1
|
Liu Y, Wu G, Tao X, Dong J, Shi T, Shi C. Investigating the mechanism of METTL16-dependent m6A modification regulating the SAMD11 protein signaling pathway to inhibit thyroid cancer phenotypes. Int J Biol Macromol 2024; 280:136176. [PMID: 39362437 DOI: 10.1016/j.ijbiomac.2024.136176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Despite substantial progress in the research and treatment of thyroid cancer, many areas in the molecular mechanisms remain to be explored. This study aims to comprehensively and deeply investigate the key role and potential molecular mechanisms of RNA methyltransferase METTL16 in the development and progression of thyroid cancer. Firstly, through bioinformatics analysis of tumor databases, we examined the correlation between METTL16 expression levels and patient prognosis. Subsequently, immunofluorescence experiments on clinical patient tissue microarrays were conducted to validate these findings. We also compared the nucleic acid and protein expression levels of METTL16 in different cell lines. By integrating bioinformatics analysis of public databases, laboratory molecular biology experiments, and comprehensive data analysis, we revealed the high expression of METTL16 in clinical tissues and thyroid cancer cells, and confirmed its role in regulating the biological characteristics of cell proliferation, migration, and invasion in thyroid cancer through in vitro and in vivo experiments. Additionally, we identified SAMD11 as a target gene of METTL16 and further validated its importance and potential regulatory pathways in thyroid cancer.
Collapse
Affiliation(s)
- Yingming Liu
- The Fourth Department of General Surgery, the Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin 150001, Heilongjiang Province, China
| | - Gang Wu
- The Fourth Department of General Surgery, the Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin 150001, Heilongjiang Province, China
| | - Xingru Tao
- The Fourth Department of General Surgery, the Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin 150001, Heilongjiang Province, China
| | - Jiayu Dong
- The Fourth Department of General Surgery, the Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin 150001, Heilongjiang Province, China
| | - Tiefeng Shi
- The Fourth Department of General Surgery, the Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin 150001, Heilongjiang Province, China
| | - Chenlei Shi
- The Fourth Department of General Surgery, the Second Affiliated Hospital, Harbin Medical University, 246 Xuefu Road, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
Lischer C, Eberhardt M, Flamann C, Berges J, Güse E, Wessely A, Weich A, Retzlaff J, Dörrie J, Schaft N, Wiesinger M, März J, Schuler-Thurner B, Knorr H, Gupta S, Singh KP, Schuler G, Heppt MV, Koch EAT, van Kleef ND, Freen-van Heeren JJ, Turksma AW, Wolkenhauer O, Hohberger B, Berking C, Bruns H, Vera J. Gene network-based and ensemble modeling-based selection of tumor-associated antigens with a predicted low risk of tissue damage for targeted immunotherapy. J Immunother Cancer 2024; 12:e008104. [PMID: 38724462 PMCID: PMC11086525 DOI: 10.1136/jitc-2023-008104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Tumor-associated antigens and their derived peptides constitute an opportunity to design off-the-shelf mainline or adjuvant anti-cancer immunotherapies for a broad array of patients. A performant and rational antigen selection pipeline would lay the foundation for immunotherapy trials with the potential to enhance treatment, tremendously benefiting patients suffering from rare, understudied cancers. METHODS We present an experimentally validated, data-driven computational pipeline that selects and ranks antigens in a multipronged approach. In addition to minimizing the risk of immune-related adverse events by selecting antigens based on their expression profile in tumor biopsies and healthy tissues, we incorporated a network analysis-derived antigen indispensability index based on computational modeling results, and candidate immunogenicity predictions from a machine learning ensemble model relying on peptide physicochemical characteristics. RESULTS In a model study of uveal melanoma, Human Leukocyte Antigen (HLA) docking simulations and experimental quantification of the peptide-major histocompatibility complex binding affinities confirmed that our approach discriminates between high-binding and low-binding affinity peptides with a performance similar to that of established methodologies. Blinded validation experiments with autologous T-cells yielded peptide stimulation-induced interferon-γ secretion and cytotoxic activity despite high interdonor variability. Dissecting the score contribution of the tested antigens revealed that peptides with the potential to induce cytotoxicity but unsuitable due to potential tissue damage or instability of expression were properly discarded by the computational pipeline. CONCLUSIONS In this study, we demonstrate the feasibility of the de novo computational selection of antigens with the capacity to induce an anti-tumor immune response and a predicted low risk of tissue damage. On translation to the clinic, our pipeline supports fast turn-around validation, for example, for adoptive T-cell transfer preparations, in both generalized and personalized antigen-directed immunotherapy settings.
Collapse
Affiliation(s)
- Christopher Lischer
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Martin Eberhardt
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Cindy Flamann
- BZKF, Erlangen, Germany
- Department of Hematology and Oncology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Berges
- BZKF, Erlangen, Germany
- Department of Hematology and Oncology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Esther Güse
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja Wessely
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Adrian Weich
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jimmy Retzlaff
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jan Dörrie
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Niels Schaft
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manuel Wiesinger
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Johannes März
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Harald Knorr
- Department of Ophthalmology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- CCC Erlangen-EMN, Erlangen, Germany
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, Universität Rostock, Rostock, Germany
| | - Krishna Pal Singh
- Department of Systems Biology and Bioinformatics, Universität Rostock, Rostock, Germany
| | - Gerold Schuler
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus Vincent Heppt
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Elias Andreas Thomas Koch
- Hautklinik, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | | | | | | | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, Universität Rostock, Rostock, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- CCC Erlangen-EMN, Erlangen, Germany
| | - Carola Berking
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Dermatology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Heiko Bruns
- BZKF, Erlangen, Germany
- Department of Hematology and Oncology, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Julio Vera
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Dermatology, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Jiang H, Li L, Ma T, Wang R, Chen X, Xu K, Chen C, Liu Z, Wang H, Huang L. Serine/Threonine Kinase (STK) 33 promotes the proliferation and metastasis of human esophageal squamous cell carcinoma via inflammation-related pathway. Pathol Res Pract 2024; 254:155154. [PMID: 38286054 DOI: 10.1016/j.prp.2024.155154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The serine/threonine kinase (STK) 33 plays a key role in cancer cell proliferation and metastasis. Abnormal STK33 expression is closely related to malignancy of numerous cancers. This study suggests the important role of STK33 in the pathogenesis and metastatic progression of esophageal squamous cell carcinoma (ESCC). STK33 expression in human ESCC tissues was detected by immunohistochemical technique. Further, we analyzed the relationship between STK33 and clinical and pathological factors as well as the prognosis of patients. ECa109 cell line was cultured and transfected with STK33-RNAi lentiviral vector to perform Hochest33342 & PI and metastasis experiments. The TCGA database was used to analyze the STK33 expression level in ESCC. All statistical analyses were performed in SPSS 23.0 software. Differences with P < 0.05 were considered statistically significant. In human ESCC specimens, STK33 was overexpressed and associated with poor prognosis. Silencing STK33 expression suppressed ESCC proliferation, migration, invasion, and tumor growth. STK33 also mediated angiogenesis, TGFβ, and inflammatory response in ESCC. Mechanistic investigations revealed that STK33 regulates ESCC through multiple complex pathways. Dysregulated STK33 signaling promotes ESCC growth and progression. Thus, our findings identified STK33 as a candidate treatment target that improves ESCC therapy.
Collapse
Affiliation(s)
- Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Liping Li
- Public Health and Management College in Ningxia Medical University, Yinchuan 750004, China
| | - Tao Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ruixiao Wang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Xiaozhen Chen
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Ke Xu
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China; Ningxia Armed Police Corps, Yinchuan 750004, China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China; Department of Pathology and Pathophysiology, Shandong University, Cheeloo Healthy Science Center, Jinan 250012, China
| | - Zijin Liu
- Clinical Medical College in Ningxia Medical University, Yinchuan 750004, China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China; School of Medicine, Shanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Lingyan Huang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Xu J, Sun Y, Fu W, Fu S. MYCT1 in cancer development: Gene structure, regulation, and biological implications for diagnosis and treatment. Biomed Pharmacother 2023; 165:115208. [PMID: 37499454 DOI: 10.1016/j.biopha.2023.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Myc target 1 (MYCT1), located at 6q25.2, is a crucial player in cancer development. While widely distributed in cells, its subcellular localization varies across different cancer types. As a novel c-Myc target gene, MYCT1 is subject to regulation by multiple transcription factors. Studies have revealed aberrant expression of MYCT1 in various cancers, impacting pivotal biological processes such as proliferation, apoptosis, migration, genomic instability, and differentiation in cancer cells. Additionally, MYCT1 plays a critical role in modulating tumor angiogenesis and remodeling tumor immune responses within the tumor microenvironment. Despite certain debated functions, MYCT1 undeniably holds significance in cancer development. In this review, we comprehensively examine the relationship between MYCT1 and cancer, encompassing gene structure, regulation of gene expression, gene mutation, and biological function, with the aim of providing valuable insights for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jianan Xu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Yuanyuan Sun
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Weineng Fu
- Department of Medical genetics, China Medical University, Shenyang 110022, PR China
| | - Shuang Fu
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang 110022, PR China; Department of Medical genetics, China Medical University, Shenyang 110022, PR China.
| |
Collapse
|
5
|
Song L, Wang S, Li Q, Lu Y, Yang R, Feng X. Identification and Validation of a m5C RNA Modification-Related Gene Signature for Predicting Prognosis and Immunotherapeutic Efficiency of Gastric Cancer. JOURNAL OF ONCOLOGY 2023; 2023:9931419. [PMID: 36936373 PMCID: PMC10017215 DOI: 10.1155/2023/9931419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 03/10/2023]
Abstract
Background 5-methylcytosine (m5C) is a major site of RNA methylation modification, and its abnormal modification is associated with the development of gastric cancer (GC). This study aimed to explore the value of m5C-related genes on the prognosis of GC patients through bioinformatics. Methods First, m5C-related genes were obtained by nonnegative matrix factorization (NMF) analysis and differentially expressed analysis. The m5C-related model was established and validated in distinct datasets. Moreover, a differential analysis of risk scores according to clinical characteristics was performed. The enrichment analysis was carried out to elucidate the underlying molecular mechanisms. Furthermore, we calculated the differences in immunotherapy and chemotherapy sensitivity between the high- and low-risk groups. Finally, we validated the expression levels of identified model genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results A total of five m5C-related subtypes of GC patients in the TCGA database were identified. The m5C-related model was constructed based on APOD, ASCL2, MFAP2, and CREB3L3. Functional enrichment revealed that the m5C-related model might involve in the cell cycle and cell adhesion. Moreover, the high-risk group had a higher abundance of stromal and immune cells in malignant tumor tissues and a lower tumor purity than the low-risk group. The patients in the high-risk group were more sensitive to chemotherapy and had better sensitivity to CTLA4 inhibitors. Furthermore, qRT-PCR results from our specimens verified an over-expression of ASCL2, CREB3L3, and MFAP2 in the cancer cells compared with the normal cells. Conclusion A total of five GC subtypes were identified, and a risk model was constructed based on m5C modification.
Collapse
Affiliation(s)
- Li Song
- 1Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Shouguo Wang
- 1Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - Qiankun Li
- 2Department of Tissue Repair and Regeneration, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Lu
- 2Department of Tissue Repair and Regeneration, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Rungong Yang
- 2Department of Tissue Repair and Regeneration, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xianqi Feng
- 1Academy of Advanced Interdisciplinary Studies, Qilu University of Technology, (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| |
Collapse
|
6
|
Seo B, Coates D, Lewis J, Seymour G, Rich A. Unfolded protein response is involved in the metabolic and apoptotic regulation of oral squamous cell carcinoma. Pathology 2022; 54:874-881. [DOI: 10.1016/j.pathol.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
7
|
Fidalgo F, Torrezan GT, de Sá BCS, Barros BDDF, Moredo LF, Valieris R, de Souza SJ, Duprat JP, Krepischi ACV, Carraro DM. Family-based whole-exome sequencing identifies rare variants potentially related to cutaneous melanoma predisposition in Brazilian melanoma-prone families. PLoS One 2022; 17:e0262419. [PMID: 35085295 PMCID: PMC8794197 DOI: 10.1371/journal.pone.0262419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 12/25/2021] [Indexed: 11/19/2022] Open
Abstract
Genetic predisposition accounts for nearly 10% of all melanoma cases and has been associated with a dozen moderate- to high-penetrance genes, including CDKN2A, CDK4, POT1 and BAP1. However, in most melanoma-prone families, the genetic etiology of cancer predisposition remains undetermined. The goal of this study was to identify rare genomic variants associated with cutaneous melanoma susceptibility in melanoma-prone families. Whole-exome sequencing was performed in 2 affected individuals of 5 melanoma-prone families negative for mutations in CDKN2A and CDK4, the major cutaneous melanoma risk genes. A total of 288 rare coding variants shared by the affected relatives of each family were identified, including 7 loss-of-function variants. By performing in silico analyses of gene function, biological pathways, and variant pathogenicity prediction, we underscored the putative role of several genes for melanoma risk, including previously described genes such as MYO7A and WRN, as well as new putative candidates, such as SERPINB4, HRNR, and NOP10. In conclusion, our data revealed rare germline variants in melanoma-prone families contributing with a novel set of potential candidate genes to be further investigated in future studies.
Collapse
Affiliation(s)
- Felipe Fidalgo
- Genomics and Molecular Biology Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Giovana Tardin Torrezan
- Genomics and Molecular Biology Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| | | | | | | | - Renan Valieris
- Laboratory of Bioinformatics and Computational Biology, International Research Center, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Sandro J. de Souza
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Natal, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Ana Cristina Victorino Krepischi
- Department of Genetics and Evolutionary Biology, Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- Genomics and Molecular Biology Group, International Research Center/CIPE, A.C.Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), São Paulo, Brazil
| |
Collapse
|
8
|
Constitutional variants in POT1, TERF2IP, and ACD genes in patients with melanoma in the Polish population. Eur J Cancer Prev 2021; 29:511-519. [PMID: 32976206 DOI: 10.1097/cej.0000000000000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evaluation of the prevalence of POT1, ACD, and TERF2IP mutations among Polish melanoma patients. A cohort of 60 patients from melanoma-prone families, 1500 unselected cases and 1500 controls were genotyped. Methodology included Sanger sequencing, in-silico software predilection, and TaqMan assays. We identified three nonsynonymous variants: POT1 c.903 G>T; TERF2IP c.970 A>G; and ACD c.1544 T>C and a splice site variant ACD c.645 G>A. The c.903 G>T was predicted to be pathogenic according to PolyPhen-2, benign according to Mutation Taster, PROVEAN, AGVGD, and SIFT. The c.645 G>A was defined as disease caused by Mutation Taster and Human Splicing Finder and as variant of unknown significance by ClinVar. The other detected variants were described as benign. The c.903 G>T variant was present in two unselected cases and one control [P = 0.57, odds ratio (OR) = 2.00]; the c.645 G>A variant was not detected among the unselected cases and the controls; the c.970 A>G variant was present in 110 cases and 133 controls (P = 0.14, OR = 0.81); the c.1544 T>C variant was present in 687 cases and 642 controls (P = 0.11, OR = 1.07). We found no loss of heterozygosity of the c.903 G>T, c.970 A>G, and c.645 G>A variants. C.645 G>A variant had no effect on splicing or expression. The changes in POT1 c.903 G>T and ACD c.645 G>A can be classified as rare variants of unknown significance, the other variants appear to be polymorphisms. Germline mutations in POT1, ACD, and TERF2IP are infrequent among Polish melanoma patients.
Collapse
|
9
|
Rotunno M, Barajas R, Clyne M, Hoover E, Simonds NI, Lam TK, Mechanic LE, Goldstein AM, Gillanders EM. A Systematic Literature Review of Whole Exome and Genome Sequencing Population Studies of Genetic Susceptibility to Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:1519-1534. [PMID: 32467344 DOI: 10.1158/1055-9965.epi-19-1551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
The application of next-generation sequencing (NGS) technologies in cancer research has accelerated the discovery of somatic mutations; however, progress in the identification of germline variation associated with cancer risk is less clear. We conducted a systematic literature review of cancer genetic susceptibility studies that used NGS technologies at an exome/genome-wide scale to obtain a fuller understanding of the research landscape to date and to inform future studies. The variability across studies on methodologies and reporting was considerable. Most studies sequenced few high-risk (mainly European) families, used a candidate analysis approach, and identified potential cancer-related germline variants or genes in a small fraction of the sequenced cancer cases. This review highlights the importance of establishing consensus on standards for the application and reporting of variants filtering strategies. It also describes the progress in the identification of cancer-related germline variation to date. These findings point to the untapped potential in conducting studies with appropriately sized and racially diverse families and populations, combining results across studies and expanding beyond a candidate analysis approach to advance the discovery of genetic variation that accounts for the unexplained cancer heritability.
Collapse
Affiliation(s)
- Melissa Rotunno
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland.
| | - Rolando Barajas
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mindy Clyne
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elise Hoover
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | | | - Tram Kim Lam
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Leah E Mechanic
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alisa M Goldstein
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Elizabeth M Gillanders
- National Cancer Institute, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|