1
|
Barbero LM, Ianni AD, Molinaro F, Cowan KJ, Sirtori FR. Hybrid liquid chromatography high resolution and accuracy mass spectrometry approach for quantification of antibody-drug conjugates at the intact protein level in biological samples. Eur J Pharm Sci 2023; 188:106502. [PMID: 37336420 DOI: 10.1016/j.ejps.2023.106502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Preclinical in vivo and in vitro characterization of Antibody-Drug Conjugates (ADCs) involves the development of several bioanalytical methods to address many drug exposure questions. The current pharma industry approach requires at least three different assays that must be run, i.e., total antibody (mAb), conjugated payload or conjugated mAb, and free payload assays. Herein we present analytical performances of a quantitative hybrid Ligand Binding/Liquid Chromatography High Resolution and Accuracy Mass Spectrometry (LB/LCHRAM) method that can condense much of the necessary bioanalytical information in one method. The method includes an immuno-capture step, and it detects whole ADC molecules. It was applied to plasma mouse samples and showed reliable bioanalytical performance according to full method validation standards. Quantitation using extracted ion chromatograms and deconvoluted mass peaks was evaluated. The limit of quantitation resulted in 0.5ng of protein on column with a linear dynamic range spanning from 0.5 to 10μg/mL. Moreover, lower drug-to-antibody ratio (DAR) ADC species can be simultaneously detected, also enabling qualitative characterization of in vivo ADC conjugation.
Collapse
Affiliation(s)
- Luca M Barbero
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy.
| | - Andrea Di Ianni
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy; Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Francesco Molinaro
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| | - Kyra J Cowan
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| | - Federico Riccardi Sirtori
- NBE-DMPK Innovative BioAnalytics, Merck Serono RBM S.P.A., An Affiliate of Merck KGaA, Darmstadt, Germany, Via Ribes 1, Colleretto Giacosa (TO) 10010, Italy
| |
Collapse
|
2
|
Pei M, Liu T, Ouyang L, Sun J, Deng X, Sun X, Wu W, Huang P, Chen YL, Tan X, Liu X, Zhu P, Liu Y, Wang D, Wu J, Wang Q, Wang G, Gong L, Qin Q, Wang C. Enzyme-linked immunosorbent assays for quantification of MMAE-Conjugated ADCs and total antibodies in cynomolgus monkey sera. J Pharm Anal 2021; 12:645-652. [PMID: 36105165 PMCID: PMC9463470 DOI: 10.1016/j.jpha.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are commonly heterogeneous and require extensive assessment of exposure-efficacy and exposure-safety relationships in preclinical and clinical studies. In this study, we report the generation of a monoclonal antibody against monomethyl auristatin E (MMAE) and the development, validation, and application of sensitive and high-throughput enzyme-linked immunosorbent assays (ELISA) to measure the concentrations of MMAE-conjugated ADCs and total antibodies (tAb, antibodies in ADC plus unconjugated antibodies) in cynomolgus monkey sera. These assays were successfully applied to in vitro plasma stability and pharmacokinetic (PK) studies of SMADC001, an MMAE-conjugated ADC against trophoblast cell surface antigen 2 (TROP-2). The plasma stability of SMADC001 was better than that of similar ADCs coupled with PEG4-Val-Cit, Lys (m-dPEG24)-Cit, and Val-Cit linkers. The developed ELISA methods for the calibration standards of ADC and tAb revealed a correlation between serum concentrations and the OD450 values, with R2 at 1.000, and the dynamic range was 0.3–35.0 ng/mL and 0.2–22.0 ng/mL, respectively; the intra- and inter-assay accuracy bias% ranged from −12.2% to −5.2%, precision ranged from −12.4% to −1.4%, and the relative standard deviation (RSD) was less than 6.6% and 8.7%, respectively. The total error was less than 20.4%. The development and validation steps of these two assays met the acceptance criteria for all addressed validation parameters, which suggested that these can be applied to quantify MMAE-conjugated ADCs, as well as in PK studies. Furthermore, these assays can be easily adopted for development of other similar immunoassays. A specific monoclonal antibody against MMAE was generated via hybridoma technology. ELISA was used to quantify MMAE-ADCs with a calibration range of 0.5–35 ng/mL. ELISA was used to quantify total antibodies with a calibration range of 0.6–22 ng/mL. Pharmacokinetic profiles of SMADC001 in cynomolgus monkeys were investigated.
Collapse
Affiliation(s)
- Min Pei
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Liu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lu Ouyang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianhua Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaojie Deng
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaomin Sun
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Wu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Peng Huang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Li Chen
- Research and Development Center, Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, 528400, China
| | - Xiaorong Tan
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoyue Liu
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zhu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongzhen Liu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Deheng Wang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Junliang Wu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guifeng Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Likun Gong
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, 528400, China
- Corresponding author. Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qiuping Qin
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Corresponding author.
| | - Chunhe Wang
- Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Research and Development Center, Dartsbio Pharmaceuticals Ltd., Zhongshan, Guangdong, 528400, China
- School of Pharmacy, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, 201203, China
- Corresponding author. Biotherapeutics Discovery Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
3
|
Singh AP, Seigel GM, Guo L, Verma A, Wong GGL, Cheng HP, Shah DK. Evolution of the Systems Pharmacokinetics-Pharmacodynamics Model for Antibody-Drug Conjugates to Characterize Tumor Heterogeneity and In Vivo Bystander Effect. J Pharmacol Exp Ther 2020; 374:184-199. [PMID: 32273304 PMCID: PMC7318793 DOI: 10.1124/jpet.119.262287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The objective of this work was to develop a systems pharmacokinetics-pharmacodynamics (PK-PD) model that can characterize in vivo bystander effect of antibody-drug conjugate (ADC) in a heterogeneous tumor. To accomplish this goal, a coculture xenograft tumor with 50% GFP-MCF7 (HER2-low) and 50% N87 (HER2-high) cells was developed. The relative composition of a heterogeneous tumor for each cell type was experimentally determined by immunohistochemistry analysis. Trastuzumab-vc-MMAE (T-vc-MMAE) was used as a tool ADC. Plasma and tumor PK of T-vc-MMAE was analyzed in N87, GFP-MCF7, and coculture tumor-bearing mice. In addition, tumor growth inhibition (TGI) studies were conducted in all three xenografts at different T-vc-MMAE dose levels. To characterize the PK of ADC in coculture tumors, our previously published tumor distribution model was evolved to account for different cell populations. The evolved tumor PK model was able to a priori predict the PK of all ADC analytes in the coculture tumors reasonably well. The tumor PK model was subsequently integrated with a PD model that used intracellular tubulin occupancy to drive ADC efficacy in each cell type. The final systems PK-PD model was able to simultaneously characterize all the TGI data reasonably well, with a common set of parameters for MMAE-induced cytotoxicity. The model was later used to simulate the effect of different dosing regimens and tumor compositions on the bystander effect of ADC. The model simulations suggested that dose-fractionation regimen may further improve overall efficacy and bystander effect of ADCs by prolonging the tubulin occupancy in each cell type. SIGNIFICANCE STATEMENT: A PK-PD analysis is presented to understand bystander effect of Trastuzumab-vc-MMAE ADC in antigen (Ag)-low, Ag-high, and coculture (i.e., Ag-high + Ag-low) xenograft mice. This study also describes a novel single cell-level systems PK-PD model to characterize in vivo bystander effect of ADCs. The proposed model can serve as a platform to mathematically characterize multiple cell populations and their interactions in tumor tissues. Our analysis also suggests that fractionated dosing regimen may help improve the bystander effect of ADCs.
Collapse
Affiliation(s)
- Aman P Singh
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (A.P.S., L.G., A.V., H.-P.C., D.K.S.), Center for Hearing and Deafness, SUNY Eye Institute (G.M.S.), and Department of Biological Sciences (G.G.-L.W.), The State University of New York at Buffalo, Buffalo, New York
| | - Gail M Seigel
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (A.P.S., L.G., A.V., H.-P.C., D.K.S.), Center for Hearing and Deafness, SUNY Eye Institute (G.M.S.), and Department of Biological Sciences (G.G.-L.W.), The State University of New York at Buffalo, Buffalo, New York
| | - Leiming Guo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (A.P.S., L.G., A.V., H.-P.C., D.K.S.), Center for Hearing and Deafness, SUNY Eye Institute (G.M.S.), and Department of Biological Sciences (G.G.-L.W.), The State University of New York at Buffalo, Buffalo, New York
| | - Ashwni Verma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (A.P.S., L.G., A.V., H.-P.C., D.K.S.), Center for Hearing and Deafness, SUNY Eye Institute (G.M.S.), and Department of Biological Sciences (G.G.-L.W.), The State University of New York at Buffalo, Buffalo, New York
| | - Gloria Gao-Li Wong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (A.P.S., L.G., A.V., H.-P.C., D.K.S.), Center for Hearing and Deafness, SUNY Eye Institute (G.M.S.), and Department of Biological Sciences (G.G.-L.W.), The State University of New York at Buffalo, Buffalo, New York
| | - Hsuan-Ping Cheng
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (A.P.S., L.G., A.V., H.-P.C., D.K.S.), Center for Hearing and Deafness, SUNY Eye Institute (G.M.S.), and Department of Biological Sciences (G.G.-L.W.), The State University of New York at Buffalo, Buffalo, New York
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (A.P.S., L.G., A.V., H.-P.C., D.K.S.), Center for Hearing and Deafness, SUNY Eye Institute (G.M.S.), and Department of Biological Sciences (G.G.-L.W.), The State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
4
|
Abstract
Total antibody, conjugated antibody or antibody-conjugated drug, and free drug are key analytes required to establish exposure-response relationships for ADCs. Therefore, bioanalytical strategies for ADCs include ligand-binding assays (LBA) and LC-MS/MS methods. Here we describe detailed methodology to develop a solid-phase-based enzyme-linked immunosorbent assay (ELISA), which is the most widely used LBA to quantify large-molecule components of ADC in biological matrices such as plasma, serum, tumor, or tissue homogenates. The approach presented here is designed to quantify total antibody concentrations in ADC containing samples, and can be easily adapted to quantify conjugated antibody concentrations.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
5
|
A Cell-Level Systems PK-PD Model to Characterize In Vivo Efficacy of ADCs. Pharmaceutics 2019; 11:pharmaceutics11020098. [PMID: 30823607 PMCID: PMC6409735 DOI: 10.3390/pharmaceutics11020098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 01/13/2023] Open
Abstract
Here, we have presented the development of a systems pharmacokinetics-pharmacodynamics (PK-PD) model for antibody-drug conjugates (ADCs), which uses intracellular target occupancy to drive in-vivo efficacy. The model is built based on PK and efficacy data generated using Trastuzumab-Valine-Citrulline-Monomethyl Auristatin E (T-vc-MMAE) ADC in N87 (high-HER2) and GFP-MCF7 (low-HER2) tumor bearing mice. It was observed that plasma PK of all ADC analytes was similar between the two tumor models; however, total trastuzumab, unconjugated MMAE, and total MMAE exposures were >10-fold, ~1.6-fold, and ~1.8-fold higher in N87 tumors. In addition, a prolonged retention of MMAE was observed within the tumors of both the mouse models, suggesting intracellular binding of MMAE to tubulin. A systems PK model, developed by integrating single-cell PK model with tumor distribution model, was able to capture all in vivo PK data reasonably well. Intracellular occupancy of tubulin predicted by the PK model was used to drive the efficacy of ADC using a novel PK-PD model. It was found that the same set of PD parameters was able to capture MMAE induced killing of GFP-MCF7 and N87 cells in vivo. These observations highlight the benefit of adopting a systems approach for ADC and provide a robust and predictive framework for successful clinical translation of ADCs.
Collapse
|
6
|
LC–MS Challenges in Characterizing and Quantifying Monoclonal Antibodies (mAb) and Antibody-Drug Conjugates (ADC) in Biological Samples. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-017-0118-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Khot A, Tibbitts J, Rock D, Shah DK. Development of a Translational Physiologically Based Pharmacokinetic Model for Antibody-Drug Conjugates: a Case Study with T-DM1. AAPS JOURNAL 2017; 19:1715-1734. [PMID: 28808917 DOI: 10.1208/s12248-017-0131-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023]
Abstract
Systems pharmacokinetic (PK) models that can characterize and predict whole body disposition of antibody-drug conjugates (ADCs) are needed to support (i) development of reliable exposure-response relationships for ADCs and (ii) selection of ADC targets with optimal tumor and tissue expression profiles. Towards this goal, we have developed a translational physiologically based PK (PBPK) model for ADCs, using T-DM1 as a tool compound. The preclinical PBPK model was developed using rat data. Biodistribution of DM1 in rats was used to develop the small molecule PBPK model, and the PK of conjugated trastuzumab (i.e., T-DM1) in rats was characterized using platform PBPK model for antibody. Both the PBPK models were combined via degradation and deconjugation processes. The degradation of conjugated antibody was assumed to be similar to a normal antibody, and the deconjugation of DM1 from T-DM1 in rats was estimated using plasma PK data. The rat PBPK model was translated to humans to predict clinical PK of T-DM1. The translation involved the use of human antibody PBPK model to characterize the PK of conjugated trastuzumab, use of allometric scaling to predict human clearance of DM1 catabolites, and use of monkey PK data to predict deconjugation of DM1 in the clinic. PBPK model-predicted clinical PK profiles were compared with clinically observed data. The PK of total trastuzumab and T-DM1 were predicted reasonably well, and slight systemic deviations were observed for the PK of DM1-containing catabolites. The ADC PBPK model presented here can serve as a platform to develop models for other ADCs.
Collapse
Affiliation(s)
- Antari Khot
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214, USA
| | | | - Dan Rock
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Thousand Oaks, CA, 91320, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Kapoor Hall, Buffalo, NY, 14214, USA.
| |
Collapse
|
8
|
Zhang D, Yu SF, Ma Y, Xu K, Dragovich PS, Pillow TH, Liu L, Del Rosario G, He J, Pei Z, Sadowsky JD, Erickson HK, Hop CECA, Khojasteh SC. Chemical Structure and Concentration of Intratumor Catabolites Determine Efficacy of Antibody Drug Conjugates. Drug Metab Dispos 2016; 44:1517-23. [PMID: 27417182 PMCID: PMC4998580 DOI: 10.1124/dmd.116.070631] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022] Open
Abstract
Despite recent technological advances in quantifying antibody drug conjugate (ADC) species, such as total antibody, conjugated antibody, conjugated drug, and payload drug in circulation, the correlation of their exposures with the efficacy of ADC outcomes in vivo remains challenging. Here, the chemical structures and concentrations of intratumor catabolites were investigated to better understand the drivers of ADC in vivo efficacy. Anti-CD22 disulfide-linked pyrrolobenzodiazepine (PBD-dimer) conjugates containing methyl- and cyclobutyl-substituted disulfide linkers exhibited strong efficacy in a WSU-DLCL2 xenograft mouse model, whereas an ADC derived from a cyclopropyl linker was inactive. Total ADC antibody concentrations and drug-to-antibody ratios (DAR) in circulation were similar between the cyclobutyl-containing ADC and the cyclopropyl-containing ADC; however, the former afforded the release of the PBD-dimer payload in the tumor, but the latter only generated a nonimmolating thiol-containing catabolite that did not bind to DNA. These results suggest that intratumor catabolite analysis rather than systemic pharmacokinetic analysis may be used to better explain and predict ADC in vivo efficacy. These are good examples to demonstrate that the chemical nature and concentration of intratumor catabolites depend on the linker type used for drug conjugation, and the potency of the released drug moiety ultimately determines the ADC in vivo efficacy.
Collapse
Affiliation(s)
- Donglu Zhang
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Shang-Fan Yu
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Yong Ma
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Keyang Xu
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Peter S Dragovich
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Thomas H Pillow
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Luna Liu
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Geoffrey Del Rosario
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Jintang He
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Zhonghua Pei
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Jack D Sadowsky
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Hans K Erickson
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - Cornelis E C A Hop
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| | - S Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics (D.Z., Y.M., C.E.C.A.H, S.C.K.), Translational Oncology (S.Y., G.D.R.), BioAnalytical Sciences (K.X., L.L., J.H.), Discovery Chemistry (P.S.D., T.H.P., Z.P.), Protein Chemistry (J.D.S., H.K.E.), Genentech, South San Francisco, California
| |
Collapse
|
9
|
Antibody–drug conjugate bioanalysis using LB-LC–MS/MS hybrid assays: strategies, methodology and correlation to ligand-binding assays. Bioanalysis 2016; 8:1383-401. [DOI: 10.4155/bio-2016-0017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Antibody–drug conjugates (ADCs) are complex drug constructs with multiple species in the heterogeneous mixture that contribute to their efficacy and toxicity. The bioanalysis of ADCs involves multiple assays and analytical platforms. Methods: A series of ligand binding and LC–MS/MS (LB-LC–MS/MS) hybrid assays, through different combinations of anti-idiotype (anti-Id), anti-payload, or generic capture reagents, and cathepsin-B or trypsin enzyme digestion, were developed and evaluated for the analysis of conjugated-payload as well as for species traditionally measured by ligand-binding assays, total-antibody and conjugated-antibody. Results & conclusion: Hybrid assays are complementary or viable alternatives to ligand-binding assay for ADC bioanalysis and PK/PD modeling. The fit-for-purpose choice of analytes, assays and platforms and an integrated strategy from Discovery to Development for ADC PK and bioanalysis are recommended.
Collapse
|
10
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
11
|
|