1
|
Li D, Zhai J, Wang K, Shen Y, Huang X. Three-Dimensional Reconstruction-Characterization of Polymeric Membranes: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2891-2916. [PMID: 39913944 DOI: 10.1021/acs.est.4c09734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Polymeric membranes serve as vital separation materials in diverse energy and environmental applications. A comprehensive understanding of three-dimensional (3D) structures of membranes is critical to performance evaluation and future design. Such quantitative 3D structural information is beyond the limit of most employed conventional two-dimentional characterization techniques such as scanning electron microscopy. In this review, we summarize eight types of 3D reconstruction-characterization techniques for membrane materials. Originated from life and materials science, these techniques have been optimized to reveal the 3D structures of membrane materials in the separation field. We systematically introduce the theories of each technique, summarize the sample preparation procedures developed for membrane materials, and demonstrate step-by-step data processing, including 3D model reconstruction and subsequent characterization. Representative case studies are introduced to show the progress of this field and how technical challenges have been overcome over the years. In the end, we share our perspectives and believe that this review can serve as a useful reference for 3D reconstruction-characterization techniques developed for membrane materials.
Collapse
Affiliation(s)
- Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Juan Zhai
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
| | - Yuexiao Shen
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment and International Joint Laboratory on Low Carbon Clean Energy Innovation, Tsinghua University, Beijing 100084, China
- Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Zhao C, Cai Z. Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism. MASS SPECTROMETRY REVIEWS 2022; 41:469-487. [PMID: 33300181 DOI: 10.1002/mas.21674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Mass spectrometry imaging (MSI) has been applied for label-free three-dimensional (3D) imaging from position array across the whole organism, which provides high-dimensional quantitative data of inorganic or organic compounds that may play an important role in the regulation of cellular signaling, including metals, metabolites, lipids, drugs, peptides, and proteins. While MSI is suitable for investigation of the spatial distribution of molecules, it has a limitation with visualization and quantification of multiple molecules. 3D-MSI, however, can be applied toward exploring metabolic pathway as well as the interactions of lipid-protein, protein-protein, and metal-protein in complex systems from subcellular to the whole organism through an untargeted methodology. In this review, we highlight the methods and applications of MS-based 3D imaging to address the complexity of molecular interaction from nano- to micrometer lateral resolution, with particular focus on: (a) common and hybrid 3D-MSI techniques; (b) quantitative MSI methodology, including the methods using a stable isotope labeling internal standard (SILIS) and SILIS-free approaches with tissue extinction coefficient or virtual calibration; (c) reconstruction of the 3D organ; (d) application of 3D-MSI for biomarker screening and environmental toxicological research. 3D-MSI quantitative analysis provides accurate spatial information and quantitative variation of biomolecules, which may be valuable for the exploration of the molecular mechanism of the disease progresses and toxicological assessment of environmental pollutants in the whole organism. Additionally, we also discuss the challenges and perspectives on the future of 3D quantitative MSI.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
3
|
Singh AV, Jungnickel H, Leibrock L, Tentschert J, Reichardt P, Katz A, Laux P, Luch A. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures. Sci Rep 2020; 10:261. [PMID: 31937806 PMCID: PMC6959255 DOI: 10.1038/s41598-019-57136-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/23/2019] [Indexed: 11/09/2022] Open
Abstract
The biomolecular imaging of cell-nanoparticle (NP) interactions using time-of-flight secondary ion mass spectrometry (ToF-SIMS) represents an evolving tool in nanotoxicology. In this study we present the three dimensional (3D) distribution of nanomaterials within biomolecular agglomerates using ToF-SIMS imaging. This novel approach was used to model the resistance of human alveolar A549 cells against gold (Au) ion toxicity through intra- and extracellular biomineralization. At low Au concentrations (≤1 mM HAuCl4) 3D-ToF-SIMS imaging reveals a homogenous intracellular distribution of Au-NPs in combination with polydisperse spherical NPs biomineralized in different layers on the cell surface. However, at higher precursor concentrations (≥2 mM) supplemented with biogenic spherical NPs as seeds, cells start to biosynthesize partially embedded long aspect ratio fiber-like Au nanostructures. Most interestingly, A549 cells seem to be able to sense the enhanced Au concentration. They change the chemical composition of the extracellular NP agglomerates from threonine-O-3-phosphate aureate to an arginine-Au(I)-imine. Furthermore they adopt the extracellular mineralization process from spheres to irregular structures to nanoribbons in a dose-dependent manner with increasing Au concentrations. The results achieved regarding size, shape and chemical specificity were cross checked by SEM-EDX and single particle (sp-)ICP-MS. Our findings demonstrate the potential of ToF-SIMS 3D imaging to better understand cell-NP interactions and their impact in nanotoxicology.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Harald Jungnickel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Lars Leibrock
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Aaron Katz
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
4
|
Ogunleke A, Recur B, Balacey H, Chen HH, Delugin M, Hwu Y, Javerzat S, Petibois C. 3D chemical imaging of the brain using quantitative IR spectro-microscopy. Chem Sci 2018; 9:189-198. [PMID: 29629087 PMCID: PMC5869290 DOI: 10.1039/c7sc03306k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional (3D) histology is the next frontier for modern anatomo-pathology. Characterizing abnormal parameters in a tissue is essential to understand the rationale of pathology development. However, there is no analytical technique, in vivo or histological, that is able to discover such abnormal features and provide a 3D distribution at microscopic resolution. Here, we introduce a unique high-throughput infrared (IR) microscopy method that combines automated image correction and subsequent spectral data analysis for 3D-IR image reconstruction. We performed spectral analysis of a complete organ for a small animal model, a mouse brain with an implanted glioma tumor. The 3D-IR image is reconstructed from 370 consecutive tissue sections and corrected using the X-ray tomogram of the organ for an accurate quantitative analysis of the chemical content. A 3D matrix of 89 × 106 IR spectra is generated, allowing us to separate the tumor mass from healthy brain tissues based on various anatomical, chemical, and metabolic parameters. We demonstrate that quantitative metabolic parameters can be extracted from the IR spectra for the characterization of the brain vs. tumor metabolism (assessing the Warburg effect in tumors). Our method can be further exploited by searching for the whole spectral profile, discriminating tumor vs. healthy tissue in a non-supervised manner, which we call 'spectromics'.
Collapse
Affiliation(s)
- Abiodun Ogunleke
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Benoit Recur
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hugo Balacey
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hsiang-Hsin Chen
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Maylis Delugin
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Yeukuang Hwu
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Sophie Javerzat
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Cyril Petibois
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| |
Collapse
|
5
|
Spatial Metabolite Profiling by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:291-321. [DOI: 10.1007/978-3-319-47656-8_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Mass spectrometric analysis of spatio-temporal dynamics of crustacean neuropeptides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:798-811. [PMID: 25448012 DOI: 10.1016/j.bbapap.2014.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in the spatial domain and monitoring their dynamic changes in the temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
|
7
|
Challenges and recent advances in mass spectrometric imaging of neurotransmitters. Bioanalysis 2014; 6:525-40. [PMID: 24568355 DOI: 10.4155/bio.13.341] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. Herein, we briefly review new MSI studies of neurotransmitters, focusing specifically on the challenges and recent advances of MSI of neurotransmitters.
Collapse
|
8
|
|
9
|
Bouslimani A, Sanchez LM, Garg N, Dorrestein PC. Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep 2014; 31:718-29. [PMID: 24801551 PMCID: PMC4161218 DOI: 10.1039/c4np00044g] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although mass spectrometry is a century old technology, we are entering into an exciting time for the analysis of molecular information directly from complex biological systems. In this Highlight, we feature emerging mass spectrometric methods and tools used by the natural product community and give a perspective of future directions where the mass spectrometry field is migrating towards over the next decade.
Collapse
Affiliation(s)
- Amina Bouslimani
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | | | | | | |
Collapse
|
10
|
Ye H, Wang J, Greer T, Strupat K, Li L. Visualizing neurotransmitters and metabolites in the central nervous system by high resolution and high accuracy mass spectrometric imaging. ACS Chem Neurosci 2013; 4:1049-56. [PMID: 23607816 DOI: 10.1021/cn400065k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The spatial localization and molecular distribution of metabolites and neurotransmitters within biological organisms is of tremendous interest to neuroscientists. In comparison to conventional imaging techniques such as immunohistochemistry, matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging (MSI) has demonstrated its unique advantage by directly localizing the distribution of a wide range of biomolecules simultaneously from a tissue specimen. Although MALDI-MSI of metabolites and neurotransmitters is hindered by numerous matrix-derived peaks, high-resolution and high-accuracy mass spectrometers (HRMS) allow differentiation of endogenous analytes from matrix peaks, unambiguously obtaining biomolecular distributions. In this study, we present MSI of metabolites and neurotransmitters in rodent and crustacean central nervous systems acquired on HRMS. Results were compared with those obtained from a medium-resolution mass spectrometer (MRMS), tandem time-of-flight instrument, to demonstrate the power and unique advantages of HRMSI and reveal how this new tool would benefit molecular imaging applications in neuroscience.
Collapse
|
11
|
Lietz CB, Gemperline E, Li L. Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Adv Drug Deliv Rev 2013; 65:1074-85. [PMID: 23603211 DOI: 10.1016/j.addr.2013.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 12/26/2022]
Abstract
Mass spectrometric imaging (MSI) has rapidly increased its presence in the pharmaceutical sciences. While quantitative whole-body autoradiography and microautoradiography are the traditional techniques for molecular imaging of drug delivery and metabolism, MSI provides advantageous specificity that can distinguish the parent drug from metabolites and modified endogenous molecules. This review begins with the fundamentals of MSI sample preparation/ionization, and then moves on to both qualitative and quantitative applications with special emphasis on drug discovery and delivery. Cutting-edge investigations on sub-cellular imaging and endogenous signaling peptides are also highlighted, followed by perspectives on emerging technology and the path for MSI to become a routine analysis technique.
Collapse
|
12
|
Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013; 113:2309-42. [PMID: 23394164 PMCID: PMC3624074 DOI: 10.1021/cr3004295] [Citation(s) in RCA: 535] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeremy L. Norris
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| | - Richard M. Caprioli
- National Research Resource for Imaging Mass Spectrometry, Mass Spectrometry Research Center, and Department of Biochemistry, Vanderbilt University School of Medicine, 9160 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8575
| |
Collapse
|
13
|
Abstract
In order to fully understand the metallomics of an organism, it is essential to know how much metal is present in each cell and, ideally, to know both the spatial and chemical distributions of each metal (i.e., where within the cell is a metal found, and in what chemical form). No single technique provides all of this information. This chapter reviews the various methods that can be used and the strengths and weaknesses of each.
Collapse
Affiliation(s)
- James E Penner-Hahn
- Departments of Chemistry and Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI, 48109-1055, USA,
| |
Collapse
|
14
|
Ye H, Hui L, Kellersberger K, Li L. Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:134-47. [PMID: 23192703 PMCID: PMC3554855 DOI: 10.1007/s13361-012-0502-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 05/04/2023]
Abstract
Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve (stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Limei Hui
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| |
Collapse
|
15
|
Abstract
Distribution of drugs into tissues is an important determinant of the overall PK and PD profile. Thus, bioanalysis of drugs and their metabolites in tissues can play an important role in understanding the pharmacological and toxicological properties of new drug candidates. Unlike liquid matrices, bioanalysis in tissues offers unique challenges such as proper tissue sampling, appropriate tissue sample preparation, efficient extraction of the analytes from the tissue homogenates, and demonstration of stability and recovery of analytes in intact tissues. This article provides a systematic review of tissue sample analysis for small molecules using LC–MS/MS. The authors provide rationale for tissue sample analysis, and discuss strategies for method development, method qualification or validation, and sample analysis. Unique aspects of method development and qualification/validation are highlighted based on authors’ direct experiences and literature summary. Analysis using intact tissue samples such as MALDI imaging is also briefly discussed.
Collapse
|
16
|
Abstract
Analysis of drugs, biomarkers and their metabolites in tissue samples has always been an important aspect of the drug-development process. In the last decade, significant improvements in equipment and processes have made handling such samples far more efficient, with higher precision, accuracy and ruggedness. The purpose of this paper is to provide a primer for best practices of tissue analysis, including brief but specific tutorials on basic principles and laboratory operation. Included will be a discussion of what to consider when designing a study, tools available to make appropriate pre-study decisions, approaches for tissue acquisition and extraction, sample processing methods, and tips on creation of standards and QCs. We will offer some practical advice to help scientists who have good analytical skills, but are not experienced in tissue analysis to quickly start their own analyses with the minimum amount of time, labor and cost.
Collapse
|
17
|
Ye H, Gemperline E, Li L. A vision for better health: mass spectrometry imaging for clinical diagnostics. Clin Chim Acta 2012; 420:11-22. [PMID: 23078851 DOI: 10.1016/j.cca.2012.10.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Mass spectrometry imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules from small molecules to large proteins by creating detailed distribution maps of selected compounds. Its usefulness in biomarker discovery towards clinical applications has obtained success by correlating the molecular expression of tissues acquired from MSI with well-established histology. RESULTS To date, MSI has demonstrated its versatility in clinical applications, such as biomarker diagnostics of different diseases, prognostics of disease severities and metabolic response to drug treatment, etc. These studies have provided significant insight in clinical studies over the years and current technical advances are further facilitating the improvement of this field. Although the underlying concept is simple, factors such as choice of ionization method, sample preparation, instrumentation and data analysis must be taken into account for successful applications of MSI. Herein, we briefly reviewed these key elements yet focused on the clinical applications of MSI that cannot be addressed by other means. CONCLUSIONS Challenges and future perspectives in this field are also discussed to conclude that the ever-growing applications with continuous development of this powerful analytical tool will lead to a better understanding of the biology of diseases and improvements in clinical diagnostics.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | |
Collapse
|
18
|
Nemes P, Vertes A. Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.11.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Jungmann JH, Heeren RMA. Emerging technologies in mass spectrometry imaging. J Proteomics 2012; 75:5077-5092. [PMID: 22469858 DOI: 10.1016/j.jprot.2012.03.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Mass spectrometry imaging (MSI) as an analytical tool for bio-molecular and bio-medical research targets accurate compound localization and identification. In terms of dedicated instrumentation, this translates into the demand for more detail in the image dimension (spatial resolution) and in the spectral dimension (mass resolution and accuracy), preferably combined in one instrument. At the same time, large area biological tissue samples require fast acquisition schemes, instrument automation and a robust data infrastructure. This review discusses the analytical capabilities of an "ideal" MSI instrument for bio-molecular and bio-medical molecular imaging. The analytical attributes of such an ideal system are contrasted with technological and methodological challenges in MSI. In particular, innovative instrumentation for high spatial resolution imaging in combination with high sample throughput is discussed. Detector technology that targets various shortcomings of conventional imaging detector systems is highlighted. The benefits of accurate mass analysis, high mass resolving power, additional separation strategies and multimodal three-dimensional data reconstruction algorithms are discussed to provide the reader with an insight in the current technological advances and the potential of MSI for bio-medical research.
Collapse
Affiliation(s)
- Julia H Jungmann
- FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M A Heeren
- FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Probing neuropeptide signaling at the organ and cellular domains via imaging mass spectrometry. J Proteomics 2012; 75:5014-5026. [PMID: 22465716 DOI: 10.1016/j.jprot.2012.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/25/2012] [Accepted: 03/05/2012] [Indexed: 11/24/2022]
Abstract
Imaging mass spectrometry (IMS) has evolved to be a promising technology due to its ability to detect a broad mass range of molecular species and create density maps for selected compounds. It is currently one of the most useful techniques to determine the spatial distribution of neuropeptides in cells and tissues. Although IMS is conceptually simple, sample preparation steps, mass analyzers, and software suites are just a few of the factors that contribute to the successful design of a neuropeptide IMS experiment. This review provides a brief overview of IMS sampling protocols, instrumentation, data analysis tools, technological advancements and applications to neuropeptide localization in neurons and endocrine tissues. Future perspectives in this field are also provided, concluding that neuropeptide IMS would greatly facilitate studies of neuronal network and biomarker discovery.
Collapse
|
21
|
Abstract
Imaging mass spectrometry can generate three-dimensional volumes showing molecular distributions in an entire organ or animal through registration and stacking of serial tissue sections. Here, we review the current state of 3D imaging mass spectrometry as well as provide insights and perspectives on the process of generating 3D mass spectral data along with a discussion of the process necessary to generate a 3D image volume.
Collapse
|