1
|
Kwas K, Szubert M, Wilczyński JR. Latest Update on lncRNA in Epithelial Ovarian Cancer-A Scoping Review. Cells 2025; 14:555. [PMID: 40214508 PMCID: PMC11988607 DOI: 10.3390/cells14070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides that do not encode proteins yet play critical roles in regulating gene expression at multiple levels, such as chromatin modification and transcription. These molecules are significantly engaged in cancer progression, development, metastasis, and chemoresistance. However, the function of lncRNAs in epithelial ovarian cancer (EOC) has not yet been thoroughly studied. EOC remains challenging due to its complex molecular pathogenesis, characterized by genetic and epigenetic alterations. Emerging evidence suggests that lncRNAs, such as XIST, H19, NEAT1, and MALAT1, are involved in EOC by modulating gene expression and signaling pathways, influencing processes like cell proliferation, invasion, migration, and chemoresistance. Despite extensive research, the precise mechanism of acting of lncRNAs in EOC pathogenesis and treatment resistance still needs to be fully understood, highlighting the need for further studies. This review aims to provide an updated overview of the current understanding of lncRNAs in EOC, emphasizing their potential as biomarkers and therapeutic targets. We point out the gaps in the knowledge regarding lncRNAs' influence on epithelial ovarian cancer (EOC), deliberating on new possible research areas.
Collapse
Affiliation(s)
- Katarzyna Kwas
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, Medical University of Lodz, 90-136 Łódź, Poland; (M.S.); (J.R.W.)
| | | | | |
Collapse
|
2
|
Alghamian Y, Soukkarieh C, Aljapawe A, Murad H. Exploring miRNA profile associated with cisplatin resistance in ovarian cancer cells. Biochem Biophys Rep 2025; 41:101906. [PMID: 39830525 PMCID: PMC11741906 DOI: 10.1016/j.bbrep.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Ovarian cancer is a common and lethal malignancy among women, whereas chemoresistance is one of the major challenges to its treatment and prognosis. Chemoresistance is a multifactorial phenomenon, involving various mechanisms that collectively modify the cell's response to treatment. Among the changes that arise in cells after acquiring chemoresistance is miRNA dysregulation. Here, this study aimed to identify miRNAs expression changes related to cisplatin resistance in ovarian cancer cells. The miRNA expression profiles of a cisplatin-sensitive A2780 cell line and two cisplatin-resistant cell lines, A2780cis and SK-OV-3, were analyzed using PCR array and qPCR. Accordingly, the miRNAs that were differentially expressed were further investigated to identify their biological functions and the target pathways using Gene Ontology (GO) annotation and KEGG pathway analyses. In order to evaluate the clinical significance of the differentially expressed miRNAs, survival analysis was carried out using expression data for ovarian cancer patients available in the Kaplan-Meier (KM) plotter database. The current work demonstrates that Nine miRNAs were found to be upregulated in cells resistant to cisplatin. Clearly, these miRNAs have functions in cell death/survival related processes and treatment response. They may also target pathways involved in treatment response like PI3K-Akt, pathway in cancer and MAPK. Interestingly, High expression of hsa-miR-133b, hsa-miR-512-are, hsa-miR-200b-3p, and hsa-miR-451a is related to poor overall survival in patients diagnosed with ovarian cancer. Our findings suggest that hsa-miR-133b, hsa-miR-512-5p, hsa-miR-200b-3p, and hsa-miR-451a are good candidates for future studies aimed to establishing functional links and exploring therapeutic interventions to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Syria
| | - Abdulmunim Aljapawe
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| | - Hossam Murad
- Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria
| |
Collapse
|
3
|
Wu Q, Zhu C, Zhao T, Liu T, Da M. Downregulation of LncRNA CCAT1 Enhances Chemosensitivity in Cisplatin-Resistant Gastric Cancer Cells. Drug Dev Res 2025; 86:e70048. [PMID: 39829433 DOI: 10.1002/ddr.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Chemotherapy is an effective treatment for gastric cancer. However, many patients develop resistance to chemotherapeutic agents during clinical treatment. LncRNA CCAT1 has recently been shown to influence cellular resistance to specific chemotherapeutic drugs, but its role in gastric cancer remains underexplored. This study aims to investigate the role of LncRNA CCAT1 in cisplatin resistance in gastric cancer cells and its potential underlying mechanisms. Gastric cancer cell lines with acquired resistance were established. The expression of CCAT1 was assessed in both cisplatin-sensitive and cisplatin-resistant AGS cell lines. CCAT1 expression was knocked down in AGS/DDP cells, and the changes in IC50 values were measured using the Cell Counting Kit-8 (CCK-8) assay. Apoptosis in gastric cancer cells was evaluated by flow cytometry. Additionally, Western blotting was employed to measure the expression levels of PI3K/AKT/mTOR signaling pathway proteins and apoptosis-related proteins in both interference and control groups. RT-qPCR results indicated that CCAT1 expression was significantly elevated in cisplatin-resistant gastric cancer cells compared to non-resistant cells. Similarly, CCK-8 assay results demonstrated that knocking down CCAT1 in resistant cells increased their sensitivity to cisplatin treatment. Flow cytometry and Western blot results further confirmed that silencing CCAT1 promoted apoptosis in these cells. Additionally, the expression of PI3K/AKT/mTOR signaling pathway proteins was higher in resistant cells compared to their sensitive counterparts, and silencing CCAT1 in AGS/DDP cells resulted in reduced expression of these proteins. In conclusion, the above studies demonstrated that LncRNA CCAT1 induced cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Qiong Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Chenglou Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Tiantian Zhao
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Tianxiang Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- The First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
4
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Derogar R, Nejadi Orang F, Abdoli Shadbad M. Competing endogenous RNA networks in ovarian cancer: from bench to bedside. EXCLI JOURNAL 2025; 24:86-112. [PMID: 39967908 PMCID: PMC11830916 DOI: 10.17179/excli2024-7827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025]
Abstract
Epithelial ovarian cancer is responsible for the majority of ovarian malignancies, and its highly invasive nature and chemoresistant development have been major obstacles to treating patients with mainstream treatments. In recent decades, the significance of microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs) has been highlighted in ovarian cancer development. This hidden language between these RNAs has led to the discovery of enormous regulatory networks in ovarian cancer cells that substantially affect gene expression. Aside from providing ample opportunities for targeted therapies, circRNA- and lncRNA-mediated ceRNA network components provide invaluable biomarkers. The current study provides a comprehensive and up-to-date review of the recent findings on the significance of these ceRNA networks in the hallmarks of ovarian cancer oncogenesis, treatment, diagnosis, and prognosis. Also, it provides the authorship with future perspectives in the era of single-cell RNA sequencing and personalized medicine.
Collapse
Affiliation(s)
- Roghaiyeh Derogar
- Fellowship in Gynecologic Oncology, Department of Gynecology, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | | | - Mahdi Abdoli Shadbad
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Cabarca S, Ili C, Vanegas C, Gil L, Vertel-Morrinson M, Brebi P. Drug resistance biomarkers in ovarian cancer: a bibliometric study from 2017 to 2022. Front Oncol 2024; 14:1450675. [PMID: 39588300 PMCID: PMC11586235 DOI: 10.3389/fonc.2024.1450675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024] Open
Abstract
Background Late diagnosis and patient relapse, mainly due to chemoresistance, are the key reasons for the high mortality rate of ovarian cancer patients. Hence, the search for biomarkers of high predictive value within the phenomenon of chemoresistance is vital. This study performs a bibliometric analysis of the scientific literature concerning biomarkers of drug resistance in ovarian cancer, considering the period from 2017 to 2022. Methods The terms "drug resistance biomarker" and "ovarian cancer" were linked by the Boolean operator "AND". The search was done in PubMed, selecting documents published over the last 5 years (2017-2022), which were analyzed with the open-source tool Bibliometrix developed in the R package. The language of the publications was restricted to English. Several types of papers such as case reports, clinical trials, comparative studies, and original articles were considered. Results A total of 335 scientific articles were analyzed. The United States and China were the leading contributors and established the largest number of scientific collaborations. The Huazhong University of Science and Technology and the University of Texas MD Anderson Cancer Center were the most influential institutions. The Journal of Ovarian Research, International Journal of Molecular Science, and Scientific Reports are among the most relevant journals. The study identified high-profile, relevant thematic niches and important descriptors that indicate topics of interest, including studies on women, cell lines, solid tumors, and gene expression regulation. As well as studies involving middle-aged and adult participants, and those focusing on prognosis evaluation. Descriptors such as "drug resistance," "neoplasm," "genetics," "biomarker," "gene expression profile," and "drug therapy" would indicate new research trends. In addition, we propose that BCL-2, CHRF, SNAIL, miR-363, iASPP, ALDH1, Fzd7, and EZH2 are potential biomarkers of drug resistance. Conclusions This paper contributes to the global analysis of the scientific investigation related to drug resistance biomarkers in ovarian cancer to facilitate further studies and collaborative networks, which may lead to future improvements in therapy for this lethal disease.
Collapse
Affiliation(s)
- Sindy Cabarca
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
| | - Carmen Ili
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Carlos Vanegas
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
| | - Laura Gil
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
- Semillero de Investigación (SIMICRO), Departamento de Biología, Facultad de Ciencias Naturales, exactas y de la educación, Universidad del Cauca, Popayán, Colombia
| | - Melba Vertel-Morrinson
- Grupo de Investigación Estadística y Modelamiento Matemático Aplicado (GEMMA), Departamento de Matemáticas, Facultad de Educación y Ciencias, Universidad de Sucre, Sincelejo, Colombia
- Doctorado en Ciencia y Tecnología de Alimentos – Universidad de Córdoba, Montería, Colombia
| | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
7
|
Bohrer C, Varon E, Peretz E, Reinitz G, Kinor N, Halle D, Nissan A, Shav-Tal Y. CCAT1 lncRNA is chromatin-retained and post-transcriptionally spliced. Histochem Cell Biol 2024; 162:91-107. [PMID: 38763947 PMCID: PMC11227459 DOI: 10.1007/s00418-024-02294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Super-enhancers are unique gene expression regulators widely involved in cancer development. Spread over large DNA segments, they tend to be found next to oncogenes. The super-enhancer c-MYC locus forms long-range chromatin looping with nearby genes, which brings the enhancer and the genes into proximity, to promote gene activation. The colon cancer-associated transcript 1 (CCAT1) gene, which is part of the MYC locus, transcribes a lncRNA that is overexpressed in colon cancer cells through activation by MYC. Comparing different types of cancer cell lines using RNA fluorescence in situ hybridization (RNA FISH), we detected very prominent CCAT1 expression in HeLa cells, observed as several large CCAT1 nuclear foci. We found that dozens of CCAT1 transcripts accumulate on the gene locus, in addition to active transcription occurring from the gene. The accumulating transcripts are released from the chromatin during cell division. Examination of CCAT1 lncRNA expression patterns on the single-RNA level showed that unspliced CCAT1 transcripts are released from the gene into the nucleoplasm. Most of these unspliced transcripts were observed in proximity to the active gene but were not associated with nuclear speckles in which unspliced RNAs usually accumulate. At larger distances from the gene, the CCAT1 transcripts appeared spliced, implying that most CCAT1 transcripts undergo post-transcriptional splicing in the zone of the active gene. Finally, we show that unspliced CCAT1 transcripts can be detected in the cytoplasm during splicing inhibition, which suggests that there are several CCAT1 variants, spliced and unspliced, that the cell can recognize as suitable for export.
Collapse
Affiliation(s)
- Chaya Bohrer
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eli Varon
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Eldar Peretz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Gita Reinitz
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - David Halle
- Biochemistry Laboratory, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Aviram Nissan
- Ziv Medical Center, Safed, Israel
- Surgical Innovation Laboratory, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
8
|
Zhang XY, Zhu BC, He M, Dong SS. Proto-oncogene c-Myb potentiates cisplatin resistance of ovarian cancer cells by downregulating lncRNA NKILA and modulating cancer stemness and LIN28A-let7 axis. J Ovarian Res 2024; 17:102. [PMID: 38745302 PMCID: PMC11092198 DOI: 10.1186/s13048-024-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
Ovarian cancer is a major gynecological cancer that has poor prognosis associated mainly to its late diagnosis. Cisplatin is an FDA approved ovarian cancer therapy and even though the therapy is initially promising, the patients mostly progress to resistance against cisplatin. The underlying mechanisms are complex and not very clearly understood. Using two different paired cell lines representing cisplatin-sensitive and the cisplatin-resistant ovarian cancer cells, the ES2 and the A2780 parental and cisplatin-resistant cells, we show an elevated proto-oncogene c-Myb in resistant cells. We further show down-regulated lncRNA NKILA in resistant cells with its de-repression in resistant cells when c-Myb is silenced. NKILA negatively correlates with cancer cell and invasion but has no effect on cellular proliferation or cell cycle. C-Myb activates NF-κB signaling which is inhibited by NKILA. The cisplatin resistant cells are also marked by upregulated stem cell markers, particularly LIN28A and OCT4, and downregulated LIN28A-targeted let-7 family miRNAs. Whereas LIN28A and downregulated let-7s individually de-repress c-Myb-mediated cisplatin resistance, the ectopic expression of let-7s attenuates LIN28A effects, thus underlying a c-Myb-NKILA-LIN28A-let-7 axis in cisplatin resistance of ovarian cancer cells that needs to be further explored for therapeutic intervention.
Collapse
Affiliation(s)
- Xue-Yan Zhang
- School of Nursing, Jilin University, Changchun, 130021, Jilin, China
| | - Bo-Chi Zhu
- Department of Neurology, Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Miao He
- Department of Anesthesiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130022, Jilin, China
| | - Shan-Shan Dong
- Department of Anesthesiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130022, Jilin, China.
| |
Collapse
|
9
|
Hu Z, Yuan L, Yang X, Yi C, Lu J. The roles of long non-coding RNAs in ovarian cancer: from functions to therapeutic implications. Front Oncol 2024; 14:1332528. [PMID: 38725621 PMCID: PMC11079149 DOI: 10.3389/fonc.2024.1332528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are multifunctional and participate in a variety of biological processes and gene regulatory networks. The deregulation of lncRNAs has been extensively implicated in diverse human diseases, especially in cancers. Overwhelming evidence demonstrates that lncRNAs are essential to the pathophysiological processes of ovarian cancer (OC), acting as regulators involved in metastasis, cell death, chemoresistance, and tumor immunity. In this review, we illustrate the expanded functions of lncRNAs in the initiation and progression of OC and elaborate on the signaling pathways in which they pitch. Additionally, the potential clinical applications of lncRNAs as biomarkers in the diagnosis and treatment of OC were emphasized, cementing the bridge of communication between clinical practice and basic research.
Collapse
Affiliation(s)
- Zhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Lijin Yuan
- Department of Obstetrics and Gynecology, Huangshi Puren Hospital, Huangshi, Hubei, China
| | - Xiu Yang
- Department of Obstetrics and Gynecology, Huangshi Central Hospital, Huangshi, Hubei, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinzhi Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
11
|
Pei L, Zhao F, Zhang Y. USP43 impairs cisplatin sensitivity in epithelial ovarian cancer through HDAC2-dependent regulation of Wnt/β-catenin signaling pathway. Apoptosis 2024; 29:210-228. [PMID: 38087046 PMCID: PMC10830728 DOI: 10.1007/s10495-023-01873-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 02/01/2024]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of cancer death all over the world. USP43 functions as a tumor promoter in various malignant cancers. Nevertheless, the biological roles and mechanisms of USP43 in EOC remain unknown. In this study, USP43 was highly expressed in EOC tissues and cells, and high expression of USP43 were associated with a poor prognosis of EOC. USP43 overexpression promoted EOC cell proliferation, enhanced the ability of migration and invasion, decreased cisplatin sensitivity and inhibited apoptosis. Knockdown of USP43 in vitro effectively retarded above malignant progression of EOC. In vivo xenograft tumors, silencing USP43 slowed tumor growth and enhanced cisplatin sensitivity. Mechanistically, USP43 inhibited HDAC2 degradation and enhanced HDAC2 protein stability through its deubiquitylation function. USP43 diminished the sensitivity of EOC cells to cisplatin through activation of the Wnt/β-catenin signaling pathway mediated by HDAC2. Taken together, the data in this study revealed the functions of USP43 in proliferation, migration, invasion, chemoresistance of EOC cells, and the mechanism of HDAC2-mediated Wnt/β-catenin signaling pathway. Thus, USP43 might serve as a potential target for the control of ovarian cancer progression.
Collapse
Affiliation(s)
- Lipeng Pei
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Yi Zhang
- Department of Gynecology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, People's Republic of China.
| |
Collapse
|
12
|
Fan Y, Pan Y, Jia L, Gu S, Liu B, Mei Z, Lv C, Huang H, Zhu G, Deng Q. BIRC5 facilitates cisplatin-chemoresistance in a m 6A-dependent manner in ovarian cancer. Cancer Med 2024; 13:e6811. [PMID: 38112021 PMCID: PMC10807614 DOI: 10.1002/cam4.6811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/26/2023] [Accepted: 09/26/2023] [Indexed: 12/20/2023] Open
Abstract
Cisplatin-based chemotherapy is the standard treatment for metastatic ovarian cancer (OC). However, chemoresistance continues to pose significant clinical challenges. Recent research has highlighted the baculoviral inhibitor of the apoptosis protein repeat-containing 5 (BIRC5) as a member of the inhibitor of the apoptosis protein (IAP) family. Notably, BIRC5, which has robust anti-apoptotic capabilities, is overexpressed in numerous cancers. Its dysfunction has been linked to challenges in cancer treatment. Yet, the role of BIRC5 in the chemoresistance of OC remains elusive. In our present study, we observed an upregulation of BIRC5 in cisplatin-resistant cell lines. This upregulation was associated with enhanced chemoresistance, which was diminished when the expression of BIRC5 was silenced. Intriguingly, BIRC5 exhibited a high number of N6-methyladenosine (m6A) binding sites. The modification of m6A was found to enhance the expression of BIRC5 by recognizing and binding to the 3'-UTR of mRNA. Additionally, the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was shown to stabilize BIRC5 mRNA, synergizing with METTL3 and intensifying chemoresistance. Supporting these in vitro findings, our in vivo experiments revealed that tumors were significantly smaller in size and volume when BIRC5 was silenced. This reduction was notably counteracted by co-silencing BIRC5 and overexpressing IGF2BP1. Our results underscored the pivotal role of BIRC5 in chemoresistance. The regulation of its expression and the stability of its mRNA were influenced by m6A modifications involving both METTL3 and IGF2BP1. These insights presented BIRC5 as a promising potential therapeutic target for addressing cisplatin resistance in OC.
Collapse
Affiliation(s)
- Yadan Fan
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Yinglian Pan
- Department of OncologyThe First Affiliated Hospital of Hainan Medical CollegeHaikouChina
| | - Liping Jia
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Shuzhen Gu
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Binxin Liu
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Ziman Mei
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Chunyan Lv
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Haohao Huang
- Department of NeurosurgeryGeneral Hospital of Central Theater Command of Chinese People's Liberation ArmyWuhanChina
| | - Genhai Zhu
- Department of GynecologyHainan General Hospital, Hainan Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Qingchun Deng
- Department of GynecologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| |
Collapse
|
13
|
Li W, Zhao X, Zhang R, Xie J, Zhang G. Silencing of NLRP3 Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Mediators Inflamm 2023; 2023:7700673. [PMID: 37304662 PMCID: PMC10256449 DOI: 10.1155/2023/7700673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/16/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
Background Ovarian cancer is a fatal gynecological malignancy. The resistance to chemotherapy in ovarian cancer treatment has been a thorny issue. This study is aimed at probing the molecular mechanism of cisplatin (DDP) resistance in ovarian cancer. Methods Bioinformatics analysis was conducted to examine the role of Nod-like receptor protein 3 (NLRP3) in ovarian cancer. The NLRP3 level in DDP-resistant ovarian cancer tumors and cell lines (SKOV3/DDP and A2780/DDP) was evaluated by applying immunohistochemical staining, western blot, and qRT-PCR. Cell transfection was conducted to regulate the NLRP3 level. Cell abilities to proliferate, migrate, invade, and apoptosis were measured employing colony formation, CCK-8, wound healing, transwell, and TUNEL assays, respectively. Cell cycle analysis was completed via flow cytometry. Corresponding protein expression was measured by western blot. Results NLRP3 was overexpressed in ovarian cancer, correlated with poor survival, and upregulated in DDP-resistant ovarian cancer tumors and cells. NLRP3 silencing exerted antiproliferative, antimigrative, anti-invasive, and proapoptotic effects in A2780/DDP and SKOV3/DDP cells. Additionally, NLRP3 silencing inactivated NLRPL3 inflammasome and blocked epithelial-mesenchymal transition via enhancing E-cadherin and lowering vimentin, N-cadherin, and fibronectin. Conclusion NLRP3 was overexpressed in DDP-resistant ovarian cancer. NLRP3 knockdown hindered the malignant process of DDP-resistant ovarian cancer cells, providing a potential target for DPP-based ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Weijia Li
- Department of Gynecology, Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| | - Rujian Zhang
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Jiabin Xie
- Department of Gynecology, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, 528000 Guangdong, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang, China
| |
Collapse
|
14
|
Bayraktar E, Bayraktar R, Oztatlici H, Lopez-Berestein G, Amero P, Rodriguez-Aguayo C. Targeting miRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Noncoding RNA 2023; 9:27. [PMID: 37104009 PMCID: PMC10145226 DOI: 10.3390/ncrna9020027] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Since the discovery of the first microRNAs (miRNAs, miRs), the understanding of miRNA biology has expanded substantially. miRNAs are involved and described as master regulators of the major hallmarks of cancer, including cell differentiation, proliferation, survival, the cell cycle, invasion, and metastasis. Experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression, and because miRNAs act as tumor suppressors or oncogenes (oncomiRs), they have emerged as attractive tools and, more importantly, as a new class of targets for drug development in cancer therapeutics. With the use of miRNA mimics or molecules targeting miRNAs (i.e., small-molecule inhibitors such as anti-miRS), these therapeutics have shown promise in preclinical settings. Some miRNA-targeted therapeutics have been extended to clinical development, such as the mimic of miRNA-34 for treating cancer. Here, we discuss insights into the role of miRNAs and other non-coding RNAs in tumorigenesis and resistance and summarize some recent successful systemic delivery approaches and recent developments in miRNAs as targets for anticancer drug development. Furthermore, we provide a comprehensive overview of mimics and inhibitors that are in clinical trials and finally a list of clinical trials based on miRNAs.
Collapse
Affiliation(s)
- Emine Bayraktar
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Recep Bayraktar
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hulya Oztatlici
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Histology and Embryology, Gaziantep University, Gaziantep 27310, Turkey
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Nandi S, Mondal A, Ghosh A, Mukherjee S, Das C. Lnc-ing epigenetic mechanisms with autophagy and cancer drug resistance. Adv Cancer Res 2023; 160:133-203. [PMID: 37704287 DOI: 10.1016/bs.acr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.
Collapse
Affiliation(s)
- Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Indian Institute of Science Education and Research, Kolkata, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
16
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Chen L, Wang J, Liu Q. Long noncoding RNAs as therapeutic targets to overcome chemoresistance in ovarian cancer. Front Cell Dev Biol 2022; 10:999174. [PMID: 36105363 PMCID: PMC9464811 DOI: 10.3389/fcell.2022.999174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been characterized to play an essential role in ovarian tumorigenesis via controlling a variety of cellular processes, such as cell proliferation, invasion, apoptotic death, metastasis, cell cycle, migration, metabolism, immune evasion, and chemoresistance. The one obstacle for the therapeutic efficacy is due to the development of drug resistance in ovarian cancer patients. Therefore, in this review article, we describe the role of lncRNAs in chemoresistance in ovarian cancer. Moreover, we discuss the molecular mechanism of lncRNAs-involved drug resistance in ovarian cancer. We conclude that lncRNAs could be useful targets to overcome chemoresistance and improve therapeutic outcome in ovarian cancer patients.
Collapse
|
18
|
Xia C, Sun Y, Li Y, Ma J, Shi J. LncRNA CCAT1 enhances chemoresistance in hepatocellular carcinoma by targeting QKI-5. Sci Rep 2022; 12:7826. [PMID: 35552451 PMCID: PMC9098857 DOI: 10.1038/s41598-022-11644-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
A major reason for treatment failure of cancer is acquisition of drug resistance. The specific mechanisms underlying hepatocellular carcinoma (HCC) chemoresistance need to be fully elucidated. lncRNAs involve in drug resistance in some cancers, however, the exact functions of lncRNA colon cancer-associated transcript 1 (CCAT1) in oxaliplatin resistance in HCC are still unknown. Our study indicated that CCAT1 promoted HCC proliferation and reduced the apoptosis induced by oxaliplatin. Knockout of CCAT1 could increased chemosensitivity in vitro and in vivo. Further study found that QKI-5 was an important mediator and blocking of QKI-5/p38 MAPK signaling pathway could enhance oxaliplatin sensitivity. In conclusions, CCAT1 promoted proliferation and oxaliplatin resistance via QKI-5/p38 MAPK signaling pathway in HCC. Targeting CCAT1 in combination with chemotherapeutics may be a promising alternative to reverse drug resistance in HCC treatment.
Collapse
Affiliation(s)
- Chongsheng Xia
- Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Yurui Sun
- Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Yang Li
- Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Junli Ma
- Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jing Shi
- Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
19
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
20
|
Cen K, Chen M, He M, Li Z, Song Y, Liu P, Jiang Q, Xu S, Jia Y, Shen P. Sporoderm-Broken Spores of Ganoderma lucidum Sensitizes Ovarian Cancer to Cisplatin by ROS/ERK Signaling and Attenuates Chemotherapy-Related Toxicity. Front Pharmacol 2022; 13:826716. [PMID: 35264959 PMCID: PMC8900012 DOI: 10.3389/fphar.2022.826716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/28/2022] [Indexed: 11/15/2022] Open
Abstract
Although platinum-based chemotherapeutics such as cisplatin are the cornerstone of treatment for ovarian cancer, their clinical application is profoundly limited due to chemoresistance and severe adverse effects. Sporoderm-broken spores of Ganoderma lucidum (SBSGL) have been reported to possess antitumor effects. However, the function and mechanism of SBSGL and its essential composition, ganoderic acid D (GAD), in the cisplatin therapy on ovarian cancer have yet to be investigated. Here, we investigated the combined effect of SBSGL and cisplatin in an ovarian tumor xenograft model. The results showed that combining SBSGL with cisplatin reduced tumor growth and ameliorated cisplatin-induced intestinal injury and myelosuppression. We also confirmed that GAD could enhance the therapeutic effect of cisplatin in SKOV3 and cisplatin-resistant SKOV3/DDP cells by increasing the intracellular reactive oxygen species (ROS). Mechanistically, we proved that ROS-mediated ERK signaling inhibition played an important role in the chemo-sensitization effect of GAD on cisplatin in ovarian cancer. Taken together, combining SBSGL with cisplatin provides a novel therapeutic strategy against ovarian cancer.
Collapse
Affiliation(s)
- Kaili Cen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengye He
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhao Li
- Zhejiang Shouxiangu Botanical Drug Institute Co., Ltd., Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pu Liu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Suzhen Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Min X, Zhao L, Shi Y, Wang J, Lv H, Song X, Zhao Q, Zhao Q, Jing R, Hu J. Gomisin J attenuates cerebral ischemia/reperfusion injury by inducing anti-apoptotic, anti-inflammatory, and antioxidant effects in rats. Bioengineered 2022; 13:6908-6918. [PMID: 35235758 PMCID: PMC8973623 DOI: 10.1080/21655979.2022.2026709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality in humans. Cerebral ischemia-reperfusion (CIR) injury serves as a leading cause of stroke. Schisandra chinensis is a well-known Chinese traditional medicine. In this study, we explored the role of Gomisin J (GJ), a compound of S. chinensis, in CIR using a middle cerebral artery occlusion/reperfusion rat model and the possible mechanisms. We identified that GJ reduced neurological scores, cerebral infarction, and water content in the I/R rat brain. Importantly, GJ rescued I/R treatment-reduced neuron survival in the hippocampus, inhibited apoptosis of ischemic tissues in I/R rats, increased B-cell lymphoma-extra-large (Bcl-XL) expression, and reduced the levels of cleaved caspase-3, Bax, cyclooxygenase-2, nuclear factor kappa-B, and nitric oxide in I/R rat brain tissues. Furthermore, GJ treatment enhanced nuclear factor E2 related factor 2 (Nrf2) translocation, heme oxygenase-1 (HO-1) expression, superoxide dismutase and glutathione peroxidase activities, and glutathione level. Overall, GJ treatment GJ attenuates CIR injury by inducing anti-apoptotic, antioxidant, and anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Xiaoli Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.,Department of Internal Medicine, Clinical Medicine School, Yunnan Traditional Chinese Medicine University, Kunming, Yunnan Province, China
| | - Linping Zhao
- Yunnan Communications Vocational and Technical College, Institute of International Exchange, Kunming, Yunnan Province, China
| | - Ying Shi
- Department of Internal Medicine, Clinical Medicine School, Yunnan Traditional Chinese Medicine University, Kunming, Yunnan Province, China
| | - Jian Wang
- Department of Internal Medicine, Clinical Medicine School, Yunnan Traditional Chinese Medicine University, Kunming, Yunnan Province, China
| | - Hongling Lv
- Department of Internal Medicine, Clinical Medicine School, Yunnan Traditional Chinese Medicine University, Kunming, Yunnan Province, China
| | - Xiaoxiao Song
- Department of Epidemiology and Statistics, Public Health School, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qunyuan Zhao
- Department of Emergency, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Qing Zhao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui Jing
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiayi Hu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
22
|
Jiang Z, Zhou X, Han L, Li F, Hao X, Dong Q, Chen X. miR-21 Targets Long Noncoding RNA PCAT29 to Promote Cell Proliferation in Neuroblastoma. Crit Rev Eukaryot Gene Expr 2022; 32:1-8. [PMID: 36017911 DOI: 10.1615/critreveukaryotgeneexpr.2022042471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Long noncoding RNA (lncRNA) PCAT29 has been characterized as a tumor suppressor in several types of cancer, although its involvement in neuroblastoma (NB) is unknown. In this study, we analyzed the role of PCAT29 in NB. In paired NB and nontumor tissues from 56 patients with NB, microRNA (miR)-21 and PCAT29 expression was determined with reverse transcription quantitative PCR. Correlation between miR-21 and PCAT29 was evaluated with linear regression. The interaction between miR-21 and PCAT29 was predicted by the IntaRNA 2.0 program. In NB cells, miR-21 and PCAT29 were overexpressed to explore their relationship. In NB cell proliferation, the roles of miR-21 and PCAT29 were analyzed with propidium iodide staining and Ki67 staining assays. The results showed that PCAT29 was downregulated and miR-21 was upregulated in NB. MiR-21 was inversely correlated with PCAT29. RNA-RNA interaction prediction revealed that miR-21 might target PCAT29. MiR-21 overexpression reduced PCAT29 expression and increased NB cell proliferation, whereas PCAT29 overexpression inhibited NB cell proliferation. PCAT29 overexpression promoted NB cell apoptosis, while miR-21 overexpression inhibited NB cell apoptosis and attenuated PCAT29 overexpression-mediated NB cell apoptosis. In conclusion, MiR-21 may target PCAT29 to promote cell apoptosis in NB.
Collapse
Affiliation(s)
- Zhong Jiang
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Xianjun Zhou
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Lulu Han
- Department of Operation Room, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Fujiang Li
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Xiwei Hao
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Qian Dong
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Xin Chen
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao City, Shandong Province 266000, People's Republic of China
| |
Collapse
|
23
|
Yu S, Gu Y, Wang T, Mu L, Wang H, Yan S, Wang A, Wang J, Liu L, Shen H, Na M, Lin Z. Study of Neuronal Apoptosis ceRNA Network in Hippocampal Sclerosis of Human Temporal Lobe Epilepsy by RNA-Seq. Front Neurosci 2021; 15:770627. [PMID: 34867172 PMCID: PMC8633546 DOI: 10.3389/fnins.2021.770627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Hippocampal sclerosis (HS) is one of the most common pathological type of intractable temporal lobe epilepsy (TLE), often characterized by hippocampal atrophy, neuronal apoptosis, and gliogenesis. However, the molecular mechanisms of neuronal apoptosis in patients with HS are still not fully understood. We therefore conducted a pilot study focusing on the neuronal apoptosis ceRNA network in the sclerotic hippocampus of intractable TLE patients. In this research, RNA sequencing (RNA-seq) was utilized to quantify the expression levels of lncRNAs, miRNAs, and mRNAs in TLE patients with HS (HS-TLE) and without HS (non-HS-TLE), and reverse transcription-quantitative PCR (qRT-PCR). The interactions of differential expression (DE) lncRNAs-miRNAs or DEmiRNAs-mRNAs were integrated by StarBase v3.0, and visualized using Cytoscape. Subsequently, we annotate the functions of lncRNA-associated competitive endogenous RNA (ceRNA) network through analysis of their interactions with mRNAs. RNA-seq analyses showed 381 lncRNAs, 42 miRNAs, and 457 mRNAs were dysregulated expression in HS-TLE compared to non-HS-TLE. According to the ceRNA hypothesis, 5 HS-specific ceRNA network were constructed. Among them, the core ceRNA regulatory network involved in neuronal apoptosis was constituted by 10 DElncRNAs (CDKN2B-AS1, MEG3, UBA6-AS1, etc.), 7 DEmiRNAs (hsa-miR-155-5p, hsa-miR-195-5p, hsa-miR-200c-3p, etc.), and 3 DEmRNAs (SCN2A, DYRK2, and MAPK8), which belonging to apoptotic and epileptic terms. Our findings established the first ceRNA network of lncRNA-mediated neuronal apoptosis in HS-TLE based on transcriptome sequencing, which provide a new perspective on the disease pathogenesis and precise treatments of HS.
Collapse
Affiliation(s)
- Shengkun Yu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yifei Gu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Long Mu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Aoweng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiabin Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Liu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Lv H, Jin S, Zou B, Liang Y, Xie J, Wu S. Analyzing the whole-transcriptome profiles of ncRNAs and predicting the competing endogenous RNA networks in cervical cancer cell lines with cisplatin resistance. Cancer Cell Int 2021; 21:532. [PMID: 34641878 PMCID: PMC8513283 DOI: 10.1186/s12935-021-02239-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/30/2021] [Indexed: 01/07/2023] Open
Abstract
Background Cervical cancer (CC) is one of the most common malignant tumors in women. In order to identify the functional roles and the interaction between mRNA and non-coding RNA (ncRNA, including lncRNA, circRNA and miRNA) in CC cisplatin (DDP) resistance, the transcription profile analysis was performed and a RNA regulatory model of CC DDP resistance was proposed. Methods In this study, whole-transcriptome sequencing analysis was conducted to study the ncRNA and mRNA profiles of parental SiHa cells and DDP resistant SiHa/DDP cells. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed for pathway analysis based on the selected genes with significant differences in expression. Subsequently, ceRNA network analyses were conducted using the drug resistance-related genes and signal-transduction pathways by Cytoscape software. Furthermore, a ceRNA regulatory pathway, namely lncRNA-AC010198.2/hsa-miR-34b-3p/STC2, was selected by RT-qPCR validation and literature searching. Further validation was done by both dual-luciferase reporter gene assays and RNA pull-down assays. Besides that, the changes in gene expression and biological function were further studied by performing si-AC010198.2 transfection and DDP resistance analyses in the SiHa and SiHa/DDP cells, respectively. Results Using bioinformatics and dual-luciferase reporter gene analyses, we found that AC010198.2/miR-34b-3p/STC2 may be a key pathway for DDP resistance in CC cells. Significant differences in both downstream gene expression and the biological function assays including colony formation, migration efficiency and cell apoptosis were identified in AC010198.2 knockdown cells. Conclusions Our study will not only provide new markers and potential mechanism models for CC DDP resistance, but also discover novel targets for attenuating it. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02239-6.
Collapse
Affiliation(s)
- Huimin Lv
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital), Shanxi Academy of Medical Sciences, TaiYuan, 030032, China
| | - Shanshan Jin
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital), Shanxi Academy of Medical Sciences, TaiYuan, 030032, China.,Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, TaiYuan, 030001, China
| | - Binbin Zou
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxiang Liang
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, TaiYuan, 030001, China
| | - Jun Xie
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, TaiYuan, 030001, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, TaiYuan, 030001, China
| | - Suhui Wu
- Department of Obstetrics and Gynecology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital), Shanxi Academy of Medical Sciences, TaiYuan, 030032, China.
| |
Collapse
|
25
|
Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res 2021; 14:127. [PMID: 34593006 PMCID: PMC8485521 DOI: 10.1186/s13048-021-00882-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the leading causes of cancer related deaths among women. Due to the asymptomatic tumor progression and lack of efficient screening methods, majority of OC patients are diagnosed in advanced tumor stages. A combination of surgical resection and platinum based-therapy is the common treatment option for advanced OC patients. However, tumor relapse is observed in about 70% of cases due to the treatment failure. Cisplatin is widely used as an efficient first-line treatment option for OC; however cisplatin resistance is observed in a noticeable ratio of cases. Regarding, the severe cisplatin side effects, it is required to clarify the molecular biology of cisplatin resistance to improve the clinical outcomes of OC patients. Cisplatin resistance in OC is associated with abnormal drug transportation, increased detoxification, abnormal apoptosis, and abnormal DNA repair ability. MicroRNAs (miRNAs) are critical factors involved in cell proliferation, apoptosis, and chemo resistance. MiRNAs as non-invasive and more stable factors compared with mRNAs, can be introduced as efficient markers of cisplatin response in OC patients. MAIN BODY In present review, we have summarized all of the miRNAs that have been associated with cisplatin resistance in OC. We also categorized the miRNAs based on their targets to clarify their probable molecular mechanisms during cisplatin resistance in ovarian tumor cells. CONCLUSIONS It was observed that miRNAs mainly exert their role in cisplatin response through regulation of apoptosis, signaling pathways, and transcription factors in OC cells. This review highlighted the miRNAs as important regulators of cisplatin response in ovarian tumor cells. Moreover, present review paves the way of suggesting a non-invasive panel of prediction markers for cisplatin response among OC patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Li G, Gong J, Cao S, Wu Z, Cheng D, Zhu J, Huang X, Tang J, Yuan Y, Cai W, Zhang H. The Non-Coding RNAs Inducing Drug Resistance in Ovarian Cancer: A New Perspective for Understanding Drug Resistance. Front Oncol 2021; 11:742149. [PMID: 34660304 PMCID: PMC8514763 DOI: 10.3389/fonc.2021.742149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer, a common malignant tumor, is one of the primary causes of cancer-related deaths in women. Systemic chemotherapy with platinum-based compounds or taxanes is the first-line treatment for ovarian cancer. However, resistance to these chemotherapeutic drugs worsens the prognosis. The underlying mechanism of chemotherapeutic resistance in ovarian cancer remains unclear. Non-coding RNAs, including long non-coding RNAs, microRNAs, and circular RNAs, have been implicated in the development of drug resistance. Abnormally expressed non-coding RNAs can promote ovarian cancer resistance by inducing apoptosis inhibition, protective autophagy, abnormal tumor cell proliferation, epithelial-mesenchymal transition, abnormal glycolysis, drug efflux, and cancer cell stemness. This review summarizes the role of non-coding RNAs in the development of chemotherapeutic resistance in ovarian cancer, including their mechanisms, targets, and potential signaling pathways. This will facilitate the development of novel chemotherapeutic agents that can target these non-coding RNAs and improve ovarian cancer treatment.
Collapse
Affiliation(s)
- Gaofeng Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jun Gong
- Department of Abdominal and Pelvic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Shulong Cao
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaoyang Wu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Dong Cheng
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Zhu
- Hubei Enshi College, Enshi, China
| | - Xuqun Huang
- Department of Thoracic Medical Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Jingyi Tang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Yuning Yuan
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Wenqi Cai
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Haiyuan Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| |
Collapse
|
27
|
Lan H, Yuan J, Zeng D, Liu C, Guo X, Yong J, Zeng X, Xiao S. The Emerging Role of Non-coding RNAs in Drug Resistance of Ovarian Cancer. Front Genet 2021; 12:693259. [PMID: 34512721 PMCID: PMC8430835 DOI: 10.3389/fgene.2021.693259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer is one of the most common gynecological malignancies with highest mortality rate among all gynecological malignant tumors. Advanced ovarian cancer patients can obtain a survival benefit from chemotherapy, including platinum drugs and paclitaxel. In more recent years, the administration of poly-ADP ribose polymerase inhibitor to patients with BRCA mutations has significantly improved the progression-free survival of ovarian cancer patients. Nevertheless, primary drug resistance or the acquisition of drug resistance eventually leads to treatment failure and poor outcomes for ovarian cancer patients. The mechanism underlying drug resistance in ovarian cancer is complex and has not been fully elucidated. Interestingly, different non-coding RNAs (ncRNAs), such as circular RNAs, long non-coding RNAs and microRNAs, play a critical role in the development of ovarian cancer. Accumulating evidence has indicated that ncRNAs have important regulatory roles in ovarian cancer resistance to chemotherapy reagents and targeted therapy drugs. In this review, we systematically highlight the emerging roles and the regulatory mechanisms by which ncRNAs affect ovarian cancer chemoresistance. Additionally, we suggest that ncRNAs can be considered as potential diagnostic and prognostic biomarkers as well as novel therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Hua Lan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Yuan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Da Zeng
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Chu Liu
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohui Guo
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiahui Yong
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangyang Zeng
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
28
|
Yin J, Huang HY, Long Y, Ma Y, Kamalibaike M, Dawuti R, Li L. circ_C20orf11 enhances DDP resistance by inhibiting miR-527/YWHAZ through the promotion of extracellular vesicle-mediated macrophage M2 polarization in ovarian cancer. Cancer Biol Ther 2021; 22:440-454. [PMID: 34382916 DOI: 10.1080/15384047.2021.1959792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer is a fatal gynecologic tumor, and conventional treatment is mainly limited by chemoresistance. The mechanism contributing to chemoresistance in ovarian cancer has yet to be established. This study aimed to investigate the specific role of circ_C20orf11 in regulating chemoresistance to cisplatin (DDP)in ovarian cancer. We first established two DDP-resistant ovarian cancer cell lines. Then, we identified the effect of circ_C20orf11 on specific cellular characteristics (proliferation, apoptosis, DDP resistance) via a series of experiments. The binding sites between circ_C20orf11 and miR-527 and between miR-527 and YWHAZ were predicted using a bioinformatics tool and confirmed with a dual-luciferase reporter assay. Furthermore, extracellular vesicles (EVs) derived from DDP-resistant cell lines were identified, and the effect of EVs on macrophage polarization was examined. circ_C20orf11 was upregulated in ovarian cancer. Increased circ_C20orf11 expression enhanced DDP resistance and cell proliferation and reduced cell apoptosis in DDP-resistant cell lines after DDP treatment by sponging miR-527 and promoting YWHAZ expression. In addition, we found that DDP-resistant cell-derived EVs can induce macrophage M2 polarization, whereas silencing of circ_C20orf11 inhibited EV-induced macrophage M2 polarization. Consistent with these results, silencing of circ_C20orf11 enhanced sensitivity to DDP in vivo. Importantly, we proved that circ_C20orf11 expression was upregulated in EVs extracted from the serum of DDP-resistant patients. Our study demonstrated that silencing circ_C20orf11 sensitizes ovarian cancer to DDP by promoting miR-527/YWHAZ signaling and EV-mediated macrophage M2 polarization.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pharmacy, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Hai-Yan Huang
- Department of Medical Image Center, The Frist Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan Province, P.R. China
| | - Yan Ma
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Maerkeya Kamalibaike
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Reyanguli Dawuti
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Li Li
- Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
29
|
Dong YJ, Feng W, Li Y. HOTTIP-miR-205-ZEB2 Axis Confers Cisplatin Resistance to Ovarian Cancer Cells. Front Cell Dev Biol 2021; 9:707424. [PMID: 34322490 PMCID: PMC8311351 DOI: 10.3389/fcell.2021.707424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is a deadly gynecological malignancy with resistance to cisplatin a major clinical problem. We evaluated a role of long non-coding (lnc) RNA HOTTIP (HOXA transcript at the distal tip) in the cisplatin resistance of ovarian cancer cells, using paired cisplatin sensitive and resistant A2780 cells along with the SK-OV-3 cells. HOTTIP was significantly elevated in cisplatin resistant cells and its silencing reversed the cisplatin resistance of resistant cells. HOTTIP was found to sponge miR-205 and therefore HOTTIP silenced cells had higher levels of miR-205. Downregulation of miR-205 could attenuate HOTTIP-silencing effects whereas miR-205 upregulation in resistant cells was found to re-sensitize cells to cisplatin. HOTTIP silencing also led to reduced NF-κB activation, clonogenic potential and the reduced expression of stem cell markers SOX2, OCT4, and NANOG, an effect that could be attenuated by miR-205. Finally, ZEB2 was identified as the gene target of miR-205, thus completing the elucidation of HOTTIP-miR-205-ZEB2 as the novel axis which is functionally involved in the determination of cisplatin resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Yu-Jie Dong
- Department of Emergency, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Feng
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Li
- Department of Emergency, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Huang B, Wei M, Hong L. Long noncoding RNA HULC contributes to paclitaxel resistance in ovarian cancer via miR-137/ITGB8 axis. Open Life Sci 2021; 16:667-681. [PMID: 34250246 PMCID: PMC8253452 DOI: 10.1515/biol-2021-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 01/05/2023] Open
Abstract
Long noncoding RNA (lncRNA) highly upregulated in liver cancer (HULC) has been reported to be implicated in chemoresistance. However, the potential mechanism of HULC in paclitaxel (PTX)-resistant ovarian cancer (OC) remains undefined. The expression of RNAs and proteins was measured by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blot assay. The PTX resistance and apoptotic rate were assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry, respectively. Furthermore, the interaction between miR-137 and HULC or integrin beta-8 (ITGB8) was predicted by miRcode and starBase v2.0 and then verified by dual luciferase reporter and RNA pull-down assays. In addition, the xenograft mice model was established to explore the effects of HULC in vivo. HULC was significantly upregulated and miR-137 was downregulated in PTX-resistant OC tissues and cells. Also, the HULC depletion suppressed tumor growth and PTX resistance in PTX-treated mice. miR-137 was verified as a target of HULC and directly targeted ITGB8. And HULC knockdown downregulated ITGB8 expression by targeting miR-137. miR-137 inhibitor or ITGB8 overexpression mitigated the suppressive impacts of HULC knockdown on PTX resistance. Collectively, HULC modulated ITGB8 expression to promote PTX resistance of OC by sponging miR-137.
Collapse
Affiliation(s)
- Bo Huang
- Department of Gynaecology and Obstetrics, Hubei General Hospital, No. 99 Zhang-Zhi-Dong Street, Wuchang District, Wuhan 430000, Hubei, China
| | - Min Wei
- Department of Gynaecology and Obstetrics, Hubei General Hospital, No. 99 Zhang-Zhi-Dong Street, Wuchang District, Wuhan 430000, Hubei, China
| | - Li Hong
- Department of Gynaecology and Obstetrics, Hubei General Hospital, No. 99 Zhang-Zhi-Dong Street, Wuchang District, Wuhan 430000, Hubei, China
| |
Collapse
|
31
|
Wang Z. LncRNA CCAT1 downregulation increases the radiosensitivity of non-small cell lung cancer cells. Kaohsiung J Med Sci 2021; 37:654-663. [PMID: 33955133 DOI: 10.1002/kjm2.12387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
This study aims to investigate if the radiosensitivity of non-small cell lung cancer (NSCLC) cells can be regulated by long noncoding RNA (lncRNA) colon cancer associated transcript1 (CCAT1). CCAT1 was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in NSCLC cells (A549, H1299, SK-MES1, H460, and H647) and human bronchial epithelial cells (16HBE). H460 and A549 cells were then selected for the determination of CCAT1 expression after exposure to radiation (0, 2, 4, 6 Gy) at different time points (0, 6, 12, 24 h). Colony forming assay was performed to evaluate the effects of CCAT1 siRNA or pcDNA3.1-CCAT1 vector on the radiosensitivity of H460 and A549 cells. Then, flow cytometry, western blotting and qRT-PCR were also conducted. CCAT1 was increased in NSCLC cells when compared with 16HBE cells, which was declined in a time- and dosage-dependent manner after exposure to radiation. The H460 and A549 cell colonies were decreased and the γ-H2AX expression was elevated with the increase of radiation dosage, which was more obvious in those transfected with CCAT1 siRNA. CCAT1 downregulation arrested NSCLC cells at G2/M phase. Moreover, the enhanced apoptosis of radiotherapy-treated NSCLC cells with reductions of p-p38/p38, p-ERK/ERK, and p-JNK/JNK was promoted by siCCAT1, but it was reversed by pcDNA3.1-CCAT1 vector. Inhibiting CCAT1 regulated cell cycle, DNA damage and apoptosis of NSCLC cells, and affected MAPK pathway, eventually improving the radiosensitivity of NSCLC.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Oncology Radiotherapy 2, Yantai Yantaishan Hospital, Yantai, Shandong, China
| |
Collapse
|
32
|
Han Y, You J, Han Y, Liu Y, Huang M, Lu X, Chen J, Zheng Y. LINC00184 Promotes Ovarian Cancer Cells Proliferation and Cisplatin Resistance by Elevating CNTN1 Expression via Sponging miR-1305. Onco Targets Ther 2021; 14:2711-2726. [PMID: 33907415 PMCID: PMC8064690 DOI: 10.2147/ott.s280490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Objective Cisplatin resistance is one of the main reasons for treatment failure in ovarian cancer (OC). Here, the effects of LINC00184 on cisplatin-resistant OC were studied. Patients and Methods LINC00184, miR-1305 and CNTN1 expression in tissues from 70 OC patients was determined by qRT-PCR, in situ hybridization and Western blot. OC cell lines and OC cisplatin-resistant cell lines were cultured. Cells were transfected using Lipofectamine 2000 and treated with 100 nM cisplatin. Cell proliferation and apoptosis were researched by the CCK-8 assay and flow cytometry. A dual-luciferase reporter gene assay and RNA pull-down were performed to explore the relationship between two genes. LINC00184, miR-1305 and CNTN1 expression in cells was detected by qRT-PCR and Western blot. An in vivo experiment was conducted using nude mice. Ki67 and CNTN1 expression and apoptosis of xenograft tumors were investigated using immunohistochemistry and a TUNEL assay. Results LINC00184 was up-regulated in OC clinical tissues and OC cells, especially in cisplatin-resistant OC patients and cells (p<0.01 or p<0.0001). LINC00184 overexpression significantly enhanced OC cell proliferation and cisplatin resistance, and inhibited OC cell apoptosis (p<0.05 or p<0.01). LINC00184 elevated CNTN1 expression via sponging miR-1305. LINC00184 overexpression markedly exacerbated the malignant phenotype of OC cells and cisplatin-resistant OC cells via the miR-1305/CNTN1 axis (p<0.01). Silencing of LINC00184 significantly suppressed OC cell growth and cisplatin resistance in vivo (p<0.01). LINC00184 silencing inhibited Ki67 and CNTN1 expression and promoted apoptosis of xenograft tumors. CNTN1 overexpression promoted proliferation and cisplatin resistance, and reduced apoptosis of OC cells (p<0.05 or p<0.01). Conclusion LINC00184 promoted OC cell proliferation and cisplatin resistance by elevating CNTN1 expression via sponging miR-1305.
Collapse
Affiliation(s)
- Yuwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jun You
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yun Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yinglei Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Menghui Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaoyan Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Jingjing Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, People's Republic of China
| |
Collapse
|
33
|
Ashrafizadeh M, Shahinozzaman M, Orouei S, Zarrin V, Hushmandi K, Hashemi F, Kumar A, Samarghandian S, Najafi M, Zarrabi A. Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. Curr Cancer Drug Targets 2021; 21:640-665. [PMID: 33535952 DOI: 10.2174/1568009621666210203110305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is considered to be the first place among the cancer-related deaths worldwide and demands novel strategies in the treatment of this life-threatening disorder. The aim of this review is to explore regulation of epithelial-to-mesenchymal transition (EMT) by long non-coding RNAs (lncRNAs) in lung cancer. INTRODUCTION LncRNAs can be considered as potential factors for targeting in cancer therapy, since they regulate a bunch of biological processes, e.g. cell proliferation, differentiation and apoptosis. The abnormal expression of lncRNAs occurs in different cancer cells. On the other hand, epithelial-to-mesenchymal transition (EMT) is a critical mechanism participating in migration and metastasis of cancer cells. METHOD Different databases including Googlescholar, Pubmed and Sciencedirect were used for collecting articles using keywords such as "LncRNA", "EMT", and "Lung cancer". RESULT There are tumor-suppressing lncRNAs that can suppress EMT and metastasis of lung cancer cells. Expression of such lncRNAs undergoes down-regulation in lung cancer progression and restoring their expression is of importance in suppressing lung cancer migration. There are tumor-promoting lncRNAs triggering EMT in lung cancer and enhancing their migration. CONCLUSION LncRNAs are potential regulators of EMT in lung cancer, and targeting them, both pharmacologically and genetically, can be of importance in controlling migration of lung cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742. United States
| | - Sima Orouei
- Department of Genetics Science, Tehran Medical Sciences Branch, Islamic Azad University, Tehran. Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541. Korea
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141. Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| |
Collapse
|
34
|
Zhu F, Niu R, Shao X, Shao X. FGD5‑AS1 promotes cisplatin resistance of human lung adenocarcinoma cell via the miR‑142‑5p/PD‑L1 axis. Int J Mol Med 2020; 47:523-532. [PMID: 33416094 PMCID: PMC7797468 DOI: 10.3892/ijmm.2020.4816] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies have reported that long non-coding (lnc) RNA FGD5-antisense 1 (FGD5-AS1) promotes tumor proliferation, migration and invasion. Therefore, the present study aimed to elucidate the biological role and underlying molecular mechanisms of FGD5-AS1 in cisplatin (DDP) resistance of lung adenocarcinoma (LAD) cells. The results demonstrated that FGD5-AS1 was highly expressed in DDP-resistant LAD tissues and cells. Knockdown of FGD5-AS1 decreased the proliferative, migratory and invasive abilities of DDP-resistant LAD cells. Moreover, it was identified that FGD5-AS1 acted as a molecular sponge for microRNA (miR)-142, and FGD5-AS1 enhanced the resistance of A549/DDP cells to DDP by directly interacting with miR-142. Programmed cell death 1 ligand 1 (PD-L1) was also found to be a key effector of the FGD5-AS1/miR-142 axis to regulate the chemoresistance of DDP-resistant LAD cells. In conclusion, the present study demonstrated that FGD5-AS1 increased DDP resistance of LAD via the miR-142/PD-L1 axis, which may offer a novel treatment strategy for patients with DDP-resistant LAD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People's Hospital, Wuxi, Jiangsu 214000, P.R. China
| | - Rong Niu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaoliang Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiaonan Shao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
35
|
LncRNAs in Ovarian Cancer Progression, Metastasis, and Main Pathways: ceRNA and Alternative Mechanisms. Int J Mol Sci 2020; 21:ijms21228855. [PMID: 33238475 PMCID: PMC7700431 DOI: 10.3390/ijms21228855] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OvCa) develops asymptomatically until it reaches the advanced stages with metastasis, chemoresistance, and poor prognosis. Our review focuses on the analysis of regulatory long non-coding RNAs (lncRNAs) competing with protein-coding mRNAs for binding to miRNAs according to the model of competitive endogenous RNA (ceRNA) in OvCa. Analysis of publications showed that most lncRNAs acting as ceRNAs participate in OvCa progression: migration, invasion, epithelial-mesenchymal transition (EMT), and metastasis. More than 30 lncRNAs turned out to be predictors of survival and/or response to therapy in patients with OvCa. For a number of oncogenic (CCAT1, HOTAIR, NEAT1, and TUG1 among others) and some suppressive lncRNAs, several lncRNA/miRNA/mRNA axes were identified, which revealed various functions for each of them. Our review also considers examples of alternative mechanisms of actions for lncRNAs besides being ceRNAs, including binding directly to mRNA or protein, and some of them (DANCR, GAS5, MALAT1, and UCA1 among others) act by both mechanisms depending on the target protein. A systematic analysis based on the data from literature and Panther or KEGG (Kyoto Encyclopedia of Genes and Genomes) databases showed that a significant part of lncRNAs affects the key pathways involved in OvCa metastasis, EMT, and chemoresistance.
Collapse
|
36
|
Back to the Future: Rethinking the Great Potential of lncRNA S for Optimizing Chemotherapeutic Response in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12092406. [PMID: 32854207 PMCID: PMC7564391 DOI: 10.3390/cancers12092406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/17/2023] Open
Abstract
Ovarian cancer (OC) is one of the most fatal cancers in women worldwide. Currently, platinum- and taxane-based chemotherapy is the mainstay for the treatment of OC. Yet, the emergence of chemoresistance results in therapeutic failure and significant relapse despite a consistent rate of primary response. Emerging evidence substantiates the potential role of lncRNAs in determining the response to standard chemotherapy in OC. The objective of this narrative review is to provide an integrated, synthesized overview of the current state of knowledge regarding the role of lncRNAs in the emergence of resistance to platinum- and taxane-based chemotherapy in OC. In addition, we sought to develop conceptual frameworks for harnessing the therapeutic potential of lncRNAs in strategies aimed at enhancing the chemotherapy response of OC. Furthermore, we offered significant new perspectives and insights on the interplay between lncRNAs and the molecular circuitries implicated in chemoresistance to determine their impacts on therapeutic response. Although this review summarizes robust data concerning the involvement of lncRNAs in the emergence of acquired resistance to platinum- and taxane-based chemotherapy in OC, effective approaches for translating these lncRNAs into clinical practice warrant further investigation.
Collapse
|
37
|
Xu T, Dong M, Wang Z, Li H, Li X. Elevated mRNA Expression Levels of NCAPG are Associated with Poor Prognosis in Ovarian Cancer. Cancer Manag Res 2020; 12:5773-5786. [PMID: 32765080 PMCID: PMC7369365 DOI: 10.2147/cmar.s253349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ovarian cancer is a major gynecologic malignancy that is often detected at a late stage due to the lack of detailed studies on its pathogenesis and reliable biomarkers for predicting its prognosis. MATERIALS AND METHODS Four ovarian cancer data sets GSE18520, GSE27651, GSE40595, and GSE52037 were downloaded from the Gene Expression Omnibus (GEO) database and the robust rank aggregation approach was used to find common differentially expressed genes (DEGs). Cytoscape software was used to construct and detect key models of protein-protein interaction (PPI) network. While the expression, prognostic value and potential mechanism of the hub gene non-SMC condensin I complex subunit G (NCAPG) was carried out through Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter online dataset and gene set enrichment analysis. To further investigate the role of NCAPG in ovarian cancer, in vitro experiments were carried out. RESULTS A total of 232 DEGs were identified in the four GEO datasets; and we detected 32 hub genes from the PPI network and 21 of these genes were associated with ovarian cancer prognosis, one of which was NCAPG. NCAPG was significantly upregulated in most of the ovarian cancer samples. High NCAPG expression was mainly involved in homologous recombination, DNA replication, proteasome, and more correlated pathways. NCAPG knockdown arrested the cell cycle, inhibited the proliferation, and attenuated the migration ability of A2780 cells. Meanwhile, silencing of NCAPG significantly promoted cisplatin-induced apoptosis thus increased the sensitivity to cisplatin. CONCLUSION NCAPG together with the other 31 hub genes play a vital role in the tumorigenesis of ovarian, meanwhile, the cell cycle pathway may be a potential pathway contributing to progression in OC; and NCAPG expression can be used as a promising target for the treatment of OC.
Collapse
Affiliation(s)
- Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of HUST, Wuhan, Hubei430030, People’s Republic of China
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College of HUST, Wuhan, Hubei430030, People’s Republic of China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of HUST, Wuhan, Hubei430030, People’s Republic of China
| | - Zhi Wang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College of HUST, Wuhan, Hubei430030, People’s Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of HUST, Wuhan, Hubei430030, People’s Republic of China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of HUST, Wuhan, Hubei430030, People’s Republic of China
| |
Collapse
|
38
|
An Y, Zhang J, Cheng X, Li B, Tian Y, Zhang X, Zhao F. miR-454 suppresses the proliferation and invasion of ovarian cancer by targeting E2F6. Cancer Cell Int 2020; 20:237. [PMID: 32536825 PMCID: PMC7291497 DOI: 10.1186/s12935-020-01300-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background The aberrant expression of microRNA-454 (miR-454) has been confirmed to be involved in the development of cancers. However, the functional role of miR-454 in the progression of ovarian cancer remains unclear. Methods The expression of miR-454 in ovarian cancer cells and serum of ovarian cancer patients was detected by RT-PCR. CCK8, colony formation, transwell, and flow cytometry assays were conducted to assess the effects of miR-454 on ovarian cancer cell proliferation, migration, invasion, and apoptosis, respectively. Dual-luciferase reporter assay was used to confirm the targeting relationship between miR-454 and E2F6. The expression pattern of E2F6 in ovarian cancer tissues was detected using immunohistochemistry (IHC) assay. The relative expression of related proteins was examined using western blot analysis. Results miR-454 was markedly down-regulated by hypoxia in ovarian cancer cells. Compared with normal samples, the expression of miR-454 was up-regulated in the serum of ovarian cancer patients, and correlated with the clinicopathological stages of ovarian cancer. Next, we found that miR-454 overexpression inhibited the proliferation, migration and invasion of OVCAR3 and SKOV3 cells, as well as promoted apoptosis. In addition, the Akt/mTOR and Wnt/β-catenin signaling pathway were inhibited by miR-454 in ovarian cancer cells. Mechanically, bioinformatic analysis and dual-luciferase reporter assay confirmed that E2F6 was a direct target of miR-454 and negatively regulated by miR-454 in ovarian cancer cells. Moreover, IHC analysis showed that E2F6 was highly expressed in ovarian cancer tissues. Finally, we found that the increasing cell proliferation and migration triggered by E2F6 overexpression were abolished by miR-454 overexpression. Conclusion Taken together, these results highlight the role of miR-454 as a tumor suppressor in ovarian cancer cells by targeting E2F6, indicating that miR-454 may be a potential diagnostic biomarker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yunhe An
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Xiaoyan Cheng
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Baoming Li
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Yanjie Tian
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Xiaoli Zhang
- Department of Biotechnology, Beijing Center for Physical and Chemical Analysis, No. 27 Xisanhuan North Road, Beijing, 100089 China
| | - Fangqi Zhao
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| |
Collapse
|
39
|
Knockdown of long non-coding RNA HOTAIR reverses cisplatin resistance of ovarian cancer cells through inhibiting miR-138-5p-regulated EZH2 and SIRT1. Biol Res 2020; 53:18. [PMID: 32349783 PMCID: PMC7191713 DOI: 10.1186/s40659-020-00286-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Cisplatin resistance (DDP-resistance) remains one of the major causes of poor prognosis in females with ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of cellular processes, including chemoresistance. The aim of this study was to explore the role of HOX transcript antisense RNA (HOTAIR) in DDP-resistant ovarian cancer cells. Methods DDP-resistant ovarian cancer cell lines (SKOV3/DDP and A2780/DDP) were established. Real-time PCR, western blot, dual-luciferase reporter assay, and flow cytometry were then used to evaluate the effect of HOTAIR/miR-138-5p axis on chemoresistance of DDP-resistant ovarian cancer cells to DDP. Results We found that HOTAIR was upregulated in DDP-resistant cells, while miR-138-5p was downregulated. Knockdown of HOTAIR increased the expression of miR-138-5p in DDP-resistant cells and miR-138-5p is directly bound to HOTAIR. Upregulation of miR-138-5p induced by HOTAIR siRNA or by its mimics enhanced the chemosensitivity of DDP-resistant cells and decreased the expression of EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) and SIRT1 (sirtuin 1). Furthermore, the HOTAIR silencing-induced chemosensitivity of DDP-resistant cells was weakened by miR-138-5p inhibitor. Conclusions These data demonstrate that HOTAIR acts as a sponge of miR-138-5p to prevent its binding to EZH2 and SIRT1, thereby promoting DDP-resistance of ovarian cancer cells. Our work will shed light on the development of therapeutic strategies for ovarian cancer treatment.
Collapse
|
40
|
Salamini-Montemurri M, Lamas-Maceiras M, Barreiro-Alonso A, Vizoso-Vázquez Á, Rodríguez-Belmonte E, Quindós-Varela M, Cerdán ME. The Challenges and Opportunities of LncRNAs in Ovarian Cancer Research and Clinical Use. Cancers (Basel) 2020; 12:E1020. [PMID: 32326249 PMCID: PMC7225988 DOI: 10.3390/cancers12041020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the most lethal gynecological malignancies worldwide because it tends to be detected late, when the disease has already spread, and prognosis is poor. In this review we aim to highlight the importance of long non-coding RNAs (lncRNAs) in diagnosis, prognosis and treatment choice, to make progress towards increasingly personalized medicine in this malignancy. We review the effects of lncRNAs associated with ovarian cancer in the context of cancer hallmarks. We also discuss the molecular mechanisms by which lncRNAs become involved in cellular physiology; the onset, development and progression of ovarian cancer; and lncRNAs' regulatory mechanisms at the transcriptional, post-transcriptional and post-translational stages of gene expression. Finally, we compile a series of online resources useful for the study of lncRNAs, especially in the context of ovarian cancer. Future work required in the field is also discussed along with some concluding remarks.
Collapse
Affiliation(s)
- Martín Salamini-Montemurri
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Ángel Vizoso-Vázquez
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - Esther Rodríguez-Belmonte
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| | - María Quindós-Varela
- Translational Cancer Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Carretera del Pasaje s/n, 15006 A Coruña, Spain;
| | - María Esperanza Cerdán
- EXPRELA Group, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, INIBIC-Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain; (M.S.-M.); (M.L.-M.); (A.B.-A.); (E.R.-B.)
| |
Collapse
|