1
|
Zhu SX. Human absorption, distribution, metabolism, and excretion studies: Conventional or microtracer? Drug Metab Dispos 2025; 53:100067. [PMID: 40198958 DOI: 10.1016/j.dmd.2025.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
A human absorption, distribution, metabolism, and excretion (hADME) study is an essential clinical pharmacology study for small-molecule drugs. The study provides insights into circulating drug-related materials and the drug's elimination pathways in humans, which can guide future studies on safety and drug-drug interaction of metabolites as well as organ impairment and drug-drug interaction of the parent drug. The 2 hADME study types, namely conventional and microtracer, are comprehensively compared in this manuscript. A review of literature found that conventional hADME studies were approximately 7 times that of microtracer hADME studies for small molecule and peptide drugs based on publications in 3 peer-reviewed journals from 2010 to 2024. Each study type has advantages and disadvantages. The advantages of conventional hADME studies primarily include the ease, low cost, and flexibility of radiometric sample analysis. In contrast, the advantages of microtracer hADME studies primarily include exemption from prerequisite studies and use of non-good manufacturing practice 14C-labeled materials. The disadvantages of each study type are essentially the advantages of the other. The manuscript also discusses scenarios where a microtracer hADME study may be preferable. Finally, recommendations are provided on selecting the appropriate hADME study type for an investigational drug. SIGNIFICANCE STATEMENT: The manuscript discusses 2 primary human absorption, distribution, metabolism, and excretion study types: conventional and microtracer. It covers published literature studies, the pros and cons of each type, scenarios for conducting microtracer studies, and a recommended decision tree for selecting the appropriate human absorption, distribution, metabolism, and excretion study type.
Collapse
Affiliation(s)
- Sean Xiaochun Zhu
- Drug Metabolism and Pharmacokinetics & Modeling, Takeda Development Center Americas, Inc., Cambridge, Massachusetts.
| |
Collapse
|
2
|
Young GC, Spracklin DK, James AD, Hvenegaard MG, Scarfe G, Wagner DS, Georgi K, Schieferstein H, Bjornsdottir I, van Groen B, Romeo AA, Cassidy KC, Da-Violante G, Bister B, Blech S, Lyer R, Schulz SI, Cuyckens F, Moliner P. Considerations for Human ADME Strategy and Design Paradigm Shift(s) - An Industry White Paper. Clin Pharmacol Ther 2023; 113:775-781. [PMID: 35733280 DOI: 10.1002/cpt.2691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
The human absorption, distribution, metabolism, and excretion (hADME) study is the cornerstone of the clinical pharmacology package for small molecule drugs, providing comprehensive information on the rates and routes of disposition and elimination of drug-related material in humans through the use of 14 C-labeled drug. Significant changes have already been made in the design of the hADME study for many companies, but opportunity exists to continue to re-think both the design and timing of the hADME study in light of the potential offered by newer technologies, that enable flexibility in particular to reducing the magnitude of the radioactive dose used. This paper provides considerations on the variety of current strategies that exist across a number of pharmaceutical companies and on some of the ongoing debates around a potential move to the so called "human first/human only" approach, already adopted by at least one company. The paper also provides a framework for continuing the discussion in the application of further shifts in the paradigm.
Collapse
Affiliation(s)
- Graeme C Young
- GlaxoSmithKline Research & Development Ltd., David Jack Centre, Ware, UK
| | | | | | | | - Graeme Scarfe
- AstraZeneca, Cambridge Biomedical Campus, Cambridge, UK
| | | | - Katrin Georgi
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | | | | | - Andrea A Romeo
- Roche Pharma Research and Early Development, Basel, Switzerland
| | | | | | - Bojan Bister
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Stefan Blech
- Boehringer-Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | | | | |
Collapse
|
3
|
Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences in bile acids II. Bile acid metabolism. J Appl Toxicol 2018; 38:1336-1352. [PMID: 29845631 DOI: 10.1002/jat.3645] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/16/2018] [Indexed: 12/14/2022]
Abstract
One of the mechanisms of drug-induced liver injury (DILI) involves alterations in bile acid (BA) homeostasis and elimination, which encompass several metabolic pathways including hydroxylation, amidation, sulfation, glucuronidation and glutathione conjugation. Species differences in BA metabolism may play a major role in the failure of currently used in vitro and in vivo models to predict reliably the DILI during the early stages of drug discovery and development. We developed an in vitro cofactor-fortified liver S9 fraction model to compare the metabolic profiles of the four major BAs (cholic acid, chenodeoxycholic acid, lithocholic acid and ursodeoxycholic acid) between humans and several animal species. High- and low-resolution liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance imaging were used for the qualitative and quantitative analysis of BAs and their metabolites. Major species differences were found in the metabolism of BAs. Sulfation into 3-O-sulfates was a major pathway in human and chimpanzee (4.8%-52%) and it was a minor pathway in all other species (0.02%-14%). Amidation was primarily with glycine (62%-95%) in minipig and rabbit and it was primarily with taurine (43%-81%) in human, chimpanzee, dog, hamster, rat and mice. Hydroxylation was highest (13%-80%) in rat and mice followed by hamster, while it was lowest (1.6%-22%) in human, chimpanzee and minipig. C6-β hydroxylation was predominant (65%-95%) in rat and mice, while it was at C6-α position in minipig (36%-97%). Glucuronidation was highest in dog (10%-56%), while it was a minor pathway in all other species (<12%). The relative contribution of the various pathways involved in BA metabolism in vitro were in agreement with the observed plasma and urinary BA profiles in vivo and were able to predict and quantify the species differences in BA metabolism. In general, overall, BA metabolism in chimpanzee is most similar to human, while BA metabolism in rats and mice is most dissimilar from human.
Collapse
Affiliation(s)
- Rhishikesh Thakare
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - A David Rodrigues
- Pharmacokinetics, Pharmacodynamics & Metabolism, Medicine Design, Pfizer Inc., Groton, CT, 06340, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
4
|
Evaluation of cAMS for 14C microtracer ADME studies: opportunities to change the current drug development paradigm. Bioanalysis 2018; 10:321-339. [DOI: 10.4155/bio-2017-0216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Although regulatory guidances require human metabolism information of drug candidates early in the development process, the human mass balance study (or hADME study), is performed relatively late. hADME studies typically involve the administration of a 14C-radiolabelled drug where biological samples are measured by conventional scintillation counting analysis. Another approach is the administration of therapeutic doses containing a 14C-microtracer followed by accelerator mass spectrometry (AMS) analysis, enabling hADME studies completion much earlier. Consequently, there is an opportunity to change the current drug development paradigm. Materials & methods: To evaluate the applicability of the MICADAS–cAMS method, we successfully performed: the validation of MICADAS–cAMS for radioactivity quantification in biomatrices and, a rat ADME study, where the conventional methodology was assessed against a microtracer MICADAS–cAMS approach. Results & discussion: Combustion AMS (cAMS) technology is applicable to microtracer studies. A favorable opinion from EMA to complete the hADME in a Phase I setting was received, opening the possibilities to change drug development.
Collapse
|
5
|
Jensen KG, Jacobsen AM, Bundgaard C, Nilausen DØ, Thale Z, Chandrasena G, Jørgensen M. Lack of Exposure in a First-in-Man Study Due to Aldehyde Oxidase Metabolism: Investigated by Use of 14C-microdose, Humanized Mice, Monkey Pharmacokinetics, and In Vitro Methods. Drug Metab Dispos 2017; 45:68-75. [PMID: 27737930 DOI: 10.1124/dmd.116.072793] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 11/22/2022] Open
Abstract
Inclusion of a microdose of 14C-labeled drug in the first-in-man study of new investigational drugs and subsequent analysis by accelerator mass spectrometry has become an integrated part of drug development at Lundbeck. It has been found to be highly informative with regard to investigations of the routes and rates of excretion of the drug and the human metabolite profiles according to metabolites in safety testing guidance and also when additional metabolism-related issues needed to be addressed. In the first-in-man study with the NCE Lu AF09535, contrary to anticipated, surprisingly low exposure was observed when measuring the parent compound using conventional bioanalysis. Parallel accelerator mass spectrometry analysis revealed that the low exposure was almost exclusively attributable to extensive metabolism. The metabolism observed in humans was mediated via a human specific metabolic pathway, whereas an equivalent extent of metabolism was not observed in preclinical species. In vitro, incubation studies in human liver cytosol revealed involvement of aldehyde oxidase (AO) in the biotransformation of Lu AF09535. In vivo, substantially lower plasma exposure of Lu AF09535 was observed in chimeric mice with humanized livers compared with control animals. In addition, Lu AF09535 exhibited very low oral bioavailability in monkeys despite relatively low clearance after intravenous administration in contrast to the pharmacokinetics in rats and dogs, both showing low clearance and high bioavailability. The in vitro and in vivo methods applied were proved useful for identifying and evaluating AO-dependent metabolism. Different strategies to integrate these methods for prediction of in vivo human clearance of AO substrates were evaluated.
Collapse
Affiliation(s)
- Klaus Gjervig Jensen
- Drug ADME Research (K.G.J., M.J.), Department of Drug Metabolism (A.J.), Discovery DMPK (C.B.), Clinical Pharmacology (D.Ø.N.), and Department of Bioanalysis (Z.T.), H. Lundbeck A/S, Valby Denmark; and Discovery Chemistry & DMPK, Lundbeck Research, New Jersey (G.C.)
| | - Anne-Marie Jacobsen
- Drug ADME Research (K.G.J., M.J.), Department of Drug Metabolism (A.J.), Discovery DMPK (C.B.), Clinical Pharmacology (D.Ø.N.), and Department of Bioanalysis (Z.T.), H. Lundbeck A/S, Valby Denmark; and Discovery Chemistry & DMPK, Lundbeck Research, New Jersey (G.C.)
| | - Christoffer Bundgaard
- Drug ADME Research (K.G.J., M.J.), Department of Drug Metabolism (A.J.), Discovery DMPK (C.B.), Clinical Pharmacology (D.Ø.N.), and Department of Bioanalysis (Z.T.), H. Lundbeck A/S, Valby Denmark; and Discovery Chemistry & DMPK, Lundbeck Research, New Jersey (G.C.)
| | - Dorrit Østergaard Nilausen
- Drug ADME Research (K.G.J., M.J.), Department of Drug Metabolism (A.J.), Discovery DMPK (C.B.), Clinical Pharmacology (D.Ø.N.), and Department of Bioanalysis (Z.T.), H. Lundbeck A/S, Valby Denmark; and Discovery Chemistry & DMPK, Lundbeck Research, New Jersey (G.C.)
| | - Zia Thale
- Drug ADME Research (K.G.J., M.J.), Department of Drug Metabolism (A.J.), Discovery DMPK (C.B.), Clinical Pharmacology (D.Ø.N.), and Department of Bioanalysis (Z.T.), H. Lundbeck A/S, Valby Denmark; and Discovery Chemistry & DMPK, Lundbeck Research, New Jersey (G.C.)
| | - Gamini Chandrasena
- Drug ADME Research (K.G.J., M.J.), Department of Drug Metabolism (A.J.), Discovery DMPK (C.B.), Clinical Pharmacology (D.Ø.N.), and Department of Bioanalysis (Z.T.), H. Lundbeck A/S, Valby Denmark; and Discovery Chemistry & DMPK, Lundbeck Research, New Jersey (G.C.)
| | - Martin Jørgensen
- Drug ADME Research (K.G.J., M.J.), Department of Drug Metabolism (A.J.), Discovery DMPK (C.B.), Clinical Pharmacology (D.Ø.N.), and Department of Bioanalysis (Z.T.), H. Lundbeck A/S, Valby Denmark; and Discovery Chemistry & DMPK, Lundbeck Research, New Jersey (G.C.)
| |
Collapse
|
6
|
Seymour MA. Adding value through accelerator mass spectrometry-enabled first in human studies. J Labelled Comp Radiopharm 2016; 59:640-647. [PMID: 27444819 DOI: 10.1002/jlcr.3420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/26/2016] [Indexed: 12/16/2022]
Abstract
Accelerator mass spectrometry (AMS) is an ultra-sensitive technique for the analysis of radiocarbon. It is applicable to bioanalysis of any 14 C-labelled analyte and any sample type. The increasing body of data generated using LC+AMS indicates that the methodology is robust and reliable, and capable of meeting the same validation criteria as conventional bioanalytical techniques. Because it is a tracer technique, AMS is capable of discriminating between an administered radiolabelled dose and endogenous compound or non-radiolabelled compound administered separately. This paper discusses how it can be used to enhance the design of first in human (FIH) clinical studies and generate significant additional data, including: fundamental pharmacokinetics (CL and V), absolute bioavailability, mass balance, routes and rates of excretion, metabolic fate (including first-pass metabolism, identification of biliary metabolites and quantitative data to address metabolite safety testing issues), and tissue disposition of parent compound and metabolites. Because the 14 C-labelled microtracer dose is administered at the same time as a pharmacologically relevant non-radiolabelled dose, there is no concern about dose-linearity. However the mass of the microtracer dose itself is negligible and therefore does not affect the outcome of the FIH study. The addition of microtracer doses to a FIH study typically requires little additional expense, apart from the AMS analytics, making the approach cost-effective. It can also save significant time, compared to conventional approaches, and, by providing reliable human in vivo data as early as possible, prevent unnecessary expenditure later in drug development.
Collapse
|
7
|
Opportunities in low-level radiocarbon microtracing: applications and new technology. Future Sci OA 2015; 2:FSO74. [PMID: 28031933 PMCID: PMC5137946 DOI: 10.4155/fso.15.74] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022] Open
Abstract
14C-radiolabeled (radiocarbon) drug studies are central to defining the disposition of therapeutics in clinical development. Concerns over radiation, however, have dissuaded investigators from conducting these studies as often as their utility may merit. Accelerator mass spectrometry (AMS), originally designed for carbon dating and geochronology, has changed the outlook for in-human radiolabeled testing. The high sensitivity of AMS affords human clinical testing with vastly reduced radiative (microtracing) and chemical exposures (microdosing). Early iterations of AMS were unsuitable for routine biomedical use due to the instruments' large size and associated per sample costs. The situation is changing with advances in the core and peripheral instrumentation. We review the important milestones in applied AMS research and recent advances in the core technology platform. We also look ahead to an entirely new class of 14C detection systems that use lasers to measure carbon dioxide in small gas cells.
Collapse
|
8
|
Bosgra S, Vlaming MLH, Vaes WHJ. To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics. Clin Pharmacokinet 2015; 55:1-15. [DOI: 10.1007/s40262-015-0308-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
|
10
|
Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 2014; 74:80-92. [PMID: 25545337 DOI: 10.1016/j.vascn.2014.12.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
INTRODUCTION This article gives an overview of the drug metabolism and disposition (ADME) characteristics of the most common non-rodent species used in toxicity testing of drugs (minipigs, dogs, and monkeys) and compares these to human characteristics with regard to enzymes mediating the metabolism of drugs and the transport proteins which contribute to the absorption, distribution and excretion of drugs. METHODS Literature on ADME and regulatory guidelines of relevance in drug development of small molecules has been gathered. RESULTS Non-human primates (monkeys) are the species that is closest to humans in terms of genetic homology. Dogs have an advantage due to the ready availability of comprehensive background data for toxicological safety assessment and dogs are easy to handle. Pigs have been used less than dogs and monkeys as a model in safety assessment of drug candidates. However, when a drug candidate is metabolised by aldehyde oxidase (AOX1), N-acetyltransferases (NAT1 and NAT2) or cytochrome (CYP2C9-like) enzymes which are not expressed in dogs, but are present in pigs, this species may be a better choice than dogs, provided that adequate exposure can be obtained in pigs. Conversely, pigs might not be the right choice if sulfation, involving 3-phospho-adenosyl-5-phosphosulphate sulphotransferase (PAPS) is an important pathway in the human metabolism of a drug candidate. DISCUSSION In general, the species selection should be based on comparison between in vitro studies with human cell-based systems and animal-cell-based systems. Results from pharmacokinetic studies are also important for decision-making by establishing the obtainable exposure level in the species. Access to genetically humanized mouse models and highly sensitive analytical methods (accelerator mass spectrometry) makes it possible to improve the chance of finding all metabolites relevant for humans before clinical trials have been initiated and, if necessary, to include another animal species before long term toxicity studies are initiated. In conclusion, safety testing can be optimized by applying knowledge about species ADME differences and utilising advanced analytical techniques.
Collapse
|
11
|
Pellegatti M. The debate on animal ADME studies in drug development: an update. Expert Opin Drug Metab Toxicol 2014; 10:1615-20. [PMID: 25373428 DOI: 10.1517/17425255.2015.979152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The preparation and release of the International Conference on Harmonisation guideline on safety evaluation of human metabolites and the technical progresses in bioanalysis have triggered an intense debate on the value of absorption, distribution, metabolism and excretion radiolabelled studies in animals. Some authors have radically challenged the traditional approach whereas others, while accepting the need of significant changes, argue that these studies remain an irreplaceable component of the preclinical registration dossier. This paper reviews some of the representative positions and describes the potential evolution.
Collapse
|
12
|
Haglund J, Halldin MM, Brunnström Å, Eklund G, Kautiainen A, Sandholm A, Iverson SL. Pragmatic Approaches to Determine the Exposures of Drug Metabolites in Preclinical and Clinical Subjects in the MIST Evaluation of the Clinical Development Phase. Chem Res Toxicol 2014; 27:601-10. [DOI: 10.1021/tx400449z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Johanna Haglund
- AstraZeneca R&D, DMPK Södertälje, SE-151 85 Södertälje, Sweden
| | | | - Åsa Brunnström
- AstraZeneca R&D, DMPK Södertälje, SE-151 85 Södertälje, Sweden
| | - Göran Eklund
- AstraZeneca R&D, DMPK Södertälje, SE-151 85 Södertälje, Sweden
| | | | - Anna Sandholm
- AstraZeneca R&D, DMPK Södertälje, SE-151 85 Södertälje, Sweden
| | | |
Collapse
|
13
|
Dave M, Nash M, Young GC, Ellens H, Magee MH, Roberts AD, Taylor MA, Greenhill RW, Boyle GW. Disposition and metabolism of darapladib, a lipoprotein-associated phospholipase A2 inhibitor, in humans. Drug Metab Dispos 2014; 42:415-30. [PMID: 24378325 DOI: 10.1124/dmd.113.054486] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The absorption, metabolism, and excretion of darapladib, a novel inhibitor of lipoprotein-associated phospholipase A2, was investigated in healthy male subjects using [(14)C]-radiolabeled material in a bespoke study design. Disposition of darapladib was compared following single i.v. and both single and repeated oral administrations. The anticipated presence of low circulating concentrations of drug-related material required the use of accelerator mass spectrometry as a sensitive radiodetector. Blood, urine, and feces were collected up to 21 days post radioactive dose, and analyzed for drug-related material. The principal circulating drug-related component was unchanged darapladib. No notable metabolites were observed in plasma post-i.v. dosing; however, metabolites resulting from hydroxylation (M3) and N-deethylation (M4) were observed (at 4%-6% of plasma radioactivity) following oral dosing, indicative of some first-pass metabolism. In addition, an acid-catalyzed degradant (M10) resulting from presystemic hydrolysis was also detected in plasma at similar levels of ∼5% of radioactivity post oral dosing. Systemic exposure to radioactive material was reduced within the repeat dose regimen, consistent with the notion of time-dependent pharmacokinetics resulting from enhanced clearance or reduced absorption. Elimination of drug-related material occurred predominantly via the feces, with unchanged darapladib representing 43%-53% of the radioactive dose, and metabolites M3 and M4 also notably accounting for ∼9% and 19% of the dose, respectively. The enhanced study design has provided an increased understanding of the absorption, distribution, metabolism and excretion (ADME) properties of darapladib in humans, and substantially influenced future work on the compound.
Collapse
Affiliation(s)
- Mehul Dave
- Department of Drug Metabolism and Pharmacokinetics (M.D., M.N., G.C.Y., A.D.R., M.A.T., G.W.B.) and Department of Safety Assessment (R.W.G.), GlaxoSmithKline Research & Development, Ware, United Kingdom, and Department of Drug Metabolism and Pharmacokinetics (H.E.) and Clinical Pharmacology, Modeling and Simulation (M.H.M.), GlaxoSmithKline Research & Development, Upper Merion, Philadelphia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Application of a tiered approach to the validation of accelerator MS assays. Bioanalysis 2014; 6:665-72. [DOI: 10.4155/bio.14.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Since its introduction into the drug-development arena, accelerator mass spectrometry (coupled with liquid chromatography fractionation) has been used to support a variety of study types. The uses to which the technique has been put include parent and/or metabolite quantification in pharmacokinetic studies, total radioactivity measurement in adsorption, metabolism and excretion studies, and quantitative metabolite profiling. A tiered approach has been applied to the verification of accelerator mass spectrometry assays, dependant on in which type of study and at what stage of drug development they are used. As accelerator mass spectrometry is an absolute detector that can quantify without the use of analyte-related standards, the specific assay verification requirements differ from those for LC–MS/MS assays. This article describes when screening, qualified and validated assay verification procedures should be applied, and suggests what parameters should be assessed in each case.
Collapse
|
15
|
Abstract
The last 10 years have witnessed robust debate within the bioanalytical community and regulatory authorities on the topic of metabolite monitoring and safety assessment. Of particular interest to regulated bioanalytical laboratories was the acceptance by the US FDA and other major regulatory bodies of a tiered approach to bioanalytical assay validation. The tiered approach defines a sliding scale of regulatory rigor for the evaluation of significant human metabolites that encompasses a range of assessments from semi-quantitative assays to fully validated assays, all of which can be used in support of regulatory submissions. This article describes the utilization of a tiered approach at Bristol-Myers Squibb and the decision trees guiding the selection of the appropriate level of assay qualification. Case studies illustrate how decisions are made, how different scientific situations influence the assay choice, and what criteria may be set to continue or discontinue metabolite monitoring in later drug development.
Collapse
|