacuoles without impairing autophagic vesicle turnover, indicating that DHA induces not only apoptosis but also autophagy. We also observed that DHA-induced autophagy was accompanied by p53 loss. Inhibition of p53 increased DHA-induced autophagy and prevention of p53 degradation significantly led to the attenuation of DHA-induced autophagy, suggesting that DHA-induced autophagy is mediated by p53. Further experiments showed that the mechanism of DHA-induced autophagy associated with p53 attenuation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of rapamycin. In addition, compelling evidence for the interplay between autophagy and apoptosis induced by DHA is supported by the findings that autophagy inhibition suppressed apoptosis and further autophagy induction enhanced apoptosis in response to DHA treatment. Overall, our results demonstrate that autophagy contributes to the cytotoxicity of DHA in cancer cells harboring wild-type p53.
Collapse
Affiliation(s)
- Kaipeng Jing
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Payne CM, Holubec H, Crowley-Skillicorn C, Nguyen H, Bernstein H, Wilcox G, Bernstein C. Maspin is a deoxycholate-inducible, anti-apoptotic stress-response protein differentially expressed during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:239-53. [PMID: 22162927 PMCID: PMC3234125 DOI: 10.2147/ceg.s24093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased maspin expression in the colon is related to colon cancer risk and patient survival. Maspin is induced by the hydrophobic bile acid, deoxycholate (DOC), which is an endogenous carcinogen and inducer of oxidative stress and DNA damage in the colon. Persistent exposure of colon epithelial cells, in vitro, to high physiologic levels of DOC results in increased constitutive levels of maspin protein expression associated with the development of apoptosis resistance. When an apoptosis-resistant colon epithelial cell line (HCT-116RC) developed in the authors' laboratory was treated with a maspin-specific siRNA probe, there was a statistically significant increase in apoptosis compared to treatment with an siRNA control probe. These results indicate, for the first time, that maspin is an anti-apoptotic protein in the colon. Immunohistochemical evaluation of maspin expression in human colonic epithelial cells during sporadic colon carcinogenesis (131 human tissues evaluated) indicated a statistically significant increase in maspin protein expression beginning at the polyp stage of carcinogenesis. There was no statistically significant difference in maspin expression between hyperplastic/adenomatous polyps and colonic adenocarcinomas. The absence of "field defects" in the non-neoplastic colonic mucosa of patients with colonic neoplasia indicates that maspin may drive the growth of tumors, in part, through its anti-apoptotic function.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona
| | | | | | | | | | | | | |
Collapse
|
29
|
Guo F, Kang S, Zhou P, Guo L, Ma L, Hou J. Maspin expression is regulated by the non-canonical NF-κB subunit in androgen-insensitive prostate cancer cell lines. Mol Immunol 2011; 49:8-17. [DOI: 10.1016/j.molimm.2011.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/16/2011] [Accepted: 07/18/2011] [Indexed: 01/15/2023]
|
30
|
Suppression of breast tumor growth and metastasis by an engineered transcription factor. PLoS One 2011; 6:e24595. [PMID: 21931769 PMCID: PMC3172243 DOI: 10.1371/journal.pone.0024595] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/15/2011] [Indexed: 11/19/2022] Open
Abstract
Maspin is a tumor and metastasis suppressor playing an essential role as gatekeeper of tumor progression. It is highly expressed in epithelial cells but is silenced in the onset of metastatic disease by epigenetic mechanisms. Reprogramming of Maspin epigenetic silencing offers a therapeutic potential to lock metastatic progression. Herein we have investigated the ability of the Artificial Transcription Factor 126 (ATF-126) designed to upregulate the Maspin promoter to inhibit tumor progression in pre-established breast tumors in immunodeficient mice. ATF-126 was transduced in the aggressive, mesenchymal-like and triple negative breast cancer line, MDA-MB-231. Induction of ATF expression in vivo by Doxycycline resulted in 50% reduction in tumor growth and totally abolished tumor cell colonization. Genome-wide transcriptional profiles of ATF-induced cells revealed a gene signature that was found over-represented in estrogen receptor positive (ER+) "Normal-like" intrinsic subtype of breast cancer and in poorly aggressive, ER+ luminal A breast cancer cell lines. The comparison transcriptional profiles of ATF-126 and Maspin cDNA defined an overlapping 19-gene signature, comprising novel targets downstream the Maspin signaling cascade. Our data suggest that Maspin up-regulates downstream tumor and metastasis suppressor genes that are silenced in breast cancers, and are normally expressed in the neural system, including CARNS1, SLC8A2 and DACT3. In addition, ATF-126 and Maspin cDNA induction led to the re-activation of tumor suppressive miRNAs also expressed in neural cells, such as miR-1 and miR-34, and to the down-regulation of potential oncogenic miRNAs, such as miR-10b, miR-124, and miR-363. As expected from its over-representation in ER+ tumors, the ATF-126-gene signature predicted favorable prognosis for breast cancer patients. Our results describe for the first time an ATF able to reduce tumor growth and metastatic colonization by epigenetic reactivation of a dormant, normal-like, and more differentiated gene program.
Collapse
|
31
|
Song KS, Li G, Kim JS, Jing K, Kim TD, Kim JP, Seo SB, Yoo JK, Park HD, Hwang BD, Lim K, Yoon WH. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells. BMC Cancer 2011; 11:307. [PMID: 21781302 PMCID: PMC3154178 DOI: 10.1186/1471-2407-11-307] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 07/22/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Polysaccharides extracted from the Phellinus linteus (PL) mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. METHODS The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP) activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC) proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. RESULTS PL (125-1000 μg/mL) significantly inhibited cell proliferation and decreased β-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of β-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF) transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in β-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. CONCLUSIONS These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/β-catenin signaling in certain colon cancer cells.
Collapse
Affiliation(s)
- Kyoung-Sub Song
- Department of Biochemistry, College of Medicine, Chungnam National University, Joong-gu, Daejeon 301-747, Korea
| | - Ge Li
- Department of General Surgery, Yanbian University Hospital, Jilin 133000, People's Republic of China
| | - Jong-Seok Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Joong-gu, Daejeon 301-747, Korea
| | - Kaipeng Jing
- Department of Biochemistry, College of Medicine, Chungnam National University, Joong-gu, Daejeon 301-747, Korea
| | - Tae-Dong Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Joong-gu, Daejeon 301-747, Korea
| | - Jin-Pyo Kim
- College of Pharmacy, Chungnam National University, Daejeon 301-747, Korea
| | - Seung-Bo Seo
- Ja Kwang Research Institute, Hankook Sin Yak Pharmaceutical Company, Nonsan 320-854, Korea
| | - Jae-Kuk Yoo
- Ja Kwang Research Institute, Hankook Sin Yak Pharmaceutical Company, Nonsan 320-854, Korea
| | | | - Byung-Doo Hwang
- Department of Biochemistry, College of Medicine, Chungnam National University, Joong-gu, Daejeon 301-747, Korea
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Chungnam National University, Joong-gu, Daejeon 301-747, Korea
- Cancer Research Institute, Chungnam National University, Joong-Ku, Daejeon 301-747, Korea
- Infection Signaling Network Research Center, Chungnam National University, Joong-Ku, Daejeon 301-747, Korea
| | - Wan-Hee Yoon
- Department of Biochemistry, College of Medicine, Chungnam National University, Joong-gu, Daejeon 301-747, Korea
| |
Collapse
|
32
|
Beltran AS, Blancafort P. Reactivation of MASPIN in non-small cell lung carcinoma (NSCLC) cells by artificial transcription factors (ATFs). Epigenetics 2011; 6:224-35. [PMID: 20948306 DOI: 10.4161/epi.6.2.13700] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Tumor suppressor genes have antiproliferative and antimetastatic functions, and thus, they negatively affect tumor progression. Reactivating specific tumor suppressor genes would offer an important therapeutic strategy to block tumor progression. Mammary Serine Protease Inhibitor (MASPIN) is a tumor suppressor gene that is not mutated or rearranged in tumor cells, but is silenced during metastatic progression by transcriptional and epigenetic mechanisms. In this work, we have investigated the ability of Artificial Transcription Factors (ATFs) to reactivate MASPIN expression and to reduce tumor growth and metastatic dissemination in Non-Small Cell Lung Carcinoma (NSCLC) cell lines carrying a hypermethylated MASPIN promoter. We found that the ATFs linked to transactivator domains were able to demethylate the MASPIN promoter. Consistently, we observed that co-treatment of ATF-transduced cells with methyltransferase inhibitors enhanced MASPIN expression as well as induction of tumor cell apoptosis. In addition to tumor suppressive functions, restoration of endogenous MASPIN expression was accompanied by inhibition of metastatic dissemination in nude mice. ATF-mediated reactivation of MASPIN lead to changes in cell motility and to induction of E-CADHERIN. These data suggest that ATFs are able to reprogram aggressive lung tumor cells towards a more epithelial, differentiated phenotype, and thus, represent novel therapeutic agents for metastatic lung cancers.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|