1
|
Killian M, Tamaroff J, Su K, Crum K, George-Durrett K, Markham LW, Buchowski M, Donnelly T, Burnette WB, Soslow JH. Physical activity and cardiac function in patients with Duchenne muscular dystrophy. Cardiol Young 2025; 35:688-694. [PMID: 40012321 DOI: 10.1017/s1047951125000162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
BACKGROUND Cardiomyopathy is the leading cause of death in patients with Duchenne muscular dystrophy. The relationship between cardiac and skeletal muscle progression is unclear. The objective of this study was to evaluate the correlation between muscle activity and cardiomyopathy. We hypothesised that cardiomyopathy and skeletal muscle activity are directly related. METHODS Physical activity was assessed with accelerometers worn for 7 days. Average activity (vector magnitude/min) and percentage of time in different activities were reported. Cardiac MRI was used to assess left ventricular ejection fraction, global circumferential strain (Ecc), late gadolinium enhancement, and cardiac index. Associations were assessed between physical activity and cardiac variables using a Spearman correlation. RESULTS Duchenne muscular dystrophy subjects (n = 46) with an average age of 13 ± 4 years had a mean left ventricular ejection fraction of 57 ± 8%. All physical activity measures showed significant correlations with left ventricular ejection fraction (rho = 0.38, p = 0.01) and left ventricular cardiac index (rho = 0.51, p < 0.001). Less active subjects had lower left ventricular ejection fraction (p = 0.10) and left ventricular cardiac index (p < 0.01). Non-ambulatory patients (n = 29) demonstrated a stronger association between physical activity and left ventricular ejection fraction (rho = 0.40, p = 0.03) while ambulatory patients demonstrated a stronger association between physical activity and left ventricular cardiac index (rho = 0.53, p = 0.03). Ecc did not associate with physical activity in either cohort. CONCLUSION Physical activity correlates with left ventricular ejection fraction and left ventricular cardiac index and is modified by ambulation. Future analysis should assess the temporal relationship between physical activity and cardiomyopathy.
Collapse
Affiliation(s)
- Mary Killian
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaclyn Tamaroff
- Division of Endocrinology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Karry Su
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly Crum
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristen George-Durrett
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W Markham
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, Department of Pediatrics, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA
| | - Maciej Buchowski
- Energy Balance Laboratory, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas Donnelly
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Bryan Burnette
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan H Soslow
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Raspa M, Gwaltney A, Bann C, von Hehn J, Benke TA, Marsh ED, Peters SU, Ananth A, Percy AK, Neul JL. Psychometric Assessment of the Rett Syndrome Caregiver Assessment of Symptom Severity (RCASS). J Autism Dev Disord 2025; 55:997-1009. [PMID: 38438817 PMCID: PMC11374935 DOI: 10.1007/s10803-024-06238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 03/06/2024]
Abstract
Rett syndrome is a severe neurodevelopmental disorder that affects about 1 in 10,000 females. Clinical trials of disease modifying therapies are on the rise, but there are few psychometrically sound caregiver-reported outcome measures available to assess treatment benefit. We report on a new caregiver-reported outcome measure, the Rett Caregiver Assessment of Symptom Severity (RCASS). Using data from the Rett Natural History Study (n = 649), we examined the factor structure, using both exploratory and confirmatory factor analysis, and the reliability and validity of the RCASS. The four-factor model had the best overall fit, which covered movement, communication, behavior, and Rett-specific symptoms. The RCASS had moderate internal consistency. Strong face validity was found with age and mutation type, and convergent validity was established with other similar measures, including the Revised Motor-Behavior Assessment Scale, Clinical Severity Scale, Clinical Global Impression Scale, and the Child Health Questionnaire. These data provide initial evidence that the RCASS is a viable caregiver-outcome measure for use in clinical trials in Rett syndrome. Future work to assess sensitivity to change and other measures of reliability, such as test-retest and inter-rater agreement, are needed.
Collapse
Affiliation(s)
- Melissa Raspa
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27708, USA.
| | - Angela Gwaltney
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27708, USA
| | - Carla Bann
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27708, USA
| | | | - Timothy A Benke
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, USA
| | - Eric D Marsh
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Sarika U Peters
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, USA
| | - Amitha Ananth
- University of Alabama at Birmingham, Birmingham, USA
| | - Alan K Percy
- University of Alabama at Birmingham, Birmingham, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
3
|
Benemei S, Gatto F, Boni L, Pane M. "If you cannot measure it, you cannot improve it". Outcome measures in Duchenne Muscular Dystrophy: current and future perspectives. Acta Neurol Belg 2025; 125:1-12. [PMID: 39080230 PMCID: PMC11876273 DOI: 10.1007/s13760-024-02600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024]
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive neuromuscular disorder primarily affecting males, caused by mutations in the dystrophin gene. The absence of dystrophin protein leads to progressive skeletal muscle degeneration. Recent advances in the therapeutic landscape underscore the need to identify appropriate outcome measures to assess treatment efficacy in ambulant and non-ambulant DMD patients, across clinical and research settings. This is essential for accurately evaluating new treatments and attributing therapeutic benefits.It is crucial to establish a robust correlation between outcome scores and disease progression patterns. This task is challenging since functional test performance may be influenced by different patient's characteristics, including the physiological evolution of the neurodevelopment together with the disease progression. While widely used DMD outcomes such as the North Star Ambulatory Assessment, the 6-Minute Walking Test, the 4 stairs climbed, and the Performance of the Upper Limb exhibit reliability and validity, their clinical significance is influenced by the wide phenotype and progression variability of the disease.We present and discuss the features (relevance, quantifiability, validity, objectivity, reliability, sensitivity, specificity, precision) of available DMD outcome measures, including new potential measures that may be provided by digital tools and artificial intelligence.
Collapse
Affiliation(s)
| | | | - Luca Boni
- U.O. Epidemiologia Clinica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marika Pane
- Nemo Clinical Centre, Fondazione Policlinico Universitario A. Gemelli IRCSS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Downs J, Pichard DC, Kaufmann WE, Horrigan JP, Raspa M, Townend G, Marsh ED, Leonard H, Motil K, Dietz AC, Garg N, Ananth A, Byiers B, Peters S, Beatty C, Symons F, Jacobs A, Youakim J, Suter B, Santosh P, Neul JL, Benke TA. International workshop: what is needed to ensure outcome measures for Rett syndrome are fit-for-purpose for clinical trials? June 7, 2023, Nashville, USA. Trials 2024; 25:845. [PMID: 39709426 PMCID: PMC11663341 DOI: 10.1186/s13063-024-08678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION The clinical, research and advocacy communities for Rett syndrome are striving to achieve clinical trial readiness, including having fit-for-purpose clinical outcome assessments. This study aimed to (1) describe psychometric properties of clinical outcome assessment for Rett syndrome and (2) identify what is needed to ensure that fit-for-purpose clinical outcome assessments are available for clinical trials. METHODS Clinical outcome assessments for the top 10 priority domains identified in the Voice of the Patient Report for Rett syndrome were compiled and available psychometric data were extracted. The clinical outcome assessments measured clinical severity, functional abilities, comorbidities and quality of life, and electrophysiological biomarkers. An international and multidisciplinary panel of 29 experts with clinical, research, psychometric, biostatistical, industry and lived experience was identified through International Rett Syndrome Foundation networks, to discuss validation of the clinical outcome assessments, gaps and next steps, during a workshop and in a follow-up questionnaire. The identified gaps and limitations were coded using inductive content analysis. RESULTS Variable validation profiles across 26 clinical outcome assessments of clinical severity, functional abilities, and comorbidities were discussed. Reliability, validity, and responsiveness profiles were mostly incomplete; there were limited content validation data, particularly parent-informed relevance, comprehensiveness and comprehensibility of items; and no data on meaningful change or cross-cultural validity. The panel identified needs for standardised administration protocols and systematic validation programmes. CONCLUSION A pipeline of collaborative clinical outcome assessment development and validation research in Rett syndrome can now be designed, aiming to have fit-for-purpose measures that can evaluate meaningful change, to serve future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Jenny Downs
- The Kids Research Institute Australia, Centre for Child Health Research, University of Western Australia, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia.
- Curtin School of Allied Health, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| | - Dominique C Pichard
- International Rett Syndrome Foundation, 4500 Cooper Road, Suite 204, Cincinnati, OH, 45242, USA
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA, 30322, USA
- Department of Neurology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Joseph P Horrigan
- Duke Center for Autism and Brain Development, Duke University, 2608 Erwin Road, Suite 300, Durham, NC, 27705, USA
| | - Melissa Raspa
- RTI International, 3040 East Cornwallis Road, Research Triangle Park, Durham, NC, 27607, USA
| | - Gillian Townend
- School of Psychology and Clinical Language Sciences, University of Reading, Whiteknights Campus, Reading, RG6 6ES, UK
| | - Eric D Marsh
- Division of Child Neurology and University of Pennsylvania Perelman School of Medicine, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Helen Leonard
- The Kids Research Institute Australia, Centre for Child Health Research, University of Western Australia, 15 Hospital Avenue, Nedlands, Perth, WA, 6009, Australia
| | - Kathleen Motil
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Nupur Garg
- International Rett Syndrome Foundation, 4500 Cooper Road, Suite 204, Cincinnati, OH, 45242, USA
| | - Amitha Ananth
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Breanne Byiers
- Department of Educational Psychology, University of Minnesota, 56 E River Rd, Room 250, Minneapolis, MN, 55455, USA
| | - Sarika Peters
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, 230 Appleton Place, Nashville, TN, PMB4037204, USA
| | - Christopher Beatty
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital and, The Ohio State University College of Medicine, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Frank Symons
- Department of Educational Psychology, University of Minnesota, 56 E River Rd, Room 250, Minneapolis, MN, 55455, USA
| | - Aleksandra Jacobs
- Isabelle Rapin Division of Child Neurology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, USA
| | - James Youakim
- Acadia Pharmaceuticals Inc., 502 Carnegie Center, Suite 300, Princeton, NJ, 08540, USA
| | - Bernhard Suter
- Department of Pediatrics & Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Paramola Santosh
- Department of Child and Adolescent Psychiatry, Developmental Neuropsychiatry & Psychopharmacology, King's College, London, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD) & CIPP Rett Centre, Maudsley Hospital, London, UK
- HealthTracker Ltd, Gillingham, UK
| | - Jeffrey L Neul
- Department of Educational Psychology, University of Minnesota, 56 E River Rd, Room 250, Minneapolis, MN, 55455, USA
| | - Tim A Benke
- School of Medicine Depts of Pediatrics, Neurology and Pharmacology, Children's Hospital Colorado/University of Colorado, 12800 E 19th, MS8102, Aurora, CO, 80045, USA
| |
Collapse
|
5
|
Hartman JM, Ikegami K, Provenzano M, Bates K, Butler A, Jones AS, Berggren KN, Dekdebrun J, McKay MJ, Baldwin JN, Cornett KMD, Burns J, Kiefer M, Johnson NE, Hale MA. RNA mis-splicing in children with congenital myotonic dystrophy is associated with physical function. Ann Clin Transl Neurol 2024; 11:3175-3191. [PMID: 39450929 DOI: 10.1002/acn3.52224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES Dysregulated RNA alternative splicing is the hallmark of myotonic dystrophy type 1 (DM1). However, the association between RNA mis-splicing and physical function in children with the most severe form of disease, congenital myotonic dystrophy (CDM), is unknown. METHODS Eighty-two participants (42 adults with DM1 and 40 children with CDM) with muscle biopsies and measures of myotonia, motor function, and strength were combined from five observational studies. Data were normalized and correlated with an aggregate measure of alternative splicing dysregulation, [MBNL]inferred, in skeletal muscle biopsies. Multiple linear regression analysis was performed to predict [MBNL]inferred using clinical outcome measures alone. Similar analyses were performed to predict 12-month physical function using baseline metrics. RESULTS Myotonia (measured via vHOT) was significantly correlated with RNA mis-splicing in our cross-sectional population of all DM1 individuals; CDM participants alone displayed no myotonia despite a similar range of RNA mis-splicing. Measures of motor performance and muscle strength were significantly associated with [MBNL]inferred in our cohort of all DM1 individuals and when assessing children with CDM independently. Multiple linear regression analyses yielded two models capable of predicting [MBNL]inferred from select clinical outcome assessments alone in all subjects (adjusted R2 = 0.6723) or exclusively in children with CDM (adjusted R2 = 0.5875). INTERPRETATION Our findings establish significant correlations between skeletal muscle performance and a composite measure of alternative splicing dysregulation, [MBNL]inferred, in DM1. The strength of these correlations and the development of predictive models will assist in designing efficacious clinical trials for individuals with DM1, particularly CDM.
Collapse
Affiliation(s)
- Julia M Hartman
- Medical Scientist Training Program, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kobe Ikegami
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Marina Provenzano
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Kameron Bates
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Amanda Butler
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Children's Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, 23220, USA
| | - Aileen S Jones
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Children's Hospital of Richmond at Virginia Commonwealth University, Pediatric Therapy Services, Richmond, Virginia, 23220, USA
| | - Kiera N Berggren
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Jeanne Dekdebrun
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642, USA
| | - Marnee J McKay
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Jennifer N Baldwin
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Kayla M D Cornett
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Children's Hospitals Network (Randwick and Westmead), Sydney, New South Wales, Australia
| | - Joshua Burns
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Children's Hospitals Network (Randwick and Westmead), Sydney, New South Wales, Australia
| | - Michael Kiefer
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Nicholas E Johnson
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| | - Melissa A Hale
- Center for Inherited Myology Research, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
- Department for Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia, 23298, USA
| |
Collapse
|
6
|
Trucco F, Lizio A, Roma E, di Bari A, Salmin F, Albamonte E, Casiraghi J, Pozzi S, Becchiati S, Antonaci L, Salvalaggio A, Catteruccia M, Tosi M, Marinella G, Danti FR, Bruschi F, Veneruso M, Parravicini S, Fiorillo C, Berardinelli A, Pini A, Moroni I, Astrea G, Battini R, D’Amico A, Ricci F, Pane M, Mercuri EM, Johnson NE, Sansone VA. Association between Reported Sleep Disorders and Behavioral Issues in Children with Myotonic Dystrophy Type 1-Results from a Retrospective Analysis in Italy. J Clin Med 2024; 13:5459. [PMID: 39336946 PMCID: PMC11432637 DOI: 10.3390/jcm13185459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Sleep disorders have been poorly described in congenital (CDM) and childhood (ChDM) myotonic dystrophy despite being highly burdensome. The aims of this study were to explore sleep disorders in a cohort of Italian CDM and ChDM and to assess their association with motor and respiratory function and disease-specific cognitive and behavioral assessments. Methods: This was an observational multicenter study. Reported sleep quality was assessed using the Pediatric Daytime Sleepiness Scale (PDSS) and Pediatric Sleep Questionnaire (PSQ). Sleep quality was correlated to motor function (6 min walk test, 6MWT and grip strength; pulmonary function (predicted Forced Vital Capacity%, FVC% pred.); executive function assessed by BRIEF-2; autism traits assessed by Autism Spectrum Screening Questionnaire (ASSQ) and Repetitive Behavior Scale-revised (RBS-R); Quality of life (PedsQL) and disease burden (Congenital Childhood Myotonic Dystrophy Health Index, CCMDHI). Results: Forty-six patients were included, 33 CDM and 13 ChDM, at a median age of 10.4 and 15.1 years. Daytime sleepiness and disrupted sleep were reported by 30% children, in both subgroups of CDM and ChDM. Daytime sleepiness correlated with autism traits in CDM (p < 0.05). Disrupted sleep correlated with poorer executive function (p = 0.04) and higher disease burden (p = 0.03). Conclusions: Sleep issues are a feature of both CDM and ChDM. They correlate with behavioral issues and impact on disease burden.
Collapse
Affiliation(s)
- Federica Trucco
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
- Department of Neurorehabilitation, University of Milan, 20122 Milan, Italy
- Paediatric Neurology and Muscular Diseases Unit, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, 16132 Genoa, Italy
| | - Andrea Lizio
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Elisabetta Roma
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Alessandra di Bari
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Francesca Salmin
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Emilio Albamonte
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Jacopo Casiraghi
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Susanna Pozzi
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Stefano Becchiati
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
| | - Laura Antonaci
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Università Cattolica del Sacro Cuore, 00136 Roma, Italy; (L.A.); (M.P.); (E.M.M.)
| | - Anna Salvalaggio
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy; (A.S.); (F.R.)
| | - Michela Catteruccia
- UOS Malattie Muscolari e Neurodegenerative—Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy; (M.C.); (M.T.); (A.D.)
| | - Michele Tosi
- UOS Malattie Muscolari e Neurodegenerative—Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy; (M.C.); (M.T.); (A.D.)
| | - Gemma Marinella
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Calambrone Pisa, Italy; (G.M.); (G.A.); (R.B.)
| | - Federica R. Danti
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.D.); (I.M.)
| | - Fabio Bruschi
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.D.); (I.M.)
| | - Marco Veneruso
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini and DINOGMI, University of Genova, 16132 Genova, Italy; (M.V.); (C.F.)
| | - Stefano Parravicini
- Child and Adolescent Neuromuscular Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.P.); (A.B.)
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Chiara Fiorillo
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini and DINOGMI, University of Genova, 16132 Genova, Italy; (M.V.); (C.F.)
| | - Angela Berardinelli
- Child and Adolescent Neuromuscular Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (S.P.); (A.B.)
| | - Antonella Pini
- Pediatric Neuromuscular Unit, UOC Neuropsichiatria dell’età Pediatrica, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Isabella Moroni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (F.R.D.); (I.M.)
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Calambrone Pisa, Italy; (G.M.); (G.A.); (R.B.)
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56128 Calambrone Pisa, Italy; (G.M.); (G.A.); (R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Adele D’Amico
- UOS Malattie Muscolari e Neurodegenerative—Ospedale Pediatrico Bambino Gesù, 00165 Roma, Italy; (M.C.); (M.T.); (A.D.)
| | - Federica Ricci
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy; (A.S.); (F.R.)
| | - Marika Pane
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Università Cattolica del Sacro Cuore, 00136 Roma, Italy; (L.A.); (M.P.); (E.M.M.)
| | - Eugenio M. Mercuri
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Università Cattolica del Sacro Cuore, 00136 Roma, Italy; (L.A.); (M.P.); (E.M.M.)
| | - Nicholas E. Johnson
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Valeria A. Sansone
- The NeMO Clinical Center in Milan, 20162 Milan, Italy; (F.T.); (A.L.); (E.R.); (A.d.B.); (F.S.); (E.A.); (J.C.); (S.P.); (S.B.)
- Department of Neurorehabilitation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
7
|
Erden Güner A, Öztürk D, Sarı M, Çelik Hİ, Tunç AR, Ünver B, Kılınç HE, Korkmaz N, Turanoğlu M, Gürsoy S, Karaduman AA. Maintaining Physical Health in Individuals with Duchenne Muscular Dystrophy Through Telerehabilitation. Phys Occup Ther Pediatr 2024; 44:812-828. [PMID: 39014867 DOI: 10.1080/01942638.2024.2376055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024]
Abstract
AIMS To investigate the effects of a telerehabilitation program on walking performance, lower and upper extremity function, fall frequency, respiratory function, and satisfaction in individuals with Duchenne muscular dystrophy (DMD). METHODS Thirty children (mean age 8.8 ± 4.2 years) were ambulant (Group 1), and 12 youth (18.5 ± 4.7 years) were non-ambulant (Group 2). The telerehabilitation program was applied by physiotherapists for 24 sessions (3 days/week). The 10-meter walking test, stand up from the supine position test, the modified upper extremity performance test, repetition of Lower and upper extremity movements, and the single breath count (SBC) test were administered. Fall frequency and satisfaction level were also recorded. RESULTS Significant improvement was found after telerehabilitation in upper extremity performance, repetition of lower and upper extremity movements, fall frequency, and SBC scores in Group 1. Changes in the 10-minute Walk and Stand Up from the Supine Position tests were not significant. There was a significant improvement in SBC scores in Group 2. Satisfaction with the service was 88%. CONCLUSIONS The 8-week telerehabilitation program was effective in improving aspects of upper and lower extremity function, fall frequency, pulmonary function, and satisfaction levels in individuals with DMD.
Collapse
Affiliation(s)
- Arzu Erden Güner
- Faculty of Health Science, Department of Physiotherapy and Rehabilitation, Karadeniz Technical University, Trabzon, Turkey
| | - Demet Öztürk
- Faculty of Health Science, Department of Physiotherapy and Rehabilitation, Lokman Hekim University, Ankara, Turkey
| | - Mustafa Sarı
- Faculty of Health Science, Department of Physiotherapy and Rehabilitation, Lokman Hekim University, Ankara, Turkey
| | | | - Azize Reda Tunç
- Faculty of Health Science, Department of Physiotherapy and Rehabilitation, Lokman Hekim University, Ankara, Turkey
| | - Banu Ünver
- Faculty of Health Science, Department of Physiotherapy and Rehabilitation, Lokman Hekim University, Ankara, Turkey
| | - Hasan Erkan Kılınç
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Nurhayat Korkmaz
- Faculty of Health Science, Department of Physiotherapy and Rehabilitation, Karadeniz Technical University, Trabzon, Turkey
| | - Mehtap Turanoğlu
- Turkish Republic Health Ministry Tepecik Educational and Research Hospital, İzmir, Turkey
| | - Selda Gürsoy
- Arsin Yeşilce Special Education Occupation School, Trabzon, Turkey
| | - Aynur Ayşe Karaduman
- Faculty of Health Science, Department of Physiotherapy and Rehabilitation, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Muntoni F, Signorovitch J, Sajeev G, Done N, Yao Z, Goemans N, McDonald C, Mercuri E, Niks EH, Wong B, Vandenborne K, Straub V, de Groot IJM, Tian C, Manzur A, Dieye I, Lane H, Ward SJ, Servais L, PRO-DMD-01 study investigators, Association Française contre les Myopathies, The UK NorthStar Clinical Network, ImagingDMD investigators, cTAP. Meaningful changes in motor function in Duchenne muscular dystrophy (DMD): A multi-center study. PLoS One 2024; 19:e0304984. [PMID: 38985784 PMCID: PMC11236155 DOI: 10.1371/journal.pone.0304984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
Evaluations of treatment efficacy in Duchenne muscular dystrophy (DMD), a rare genetic disease that results in progressive muscle wasting, require an understanding of the 'meaningfulness' of changes in functional measures. We estimated the minimal detectable change (MDC) for selected motor function measures in ambulatory DMD, i.e., the minimal degree of measured change needed to be confident that true underlying change has occurred rather than transient variation or measurement error. MDC estimates were compared across multiple data sources, representing >1000 DMD patients in clinical trials and real-world clinical practice settings. Included patients were ambulatory, aged ≥4 to <18 years and receiving steroids. Minimal clinically important differences (MCIDs) for worsening were also estimated. Estimated MDC thresholds for >80% confidence in true change were 2.8 units for the North Star Ambulatory Assessment (NSAA) total score, 1.3 seconds for the 4-stair climb (4SC) completion time, 0.36 stairs/second for 4SC velocity and 36.3 meters for the 6-minute walk distance (6MWD). MDC estimates were similar across clinical trial and real-world data sources, and tended to be slightly larger than MCIDs for these measures. The identified thresholds can be used to inform endpoint definitions, or as benchmarks for monitoring individual changes in motor function in ambulatory DMD.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, United Kingdom
| | - James Signorovitch
- Analysis Group, Inc., Boston, Massachusetts, United States of America
- The collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
| | - Gautam Sajeev
- Analysis Group, Inc., Boston, Massachusetts, United States of America
| | - Nicolae Done
- Analysis Group, Inc., Boston, Massachusetts, United States of America
| | - Zhiwen Yao
- Analysis Group, Inc., Boston, Massachusetts, United States of America
| | | | - Craig McDonald
- Department of Physical Medicine and Rehabilitation and Pediatrics, University of California, Davis, Sacramento, California, United States of America
| | - Eugenio Mercuri
- Department of Pediatric Neurology, Fondazione Policlinico Gemelli IRCCS, Catholic University, Rome, Italy
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Brenda Wong
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida, United States of America
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Imelda J. M. de Groot
- Department of Rehabilitation, Donders Centre of Neuroscience, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Cuixia Tian
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio & College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Adnan Manzur
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, United Kingdom
| | - Ibrahima Dieye
- Analysis Group, Inc., Boston, Massachusetts, United States of America
| | - Henry Lane
- Analysis Group, Inc., Boston, Massachusetts, United States of America
| | - Susan J. Ward
- The collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, United Kingdom
- Neuromuscular Center of Liège, Division of Paediatrics, CHU and University of Liège, Liège, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
10
|
Hartman JM, Ikegami K, Provenzano M, Bates K, Butler A, Jones AS, Berggren KN, Dekdebrun J, McKay MJ, Baldwin JN, Cornett KMD, Burns J, Kiefer M, Johnson NE, Hale MA. RNA mis-splicing in children with myotonic dystrophy is associated with physical function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.600889. [PMID: 39109179 PMCID: PMC11302619 DOI: 10.1101/2024.07.03.600889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Objectives Dysregulated RNA alternative splicing is the hallmark of myotonic dystrophy type 1 (DM1). However, the association between RNA mis-splicing and physical function in children with the most severe form of disease, congenital myotonic dystrophy (CDM), is unknown. Methods 82 participants (42 DM1 adults & 40 CDM children) with muscle biopsies and measures of myotonia, motor function, and strength were combined from five observational studies. Data were normalized and correlated with an aggregate measure of alternative splicing dysregulation, [MBNL] inferred in skeletal muscle biopsies. Multiple linear regression analysis was performed to predict [MBNL] inferred using clinical outcome measures alone. Similar analyses were performed to predict 12-month physical function using baseline metrics. Results Myotonia (measured via vHOT) was significantly correlated with RNA mis-splicing in our cross-sectional population of all DM1 individuals; CDM participants alone displayed no myotonia despite a similar range of RNA mis-splicing. Measures of motor performance and muscle strength were significantly associated with [MBNL] inferred in our cohort of all DM1 individuals and when assessing CDM children independently. Multiple linear regression analyses yielded two models capable of predicting [MBNL] inferred from select clinical outcome assessments alone in all subjects (adjusted R 2 = 0.6723) or exclusively in CDM children (adjusted R 2 = 0.5875). Interpretation Our findings establish significant correlations between skeletal muscle performance and a composite measure of alternative splicing dysregulation, [MBNL] inferred, in DM1. The strength of these correlations and the development of the predictive models will assist in designing efficacious clinical trials for individuals with DM1, particularly CDM.
Collapse
|
11
|
Mercuri E, Vilchez JJ, Boespflug-Tanguy O, Zaidman CM, Mah JK, Goemans N, Müller-Felber W, Niks EH, Schara-Schmidt U, Bertini E, Comi GP, Mathews KD, Servais L, Vandenborne K, Johannsen J, Messina S, Spinty S, McAdam L, Selby K, Byrne B, Laverty CG, Carroll K, Zardi G, Cazzaniga S, Coceani N, Bettica P, McDonald CM. Safety and efficacy of givinostat in boys with Duchenne muscular dystrophy (EPIDYS): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 2024; 23:393-403. [PMID: 38508835 DOI: 10.1016/s1474-4422(24)00036-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Duchenne muscular dystrophy, the most common childhood muscular dystrophy, is caused by dystrophin deficiency. Preclinical and phase 2 study data have suggested that givinostat, a histone deacetylase inhibitor, might help to counteract the effects of this deficiency. We aimed to evaluate the safety and efficacy of givinostat in the treatment of Duchenne muscular dystrophy. METHODS This multicentre, randomised, double-blind, placebo-controlled, phase 3 trial was done at 41 tertiary care sites in 11 countries. Eligible participants were ambulant, male, and aged at least 6 years, had a genetically confirmed diagnosis of Duchenne muscular dystrophy, completed two four-stair climb assessments with a mean of 8 s or less (≤1 s variance), had a time-to-rise of at least 3 s but less than 10 s, and had received systemic corticosteroids for at least 6 months. Participating boys were randomly assigned (2:1, allocated according to a list generated by the interactive response technology provider) to receive either oral givinostat or matching placebo twice a day for 72 weeks, stratified by concomitant steroid use. Boys, investigators, and site and sponsor staff were masked to treatment assignment. The dose was flexible, based on weight, and was reduced if not tolerated. Boys were divided into two groups on the basis of their baseline vastus lateralis fat fraction (VLFF; measured by magnetic resonance spectroscopy): group A comprised boys with a VLFF of more than 5% but no more than 30%, whereas group B comprised boys with a VLFF of 5% or less, or more than 30%. The primary endpoint compared the effects of givinostat and placebo on the change in results of the four-stair climb assessment between baseline and 72 weeks, in the intention-to-treat, group A population. Safety was assessed in all randomly assigned boys who received at least one dose of study drug. When the first 50 boys in group A completed 12 months of treatment, an interim futility assessment was conducted, after which the sample size was adapted using masked data from the four-stair climb assessments. Furthermore, the starting dose of givinostat was reduced following a protocol amendment. This trial is registered with ClinicalTrials.gov, NCT02851797, and is complete. FINDINGS Between June 6, 2017, and Feb 22, 2022, 359 boys were assessed for eligibility. Of these, 179 were enrolled into the study (median age 9·8 years [IQR 8·1-11·0]), all of whom were randomly assigned (118 to receive givinostat and 61 to receive placebo); 170 (95%) boys completed the study. Of the 179 boys enrolled, 120 (67%) were in group A (81 givinostat and 39 placebo); of these, 114 (95%) completed the study. For participants in group A, comparing the results of the four-stair climb assessment at 72 weeks and baseline, the geometric least squares mean ratio was 1·27 (95% CI 1·17-1·37) for boys receiving givinostat and 1·48 (1·32-1·66) for those receiving placebo (ratio 0·86, 95% CI 0·745-0·989; p=0·035). The most common adverse events in the givinostat group were diarrhoea (43 [36%] of 118 boys vs 11 [18%] of 61 receiving placebo) and vomiting (34 [29%] vs 8 [13%]); no treatment-related deaths occurred. INTERPRETATION Among ambulant boys with Duchenne muscular dystrophy, results of the four-stair climb assessment worsened in both groups over the study period; however, the decline was significantly smaller with givinostat than with placebo. The dose of givinostat was reduced after an interim safety analysis, but no new safety signals were reported. An ongoing extension study is evaluating the long-term safety and efficacy of givinostat in patients with Duchenne muscular dystrophy. FUNDING Italfarmaco.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Universita Cattolica del Sacro Cuore, Rome, Italy; Centro Clinico Nemo Fondazione Policlinico Gemelli IRCCS, Rome, Italy.
| | - Juan J Vilchez
- Servicio de Neurología, Neuromuscular Unit, CIBERER, EURO-RN-NMD, Hospital Universitario y Politécnico La Fe Valencia, Valencia, Spain
| | - Odile Boespflug-Tanguy
- I-Motion, Institut de Myologie, Hôpital Armand-Trousseau, APHP, Sorbonne Université, Paris, France; Université Paris Cité UMR INSERM 1141, Hôpital Robert Debré, Paris, France
| | | | - Jean K Mah
- Division of Pediatric Neurology, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Wolfgang Müller-Felber
- LMU Munich, University Hospital, Hauner Children's Hospital, Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands; Duchenne Center Netherlands, Netherlands
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Children's University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giacomo P Comi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Milan, Italy; Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Neuromuscular Reference Center, Department of Paediatrics, University and University Hospital of Liege, Belgium
| | - Krista Vandenborne
- ImagingDMD, University of Florida, Gainesville, FL, USA; Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Jessika Johannsen
- University Medical Center Hamburg-Eppendorf, Department of Pediatrics, Hamburg, Germany
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, Unit of Neurodegenerative Diseases, AOU Policlinico G Martino, University of Mesina, Messina, Italy
| | - Stefan Spinty
- Department of Paediatric Neurology, Alder Hey Children's Hospital NHS Trust, Liverpool, UK
| | - Laura McAdam
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Kathryn Selby
- The University of British Columbia, Children's and Women's Health Centre, Vancouver, BC, Canada
| | - Barry Byrne
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Chamindra G Laverty
- Department of Neuroscience, University of California, San Diego, San Diego, CA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Coratti G, Pane M, Brogna C, D'Amico A, Pegoraro E, Bello L, Sansone VA, Albamonte E, Ferraroli E, Mazzone ES, Fanelli L, Messina S, Sframeli M, Catteruccia M, Cicala G, Capasso A, Ricci M, Frosini S, De Luca G, Rolle E, De Sanctis R, Forcina N, Norcia G, Passamano L, Scutifero M, Gardani A, Pini A, Monaco G, D'Angelo MG, Leone D, Zanin R, Vita GL, Panicucci C, Bruno C, Mongini T, Ricci F, Berardinelli A, Battini R, Masson R, Baranello G, Dosi C, Bertini E, Nigro V, Politano L, Mercuri E. Gain and loss of upper limb abilities in Duchenne muscular dystrophy patients: A 24-month study. Neuromuscul Disord 2024; 34:75-82. [PMID: 38157655 DOI: 10.1016/j.nmd.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular condition characterized by muscle weakness. The Performance of upper limb (PUL) test is designed to evaluate upper limb function in DMD patients across three domains. The aim of this study is to identify frequently lost or gained PUL 2.0 abilities at distinct functional stages in DMD patients. This retrospective study analyzed prospectively collected data on 24-month PUL 2.0 changes related to ambulatory function. Ambulant patients were categorized based on initial 6MWT distance, non-ambulant patients by time since ambulation loss. Each PUL 2.0 item was classified as shift up, no change, or shift down. The study's cohort incuded 274 patients, with 626 paired evaluations at the 24-month mark. Among these, 55.1 % had activity loss, while 29.1 % had gains. Ambulant patients showed the lowest loss rates, mainly in the shoulder domain. The highest loss rate was in the shoulder domain in the transitioning subgroup and in elbow and distal domains in the non-ambulant patients. Younger ambulant patients demonstrated multiple gains, whereas in the other functional subgroups there were fewer gains, mostly tied to singular activities. Our findings highlight divergent upper limb domain progression, partly linked to functional status and baseline function.
Collapse
Affiliation(s)
- Giorgia Coratti
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marika Pane
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Brogna
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Adele D'Amico
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Valeria A Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | - Emilio Albamonte
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, ASST Niguarda Hospital, Milan, Italy
| | | | | | - Lavinia Fanelli
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Sonia Messina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Maria Sframeli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gianpaolo Cicala
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Capasso
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Ricci
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Frosini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy
| | - Giacomo De Luca
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Enrica Rolle
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Roberto De Sanctis
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nicola Forcina
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Giulia Norcia
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Luigia Passamano
- Cardiomiology and Medical Genetics, Luigi Vanvitelli University Hospital, Naples, Italy
| | - Marianna Scutifero
- Cardiomiology and Medical Genetics, Luigi Vanvitelli University Hospital, Naples, Italy
| | - Alice Gardani
- Child and Adolescence Neurological Unit, National Neurological Institute Casimiro Mondino Foundation, IRCCS, IRCCS Mondino Foundation, Pavia, Italy
| | - Antonella Pini
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | - Giulia Monaco
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Bellaria Hospital, Bologna, Italy
| | | | - Daniela Leone
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Riccardo Zanin
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gian Luca Vita
- Unit of Neurology, IRCCS Centro Neurolesi Bonino-Pulejo - P.O. Piemonte, Messina, Italy
| | - Chiara Panicucci
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health-DINOGMI, Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini IRCCS, University of Genova, Genova, Italy
| | - Claudio Bruno
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health-DINOGMI, Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini IRCCS, University of Genova, Genova, Italy
| | - Tiziana Mongini
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Federica Ricci
- Neuromuscular Center, AOU Città della Salute e della Scienza, University of Torino, Turin, Italy
| | - Angela Berardinelli
- Child and Adolescence Neurological Unit, National Neurological Institute Casimiro Mondino Foundation, IRCCS, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Riccardo Masson
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudia Dosi
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, Luigi Vanvitelli and Telethon Institute of Genetics and Medicine, University of Campania, Italy
| | - Luisa Politano
- Cardiomiology and Medical Genetics, Luigi Vanvitelli University Hospital, Naples, Italy
| | - Eugenio Mercuri
- Centro Clinico Nemo, IRCCS, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy; Pediatric Neurology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
13
|
Aydın Yağcıoğlu G, Alemdaroğlu Gürbüz İ, Topuz S, Yılmaz Ö. Development of a new instrument to evaluate gait characteristics of individuals with Duchenne Muscular Dystrophy: Gait Assessment Scale for Duchenne Muscular Dystrophy, and its validity and reliability. Early Hum Dev 2023; 185:105843. [PMID: 37672897 DOI: 10.1016/j.earlhumdev.2023.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Patients with Duchenne Muscular Dystrophy (DMD) have gait disorders. Therefore, specific gait assessment tools are needed. AIMS The aim of this study was to develop a gait assessment instrument for DMD patients (DMD-GAS), and investigate its validity and reliability. STUDY DESIGN The scale was developed considering the expert opinions which included 10 physiotherapists who had experience in the management of patients with DMD, and the Content Validity Index (CVI) was calculated. The final version of the DMD-GAS that was agreed upon the experts consisted of 10 items, and each item scored between 0 and 2. The intra-rater reliability was established by the video analysis of children with a 1-month interval and inter-rater reliability was determined by the scores of 3 physiotherapists. SUBJECTS The study included 56 patients with DMD. OUTCOME MEASURES The criterion validity was determined by investigating the relationship between the total score of the DMD-GAS and Motor Function Measure (MFM), 6 Minute Walk Test (6MWT), and the data obtained from GAITRite. RESULTS The CVI of the DMD-GAS was 0.90 (p < 0.05). The construct validity and internal consistency of the DMD-GAS were excellent as well as the intra- and inter-rater reliability (>0.90). Moderate-to-very strong correlations were found between the total score of the DMD-GAS and the MFM-total score (r = 0.78), 6MWT (r = 0.71), gait speed (r = 0.50), stride length (r = 0.56), and base of support (r = -0.70) (p < 0.01). CONCLUSIONS The results indicated that DMD-GAS was a reliable and valid instrument to determine gait characteristics of the patients with DMD in clinical settings. CLINICAL TRIAL NUMBER NCT05244395.
Collapse
Affiliation(s)
- Güllü Aydın Yağcıoğlu
- University of Health Sciences, Gülhane Faculty of Health Sciences, Department of Orthotics and Prosthetics, 06018 Ankara, Turkey.
| | | | - Semra Topuz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, 06100 Ankara, Turkey
| | - Öznur Yılmaz
- Hacettepe University, Faculty of Physical Therapy and Rehabilitation, 06100 Ankara, Turkey
| |
Collapse
|
14
|
Xu T, Xu K, Song Y, Zhou Z, Fu H, Xu R, Cai X, Guo Y, Ye P, Xu H. High-Speed T 2 -Corrected Multiecho Magnetic Resonance Spectroscopy for Quantitatively Detecting Skeletal Muscle Fatty Infiltration and Predicting the Loss of Ambulation in Patients With Duchenne Muscular Dystrophy. J Magn Reson Imaging 2023; 58:1270-1278. [PMID: 36773028 DOI: 10.1002/jmri.28641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND High-speed T2 -corrected multiecho MRS (HISTO-MRS) is emerging as a quantitative modality for detecting muscle fat infiltration (MFF). However, the predictive value of HISTO-MRS for the loss of ambulation (LoA) in Duchenne muscular dystrophy (DMD) is unknown. PURPOSE To determine the feasibility of HISTO-MRS for assessing MFF in DMD and further identify the predictive value of HISTO-MRS for the LoA. STUDY TYPE Prospective. SUBJECTS A total of 134 DMD boys (9.20 ± 2.43 years old) and 21 healthy boys (9.25 ± 2.10 years old). FIELD STRENGTH/SEQUENCE A 3 T, fast spin echo T1 -weighted imaging (T1 WI), two-point-Dixon gradient echo sequence (2-pt-Dixon) and HISTO-MRS. ASSESSMENT Subjective T1 WI fat grades by three radiologists, ROI analysis for MFF on 2 pt-Dixon (Dixon MFF) and MFF on HISTO-MRS (HISTO MFF) by two radiologists. Clinical motor function: North Star Ambulatory Assessment, 10-m run/walk time, Gowers maneuver, and time to four-stairs climb and descend. STATISTICAL TESTS Spearman rank correlation was used to assess the relation of fat filtration assessments and motor ability. Bland-Altman plots was performed to determine the agreement of HISTO MFF and Dixon MFF. Receiver operating characteristic (ROC) curves were analyzed to determine the discriminating ability of above MRI modalities for ambulatory and nonambulatory DMD. Logistic regression was used to identify the predictor of LoA. Variables with P < 0.05 in univariate logistic regression analysis were entered into the multivariate logistic regression model. RESULTS HISTO MFF was significantly correlated with Dixon MFF. Bland-Altman plots show good agreement of HISTO MFF and Dixon MFF. ROC curves indicated that HISTO MFF show similar discrimination of LoA for DMD with Dixon MFF but better value than T1WI fat grades. Logistic regression showed that HISTO MFF was an independent predictor for LoA. DATA CONCLUSION HISTO-MRS is a potential quantitative method for assessing fat infiltration and shows predictive value for LoA in DMD patients. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY Stage 5.
Collapse
Affiliation(s)
- Ting Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Ziqi Zhou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Xiaotang Cai
- Department of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Pengfei Ye
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Wuhou District, Chengdu, China
| |
Collapse
|
15
|
Hibma JE, Jayachandran P, Neelakantan S, Harnisch LO. Disease progression modeling of the North Star Ambulatory Assessment for Duchenne Muscular Dystrophy. CPT Pharmacometrics Syst Pharmacol 2023; 12:375-386. [PMID: 36718719 PMCID: PMC10014057 DOI: 10.1002/psp4.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a rare genetic disorder caused by decreased or absent dystrophin gene leading to progressive muscle degeneration and weakness in young boys. Disease progression models for the North Star Ambulatory Assessment (NSAA), a functional measurement widely used to assess outcomes in clinical trials, were developed using a longitudinal population modeling approach. The relationship between NSAA total score over time, loss of ambulation, and potential covariates that may influence disease progression were evaluated. Data included individual participant observations from an internal placebo-controlled phase II clinical trial and from the external natural history database for male patients with DMD obtained through the Cooperative International Neuromuscular Research Group (CINRG). A modified indirect response model for NSAA joined to a loss of ambulation (LOA) time-to-event model described the data well. Age was used as the independent variable because ambulatory function is known to vary with age. The NSAA and LOA models were linked using the dissipation rate constant parameter from the NSAA model by including the parameter as a covariate on the hazard equation for LOA. No covariates were identified. The model was then used as a simulation tool to explore various clinical trial design scenarios. This model contributes to the quantitative understanding of disease progression in DMD and may guide model-informed drug development decisions for ongoing and future DMD clinical trials.
Collapse
Affiliation(s)
- Jennifer E Hibma
- Global Product Development, Pfizer Inc., La Jolla, California, USA
| | | | | | | |
Collapse
|
16
|
Peng F, Xu H, Song Y, Xu K, Li S, Cai X, Guo Y, Gong L. Longitudinal study of multi-parameter quantitative magnetic resonance imaging in Duchenne muscular dystrophy: hyperresponsiveness of gluteus maximus and detection of subclinical disease progression in functionally stable patients. J Neurol 2023; 270:1439-1451. [PMID: 36385201 DOI: 10.1007/s00415-022-11470-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To describe the disease progression of Duchenne muscular dystrophy (DMD) in the pelvic and thigh muscles over 1-year using multiple-parameter quantitative magnetic resonance imaging (qMRI), and to determine the most responsive muscle and predict subclinical disease progression in functionally stable patients. METHODS Fifty-four DMD patients (mean age 8.9 ± 2.5, range 5-15 years) completed baseline and 1-year follow-up qMRI examinations/biomarkers [3-point Dixon/fat fraction (FF); T1 mapping/T1; T2 mapping/T2]. Meanwhile, clinical assessments [NorthStar ambulatory assessment (NSAA) score] and timed function tests were performed in DMD patients. Twenty-four healthy male controls (range 5-15 years) accomplished baseline qMRI examinations. Group differences were compared using the Wilcoxon test. The standardized response mean (SRM) was taken as the responsiveness to the disease progression index. RESULTS FF, T1, and T2 in all DMD age subgroups changed significantly over 1-year (P < 0.05). Even in functionally stable patients (NSAA score increased, unchanged, or decreased by 1-point) over 1-year, significant increases in FF and T2 and decreases in T1 were observed in gluteus maximus (GMa), gluteus medius, vastus lateralis, and adductor magnus (P < 0.05). Overall, the SRM of FF, T1, and T2 was all the highest in GMa, which were 1.25, - 0.92, and 0.93, respectively. CONCLUSIONS qMRI biomarkers are responsive to disease progression and can also detect subclinical disease progression in functionally stable DMD patients over 1-year. GMa is the most responsive to disease progression of all the muscles analyzed. TRIAL REGISTRATION Chinese Clinical Trial Registry ( http://www.chictr.org.cn/index.aspx ) ChiCTR1800018340, 09/12/2018, prospectively registered.
Collapse
Affiliation(s)
- Fei Peng
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Yu Song
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Shuhao Li
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China
| | - Xiaotang Cai
- Department of Pediatrics Neurology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Lianggeng Gong
- Department of Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
17
|
Chrzanowski SM, Nagy JA, Pandeya S, Rutkove SB. Electrical Impedance Myography Correlates with Functional Measures of Disease Progression in D2-mdx Mice and Boys with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2023; 10:81-90. [PMID: 36442205 DOI: 10.3233/jnd-210787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sensitive, objective, and longitudinal outcome measures applicable to both pre-clinical and clinical interventions are needed to assess muscle health in Duchenne muscular dystrophy (DMD). Electrical impedance myography (EIM) has the potential to non-invasively measure disease progression in mice and boys with DMD. OBJECTIVE We sought to evaluate how electrical impedance values (i.e., phase, reactance, and resistance) correlate to established measures of disease in both D2-mdx and wild type (WT) mice and boys with and without DMD. METHODS Histological, functional, and EIM data collected from previous studies of WT and D2-mdx mice at 6, 13, 21 and 43 weeks of age were reanalyzed. In parallel, previously collected functional outcome measures and EIM values were reanalyzed from boys with and without DMD at four different age groups from 2 to 14 years old. RESULTS In mice, disease progression as detected by histological, functional, and EIM measures, was appreciable over this time period and grip strength best correlated to longitudinal phase and reactance impedance values. In boys, disease progression quantified through commonly utilized functional outcome measures was significant and longitudinal phase demonstrated the strongest correlation with functional outcome measures. CONCLUSION Similar changes in EIM values, specifically in longitudinal reactance and phase, were found to show significant correlations to functional measures in both mice and boys. Thus, EIM demonstrates applicability in both pre-clinical and clinical settings and can be used as a safe, non-invasive, and longitudinal proxy biomarker to assess muscle health in DMD.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Janice A Nagy
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sarbesh Pandeya
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
18
|
Yu HK, Liu X, Pan M, Chen JW, Liu C, Wu Y, Li ZB, Wang HY. Performance of Passive Muscle Stiffness in Diagnosis and Assessment of Disease Progression in Duchenne Muscular Dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:414-421. [PMID: 34893358 DOI: 10.1016/j.ultrasmedbio.2021.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the performance of passive muscle stiffness in diagnosing and assessing disease progression in Duchenne muscular dystrophy (DMD). Boys with DMD and age-matched controls were recruited. Shear wave elastography (SWE) videos were collected by performing dynamic stretching of the gastrocnemius medius (GM). At ankle angles from plantar flexion (PF) 30° to dorsiflexion (DF) 20°, the shear modulus of the GM was measured for each 10° of ankle movement. Shear modulus at each ankle angle was compared between the DMD and control group. Correlation between passive muscle stiffness and motor function grading was also analyzed. A total of 26 patients with DMD and 20 healthy boys were enrolled. At multiple stretch levels, passive muscle stiffness of the GM was significantly higher in patients with DMD than in those in the control group (all p values <0.05). The shear modulus of GM at an ankle angle of DF 10° had the largest area under the receiver operating characteristic curve in differentiating DMD patients from normal subjects (AUC = 0.902, 95% confidence interval: 0.814-0.990). Motor function grading was a significant determinant of passive muscle stiffness at an ankle angle of DF 10° (B = 21.409, t = 3.372, p = 0.003). Passive muscle stiffness may potentially serve as a useful non-invasive tool to monitor disease progression in DMD patients.
Collapse
Affiliation(s)
- Hong-Kui Yu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Liu
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Min Pan
- Department of Ultrasonography, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Fu-tian), Shenzhen, Guangdong, China
| | - Jin-Wei Chen
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chen Liu
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Bin Li
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Ying Wang
- Department of Ultrasonography, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Woof AL, Selby K, Harris SR. Ankle contractures and functional motor decline in Duchenne muscular dystrophy. Brain Dev 2022; 44:105-113. [PMID: 34629214 DOI: 10.1016/j.braindev.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
INTRODUCTION This prospective, correlational pilot study investigated the relationship between ankle plantar flexion contractures and motor function in boys with Duchenne muscular dystrophy in British Columbia (BC), Canada. PARTICIPANTS Ambulatory boys with Duchenne muscular dystrophy were recruited from BC Children's Hospital, which follows everyone with Duchenne muscular dystrophy in BC ≤ 18 years of age (n = 14). METHODS Spearman and Pearson correlation coefficients were estimated to examine the association between the degree of ankle dorsiflexion range of motion and North Star Ambulatory Assessment scores and the degree of ankle dorsiflexion range and six-minute walk test distances. RESULTS Our analysis showed a moderate correlation between the degree of ankle dorsiflexion range and North Star Ambulatory Assessment scores [rho (14) = 0.50; p = 0.070] and a weak correlation between ankle dorsiflexion range of motion and six-minute walk test distances [rho (13) = 0.08; p = 0.747], however neither result was statistically significant. DISCUSSION Although a significant relationship between ankle dorsiflexion range of motion and motor function was not found, the variability of ankle dorsiflexion range suggests challenges with preventing ankle contracture. This reinforces the importance of assessing ankle range of motion in boys with Duchenne muscular dystrophy with sufficient frequency to identify a need for additional interventions.
Collapse
Affiliation(s)
- Angelina L Woof
- Rehabilitation Science Online Programs, Faculty of Medicine, University of British Columbia, T325-2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada; BC Centre for Ability, 2805 Kingsway, Vancouver, British Columbia V5R 5H9, Canada
| | - Kathryn Selby
- British Columbia Children's Hospital, University of British Columbia, 4500 Oak St., Vancouver, British Columbia V6H 3N1, Canada
| | - Susan R Harris
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, 212-2177 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
20
|
Clemens PR, Rao VK, Connolly AM, Harper AD, Mah JK, McDonald CM, Smith EC, Zaidman CM, Nakagawa T, the CINRG DNHS Investigators, Hoffman EP. Long-Term Functional Efficacy and Safety of Viltolarsen in Patients with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2022; 9:493-501. [PMID: 35634851 PMCID: PMC9398057 DOI: 10.3233/jnd-220811] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a rare, genetic disease caused by mutations in the DMD gene resulting in an absence of functional dystrophin protein. Viltolarsen, an exon 53 skipping therapy, has been shown to increase endogenous dystrophin levels. Herein, long-term (>2 years) functional outcomes in viltolarsen treated patients were compared to a matched historical control group. OBJECTIVE To evaluate long-term efficacy and safety of the anti-sense oligonucleotide viltolarsen in the treatment of patients with DMD amenable to exon 53 skipping therapy. METHODS This trial (NCT03167255) is the extension of a previously published 24-week trial in North America (NCT02740972) that examined dystrophin levels, timed function tests compared to a matched historical control group (Cooperative International Neuromuscular Research Group Duchenne Natural History Study, CINRG DNHS), and safety in boys 4 to < 10 years (N = 16) with DMD amenable to exon 53 skipping who were treated with viltolarsen. Both groups were treated with glucocorticoids. All 16 participants elected to enroll in this long-term trial (up to 192 weeks) to continue evaluation of motor function and safety. RESULTS Time to stand from supine and time to run/walk 10 meters showed stabilization from baseline through week 109 for viltolarsen-treated participants whereas the historical control group showed decline (statistically significant differences for multiple timepoints). Safety was similar to that observed in the previous 24-week trial, which was predominantly mild. There have been no treatment-related serious adverse events and no discontinuations. CONCLUSIONS Based on these results at over 2 years, viltolarsen can be a new treatment option for patients with DMD amenable to exon 53 skipping.
Collapse
Affiliation(s)
- Paula R. Clemens
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| | - Vamshi K. Rao
- Division of Neurology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Anne M. Connolly
- Division of Neurology, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Amy D. Harper
- Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, Virginia
| | - Jean K. Mah
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Craig M. McDonald
- Department of Physical Medicine and Rehabilitation, Department of Pediatrics, UC Davis Health, University of California, Davis, Sacramento, California
| | | | - Craig M. Zaidman
- Department of Neurology, Washington University at St Louis, St Louis, Missouri
| | | | | | - Eric P. Hoffman
- Department of Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, New York
| |
Collapse
|
21
|
Implementation of Motor Function Measure score percentile curves - Predicting motor function loss in Duchenne muscular dystrophy. Eur J Paediatr Neurol 2022; 36:78-83. [PMID: 34929615 DOI: 10.1016/j.ejpn.2021.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
The Motor Function Measure is a standardized scoring system to evaluate motor function and monitor disease progression in neuromuscular diseases such as Duchenne muscular dystrophy. There are no available reference percentile curves for this measure. The aim of this analysis was to generate Motor Function Measure percentile curves for ambulant and non-ambulant patients affected by Duchenne Muscular Dystrophy, providing the opportunity to better evaluate the status and progression of an individual patient compared to other patients in the same age group. Data of patients aged between 6 and 15 years (819 measurements) was obtained from the international Motor Function Measure database. Age-dependent percentile curves were estimated using a "Generalized additive model for location, scale and shape" as suggested by the World Health Organisation Multicentre Growth Reference Study Group. Percentile curves for the Motor Function Measure total score and its sub-scores for patients with and without treatment with glucocorticoids are presented. Mean scores decline with age. Patients treated with glucocorticoids have higher mean values compared to glucocorticoid-naïve patients at the same age. The percentile curves with the online tool extend the clinical utility of the Motor Function Measure by facilitating the interpretation of individual standing and disease progression.
Collapse
|
22
|
Ricci G, Bello L, Torri F, Schirinzi E, Pegoraro E, Siciliano G. Therapeutic opportunities and clinical outcome measures in Duchenne muscular dystrophy. Neurol Sci 2022; 43:625-633. [PMID: 35608735 PMCID: PMC9126754 DOI: 10.1007/s10072-022-06085-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/14/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a devastatingly severe genetic muscle disease characterized by childhood-onset muscle weakness, leading to loss of motor function and premature death due to respiratory and cardiac insufficiency. DISCUSSION In the following three and half decades, DMD kept its paradigmatic role in the field of muscle diseases, with first systematic description of disease progression with ad hoc outcome measures and the first attempts at correcting the disease-causing gene defect by several molecular targets. Clinical trials are critical for developing and evaluating new treatments for DMD. CONCLUSIONS In the last 20 years, research efforts converged in characterization of the disease mechanism and development of therapeutic strategies. Same effort needs to be dedicated to the development of outcome measures able to capture clinical benefit in clinical trials.
Collapse
Affiliation(s)
- Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Erika Schirinzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Duong T, Canbek J, Fernandez-Fernandez A, Henricson E, Birkmeier M, Siener C, Rocha CT, McDonald C, Gordish-Dressman H. Knee Strength and Ankle Range of Motion Impacts on Timed Function Tests in Duchenne Muscular Dystrophy: In the Era of Glucocorticoids. J Neuromuscul Dis 2021; 9:147-159. [PMID: 34719507 DOI: 10.3233/jnd-210724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is a neuromuscular disorder that presents in childhood and is characterized by slowly progressive proximal weakness and lower extremity contractures that limit ambulatory ability [1, 2]. Contractures develop in the ankles, knees, and hips due to muscle imbalances, fibrotic changes, loss of strength, and static positioning [2, 5]. Currently, standards of care guidelines emphasize the importance of maintaining good musculoskeletal alignment through stretching, bracing, and glucocorticoid (GC) therapy to preserve strength and function. METHODS This is a retrospective analysis of prospectively collected data through the CINRG Duchenne Natural history study (DNHS). The objectives of this analysis are to understand the progression of ankle contractures for individuals with DMD and to investigate the relationship between progressive lower limb contractures, knee strength, and Timed Function Tests.A collection of TFTs including supine to stand (STS), 10 meter walk test (10MWT), and timed stair climbing (4SC) have been used to monitor disease progression and are predictive of loss of ambulation in these patients [4]. Multiple factors contribute to loss of ambulation, including progressive loss of strength and contracture development that leads to changing biomechanical demands for ambulation. A better understanding of the changes in strength and range of motion (ROM) that contribute to loss of function is important in a more individualized rehabilitation management plan. In this longitudinal study, we measured strength using quantitative muscle testing (QMT) with the CINRG Quantitative Measurement System (CQMS)), ROM was measuresed with a goniometer and TFTs were measured using a standard stopwatch and methodology. RESULTS We enrolled 440 participants; mean baseline age was 8.9 (2.1, 28.0) years with 1321 observations used for analysis. GC use was stratified based on duration on drug with 18.7%at < 6 months or naïve; 4.3%<1 year; 58.0%1 < 10 years; and 19.3%between 10-25 years of GC use. Ankle ROM was better for those on GC compared to GC naive but did not significantly influence long-term progression rates. QMT, ROM, age and GCs contribute to speed of TFTs. Knee extension (KE) strength and Dorsiflexion (DF) ROM are significant predictors of speed for all TFTs (p < 0.001). Of the variables used in this analysis, KE strength is the primary predictor of walking speed, estimating that every pound increase in KE results in a 0.042 m/s improvement in 10MWT, and a smaller similar increase of 0.009 m/s with every degree of ankle DF ROM. CONCLUSION GC use provides an improvement in strength and ROM but does not affect rate of change. Knee strength has a greater influence on speed of TFTs than DF ROM, although both are statistically significant predictors of speed. Results show that retaining knee strength [1, 2], along with joint flexibility, may be important factors in the ability to perform walking, climbing and supine to stand activities.
Collapse
Affiliation(s)
- Tina Duong
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Rehabilitation, Stanford Healthcare, Stanford, CA, USA
| | - Jennifer Canbek
- Physical Therapy Department, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | - Erik Henricson
- University of California, Davis, Department of Neurology, Sacramento, CA USA
| | - Marisa Birkmeier
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine Siener
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Carolina Tesi Rocha
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Craig McDonald
- University of California, Davis, Department of Neurology, Sacramento, CA USA
| | | | | |
Collapse
|
24
|
Human A, Morrow BM. Inspiratory muscle training in children and adolescents living with neuromuscular diseases: A pre-experimental study. SOUTH AFRICAN JOURNAL OF PHYSIOTHERAPY 2021; 77:1577. [PMID: 34522820 PMCID: PMC8424756 DOI: 10.4102/sajp.v77i1.1577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Children with neuromuscular diseases (NMD) are at risk of morbidity and mortality because of progressive respiratory muscle weakness and ineffective cough. Inspiratory muscle training (IMT) aims to preserve or improve respiratory muscle strength, thereby reducing morbidity and improving health-related quality of life (HRQoL). Objectives To describe the safety and feasibility of a 6-week IMT programme using an electronic threshold device (Powerbreathe®). Any adverse events and changes in functional ability, spirometry, peak expiratory cough flow (PECF), inspiratory muscle strength and HRQoL (Pediatric Quality of Life [PedsQL]) were recorded. Methods A convenience sample of eight participants (n = 4 boys; median [interquartile range {IQR}] age: 12.21 [9.63–16.05] years) with various NMD were included in a pre-experimental, observational pre-test post-test feasibility study. Training consisted of 30 breaths, twice daily, 5 days a week, for 6 weeks. Results There were significant pre- to post-intervention improvements in upper limb function and coordination (p = 0.03) and inspiratory muscle strength: maximum inspiratory mouth pressure (Pimax) (p = 0.01); strength-index (p = 0.02); peak inspiratory flow (PIF) (p = 0.02), with no evidence of change in spirometry, PECF or HRQoL. No adverse events occurred and participant satisfaction and adherence levels were high. Conclusion Inspiratory muscle training (at an intensity of 30% Pimax) appears safe, feasible and acceptable, in a small sample of children and adolescents with NMD and was associated with improved inspiratory muscle strength, PIF and upper limb function and coordination. Clinical implications Larger, longer-term randomised controlled trials are warranted to confirm the safety and efficacy of IMT as an adjunct respiratory management strategy in children with NMD.
Collapse
Affiliation(s)
- Anri Human
- Department of Physiotherapy, Faculty of Healthcare Sciences, Sefako Makgatho Health Sciences University, Garankuwa, Pretoria, South Africa.,Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Brenda M Morrow
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
25
|
Multiomic Approaches to Uncover the Complexities of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22168954. [PMID: 34445659 PMCID: PMC8396646 DOI: 10.3390/ijms22168954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Despite major progress in treating skeletal muscle disease associated with dystrophinopathies, cardiomyopathy is emerging as a major cause of death in people carrying dystrophin gene mutations that remain without a targeted cure even with new treatment directions and advances in modelling abilities. The reasons for the stunted progress in ameliorating dystrophin-associated cardiomyopathy (DAC) can be explained by the difficulties in detecting pathophysiological mechanisms which can also be efficiently targeted within the heart in the widest patient population. New perspectives are clearly required to effectively address the unanswered questions concerning the identification of authentic and effectual readouts of DAC occurrence and severity. A potential way forward to achieve further therapy breakthroughs lies in combining multiomic analysis with advanced preclinical precision models. This review presents the fundamental discoveries made using relevant models of DAC and how omics approaches have been incorporated to date.
Collapse
|
26
|
Gotthelf M, Townsend D, Durfee W. A video game based hand grip system for measuring muscle force in children. J Neuroeng Rehabil 2021; 18:113. [PMID: 34246310 PMCID: PMC8272373 DOI: 10.1186/s12984-021-00908-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/28/2021] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND While new therapies are continuously introduced to treat muscular dystrophy, current assessment tests are challenging to quantify, cannot be used in non-ambulatory patients, or can de-motivate pediatric patients. We developed a simple, engaging, upper-limb assessment tool that measures muscle strength and fatigue in children, including children with muscular dystrophy. The device is a bio-feedback grip sensor that motivates children to complete maximal and fatiguing grip protocols through a game-based interface. METHODS To determine if the new system provided the same maximum grip force as what is reported in the literature, data was collected from 311 participants without muscle disease (186 M, 125 F), ages 6 to 30, each of whom played the four minute grip game once. We compared maximum voluntary contraction at the start of the test to normative values reported in the literature using Welch's unequal variances t-tests. In addition, we collected data on a small number of participants with muscle disease to determine if the assessment system could be used by the target patient population. RESULTS Of the 311 participants without muscle disease that started the test, all but one completed the game. The maximum voluntary contraction data, when categorized by age, matched literature values for hand grip force within an acceptable range. Grip forced increased with age and differed by gender, and most participants exhibited fatigue during the game, including a degradation in tracking ability as the game progressed. Of the 13 participants with muscle disease, all but one completed the game. CONCLUSIONS The study demonstrated the technical feasibility and validity of the new hand grip device, and indicated that the device can be used to assess muscle force and fatigue in longitudinal studies of children with muscular dystrophy.
Collapse
Affiliation(s)
- Mark Gotthelf
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA
| | - William Durfee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
27
|
Finkel RS, McDonald CM, Lee Sweeney H, Finanger E, Neil Knierbein E, Wagner KR, Mathews KD, Marks W, Statland J, Nance J, McMillan HJ, McCullagh G, Tian C, Ryan MM, O'Rourke D, Müller-Felber W, Tulinius M, Bryan Burnette W, Nguyen CT, Vijayakumar K, Johannsen J, Phan HC, Eagle M, MacDougall J, Mancini M, Donovan JM. A Randomized, Double-Blind, Placebo-Controlled, Global Phase 3 Study of Edasalonexent in Pediatric Patients with Duchenne Muscular Dystrophy: Results of the PolarisDMD Trial. J Neuromuscul Dis 2021; 8:769-784. [PMID: 34120912 PMCID: PMC8543277 DOI: 10.3233/jnd-210689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Edasalonexent (CAT-1004) is an orally-administered novel small molecule drug designed to inhibit NF-κB and potentially reduce inflammation and fibrosis to improve muscle function and thereby slow disease progression and muscle decline in Duchenne muscular dystrophy (DMD). Objective: This international, randomized 2 : 1, placebo-controlled, phase 3 study in patients ≥4 – < 8 years old with DMD due to any dystrophin mutation examined the effect of edasalonexent (100 mg/kg/day) compared to placebo over 52 weeks. Methods: Endpoints were changes in the North Star Ambulatory Assessment (NSAA; primary) and timed function tests (TFTs; secondary). Assessment of health-related function used the Pediatric Outcomes Data Collection tool (PODCI). Results: One hundred thirty one patients received edasalonexent (n = 88) and placebo (n = 43). At week 52, differences between edasalonexent and placebo for NSAA total score and TFTs were not statistically significant, although there were consistently less functional declines in the edasalonexent group. A pre-specified analysis by age demonstrated that younger patients (≤6.0 years) showed more robust and statistically significant differences between edasalonexent and placebo for some assessments. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly involved the gastrointestinal system (primarily diarrhea). Conclusions: Edasalonexent was generally well-tolerated with a manageable safety profile at the dose of 100 mg/kg/day. Although edasalonexent did not achieve statistical significance for improvement in primary and secondary functional endpoints for assessment of DMD, subgroup analysis suggested that edasalonexent may slow disease progression if initiated before 6 years of age. (NCT03703882)
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL
| | | | - H Lee Sweeney
- University of Florida College of Medicine, Gainesville, FL
| | | | | | - Kathryn R Wagner
- Kennedy Krieger Institute, The Johns Hopkins School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | - Cuixia Tian
- Cincinnati Children's Hospital & University of Cincinnati, Cincinnati, OH
| | | | | | | | - Mar Tulinius
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | | | | | | | | | - Han C Phan
- Rare Disease Research, LLC, Atlanta GA, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J Cardiovasc Dev Dis 2021; 8:52. [PMID: 34063001 PMCID: PMC8147937 DOI: 10.3390/jcdd8050052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Connexin (Cx43)-formed channels have been linked to cardiac arrhythmias and diseases of the heart associated with myocardial tissue loss and fibrosis. These pathologies include ischemic heart disease, ischemia-reperfusion injury, heart failure, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and Duchenne muscular dystrophy. A number of Cx43 mimetic peptides have been reported as therapeutic candidates for targeting disease processes linked to Cx43, including some that have advanced to clinical testing in humans. These peptides include Cx43 sequences based on the extracellular loop domains (e.g., Gap26, Gap 27, and Peptide5), cytoplasmic-loop domain (Gap19 and L2), and cytoplasmic carboxyl-terminal domain (e.g., JM2, Cx43tat, CycliCX, and the alphaCT family of peptides) of this transmembrane protein. Additionally, RYYN peptides binding to the Cx43 carboxyl-terminus have been described. In this review, we survey preclinical and clinical data available on short mimetic peptides based on, or directly targeting, Cx43, with focus on their potential for treating heart disease. We also discuss problems that have caused reluctance within the pharmaceutical industry to translate peptidic therapeutics to the clinic, even when supporting preclinical data is strong. These issues include those associated with the administration, stability in vivo, and tissue penetration of peptide-based therapeutics. Finally, we discuss novel drug delivery technologies including nanoparticles, exosomes, and other nanovesicular carriers that could transform the clinical and commercial viability of Cx43-targeting peptides in treatment of heart disease, stroke, cancer, and other indications requiring oral or parenteral administration. Some of these newly emerging approaches to drug delivery may provide a path to overcoming pitfalls associated with the drugging of peptide therapeutics.
Collapse
Affiliation(s)
- Spencer R. Marsh
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Zachary J. Williams
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
| |
Collapse
|
29
|
Finkel RS, Finanger E, Vandenborne K, Sweeney HL, Tennekoon G, Shieh PB, Willcocks R, Walter G, Rooney WD, Forbes SC, Triplett WT, Yum SW, Mancini M, MacDougall J, Fretzen A, Bista P, Nichols A, Donovan JM. Disease-modifying effects of edasalonexent, an NF-κB inhibitor, in young boys with Duchenne muscular dystrophy: Results of the MoveDMD phase 2 and open label extension trial. Neuromuscul Disord 2021; 31:385-396. [PMID: 33678513 DOI: 10.1016/j.nmd.2021.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.
Collapse
Affiliation(s)
- Richard S Finkel
- St. Jude Children's Research Hospital, Memphis, TN and Nemours Children's Hospital, Orlando, FL, United States.
| | - Erika Finanger
- Oregon Health & Science University, Portland, OR, United States
| | | | - H Lee Sweeney
- University of Florida Health, Gainesville, FL, United States
| | - Gihan Tennekoon
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Perry B Shieh
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Glenn Walter
- University of Florida Health, Gainesville, FL, United States
| | | | - Sean C Forbes
- University of Florida Health, Gainesville, FL, United States
| | | | - Sabrina W Yum
- The Children's Hospital of Philadelphia, and the University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Mancini
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | | | | - Pradeep Bista
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | - Andrew Nichols
- Catabasis Pharmaceuticals, Inc., Boston, MA, United States
| | | |
Collapse
|
30
|
Quigg KH, Berggren KN, McIntyre M, Bates K, Salmin F, Casiraghi JL, DʼAmico A, Astrea G, Ricci F, McKay MJ, Baldwin JN, Burns J, Campbell C, Sansone VA, Johnson NE. 12-Month progression of motor and functional outcomes in congenital myotonic dystrophy. Muscle Nerve 2021; 63:384-391. [PMID: 33341951 DOI: 10.1002/mus.27147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND We aim to describe 12-mo functional and motor outcome performance in a cohort of participants with congenital myotonic dystrophy (CDM). METHODS CDM participants performed the 6 Minute Walk Test (6MWT), 10 Meter Run, 4 Stair Climb, Grip Strength, and Lip Force at baseline and 12-mo visits. Parents completed the Vineland Adaptive Behavior Scale. RESULTS Forty-seven participants, aged 0 to 13 y old, with CDM were enrolled. 6MWT, 10 Meter Run, and 4 Stair Climb were completed in >85% of eligible participants. The only significant difference between mean baseline and 12-mo performance was an improvement in 6MWT in children 3-6 y old (P = .008). This age group also had the largest mean % improvement in performance in all other timed functional testing. In children >7 y, the slope of change on timed functional tests decreased or plateaued, with further reductions in performance in children ≥10 y. Participants with CTG repeat lengths <500 did not perform differently than those with repeat lengths >1000. CONCLUSIONS The 6MWT, 10 Meter Run, and 4 Stair Climb were the most feasible measures. Our findings are consistent with the clinical profile and prior cross-sectional data, helping to establish reasonable expectations of functional trajectories in this population as well as identifying points in which therapeutic interventions may be best studied. Further study of outcomes in children >10 y old and <3 y is warranted, but this new information will assist planning of clinical trials in the CDM population.
Collapse
Affiliation(s)
- Kellen H Quigg
- Department of Neurology, Virginia Commonwealth University Health, Richmond, Virginia, USA
| | - Kiera N Berggren
- Department of Neurology, Virginia Commonwealth University Health, Richmond, Virginia, USA
| | - Melissa McIntyre
- Department of Pediatric Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Kameron Bates
- Department of Neurology, Virginia Commonwealth University Health, Richmond, Virginia, USA
| | - Francesca Salmin
- The NEuroMuscular Omnicentre (NEMO) Clinical Center, Milan, Italy
| | | | - Adele DʼAmico
- Department of Neurosciences, Bambino Gesù Children's Hospital, Unit of Neuromuscular and Neurodegenerative Disorders, Rome, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, Scientific Institute for Research Hospitalization and Health Care (IRCCS) Stella Maris, Pisa, Italy
| | - Federica Ricci
- Department of Pediatrics, Section of Child and Adolescent Neuropsychiatry, Regina Margherita Children's Hospital, Turin, Italy
| | - Marnee J McKay
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer N Baldwin
- Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Joshua Burns
- Faculty of Medicine and Health, Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Craig Campbell
- Department of Pediatrics, London Children's Hospital, University of Western Ontario, London, Ontario, Canada
| | | | - Nicholas E Johnson
- Department of Neurology, Virginia Commonwealth University Health, Richmond, Virginia, USA
| |
Collapse
|
31
|
Duong T, Canbek J, Birkmeier M, Nelson L, Siener C, Fernandez-Fernandez A, Henricson E, McDonald CM, Gordish-Dressman H, CINRG-DNHS Investigators. The Minimal Clinical Important Difference (MCID) in Annual Rate of Change of Timed Function Tests in Boys with DMD. J Neuromuscul Dis 2021; 8:939-948. [PMID: 34151852 PMCID: PMC8673528 DOI: 10.3233/jnd-210646] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a rare x-linked recessive genetic disorder affecting 1 in every 5000-10000 [1, 2]. This disease leads to a variable but progressive sequential pattern of muscle weakness that eventually causes loss of important functional milestones such as the ability to walk. With promising drugs in development to ameliorate the effects of muscle weakness, these treatments must be associated with a clinically meaningful functional change. OBJECTIVE The objective of this analysis is to determine both distribution, minimal detectable change (MDC), and anchor-based, minimal clinically important difference, (MCID) of 12 month change values in standardized time function tests (TFT) used to monitor disease progression in DMD. METHOD This is a retrospective analysis of prospectively collected data from a multi-center prospective natural history study with the Cooperative International Neuromuscular Research Group (CINRG). This study calculated MDC and MCID values for 3 commonly used timed function tests typically used to monitor disease progression; supine to stand (STS), 10 meter walk/run (10MWT), and 4 stair climb (4SC). MDC used standard error of measurement (SEM) while MCID measurements used the Vignos scale as an anchor to determine clinical change in functional status. RESULTS All 3 TFT were significantly important clinical endpoints to detect MDC and MCID changes. MDC and MCID 12 month changes were significant in 10MWT (-0.138, -0.212), Supine to Stand (-0.026, -0.023) and 4 stair climb (-0.034, -0.035) with an effect size greater or close to 0.2. CONCLUSION The 3 TFT are clinically meaningful endpoints used to establish change in DMD. MCID values were higher than MDC values indicating that an anchor-based approach using Vignos as a clinically meaningful loss of lower extremity abilities is appropriate to assess change in boys with DMD.
Collapse
Affiliation(s)
- Tina Duong
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer Canbek
- Physical Therapy Department, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marisa Birkmeier
- Department of Health, Human Function, and Rehabilitation Sciences, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Leslie Nelson
- Department of Physical Therapy, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Siener
- Department of Neurology, Washington University, St. Louis, MO, USA
| | | | - Erik Henricson
- University of California Davis Health, Department of Physical Medicine and Rehabilitation, Sacramento CA, USA
| | - Craig M. McDonald
- University of California Davis Health, Department of Physical Medicine and Rehabilitation, Sacramento CA, USA
| | | | | |
Collapse
|
32
|
Gianola S, Castellini G, Pecoraro V, Monticone M, Banfi G, Moja L. Effect of Muscular Exercise on Patients With Muscular Dystrophy: A Systematic Review and Meta-Analysis of the Literature. Front Neurol 2020; 11:958. [PMID: 33281695 PMCID: PMC7688624 DOI: 10.3389/fneur.2020.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Muscular dystrophy causes weakness and muscle loss. The effect of muscular exercise in these patients remains controversial. Objective: To assess the effects of muscular exercise vs. no exercise in patients with muscular dystrophy. Methods: We performed a comprehensive systematic literature search in the Medline, Embase, Web of Science, Scopus, and Pedro electronic databases, as well as in the reference literature. We included randomized clinical trials (RCTs) that reported the effect of muscular exercise on muscle strength, endurance during walking, motor abilities, and fatigue. Data were extracted independently by two reviewers. Mean difference (MD) and 95% confidence intervals (CI) were used to quantify the effect associated with each outcome. We performed pairwise meta-analyses and trial sequential analyses (TSA) and used GRADE to rate the overall certainty of evidence. Results: We identified 13 RCTs involving 617 patients. The median duration of exercise interventions was 16 weeks [interquartile range [IQR] 12-24]. In the patients with facio-scapulo-humeral dystrophy and myotonic dystrophy, no significant difference in extensor muscle strength was noted between the exercise and the control groups [four studies, 115 patients, MD 4.34, 95% CI -4.20 to 12.88, I 2 = 69%; p = 0.32; minimal important difference [MID] 5.39 m]. Exercise was associated with improved endurance during walking [five studies, 380 patients, MD 17.36 m, 95% CI 10.91-23.81, I 2 = 0; p < 0.00001; MID 34 m]. TSA excluded random error as a cause of the findings for endurance during walking. Differences in fatigue and motor abilities were small. Not enough information was found for other types of dystrophy. Conclusions: Muscular exercise did not improve muscle strength and was associated with modest improvements in endurance during walking in patients with facio-scapulo-humeral and myotonic dystrophy. Future trials should explore which type of muscle exercise could lead to better improvements in muscle strength. PROSPERO: CRD42019127456.
Collapse
Affiliation(s)
- Silvia Gianola
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Greta Castellini
- Unit of Clinical Epidemiology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Valentina Pecoraro
- Department of Laboratory Medicine and Pathological Anatomy, Ospedale Civile S. Agostino Estense, Modena, Italy
| | - Marco Monticone
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Neurorehabilitation Unit, Department of Neuroscience and Rehabilitation, G. Brotzu Hospital, Cagliari, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Scientific Director, Milan, Italy
- Università Vita e Salute San Raffaele, Milan, Italy
| | - Lorenzo Moja
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Gandolla M, Antonietti A, Longatelli V, Biffi E, Diella E, Delle Fave M, Rossini M, Molteni F, D’Angelo G, Bocciolone M, Pedrocchi A. Test-retest reliability of the Performance of Upper Limb (PUL) module for muscular dystrophy patients. PLoS One 2020; 15:e0239064. [PMID: 32986757 PMCID: PMC7521751 DOI: 10.1371/journal.pone.0239064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/18/2020] [Indexed: 11/18/2022] Open
Abstract
The Performance of the Upper Limb (PUL) module is an externally-assessed clinical scale, initially designed for the Duchenne muscular dystrophy population. It provides an upper extremity functional score suitable for both weaker ambulatory and non-ambulatory phases up to the severely impaired patients. It is capable of characterizing overall progression and severity of disease and of tracking the stereotypical proximal-to-distal progressive loss of upper limb function in muscular dystrophy. Since the PUL module has been validated only with Duchenne patients, its use also for Becker and Limb-Girdle muscular dystrophy patients has been here evaluated, to verify its reliability and extend its use. In particular, two different assessors performed this scale on 32 dystrophic subjects in two consecutive days. The results showed that the PUL module has high reliability, both absolute and relative, based on the calculation of Pearson's r (0.9942), Intraclass Correlation Coefficient (0.9943), Standard Error of Measurement (1.36), Minimum Detectable Change (3.77), and Coefficient of Variation (3%). The Minimum Detectable Change, in particular, can be used in clinical trials to perform a comprehensive longitudinal evaluation of the effects of interventions with the lapse of time. According to this analysis, an intervention is effective if the difference in the PUL score between subsequent evaluation points is equal or higher than 4 points; otherwise, the observed effect is not relevant. Inter-rater reliability with ten different assessors was evaluated, and it has been demonstrated that deviation from the mean is lower than calculated Minimum Detectable Change. The present work provides evidence that the PUL module is a reliable and valid instrument for measuring upper limb ability in people with different forms of muscular dystrophy. Therefore, the PUL module might be extended to other pathologies and reliably used in multicenter settings.
Collapse
Affiliation(s)
- Marta Gandolla
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- * E-mail:
| | - Alberto Antonietti
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Valeria Longatelli
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Emilia Biffi
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | | | | | - Mauro Rossini
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Italy
| | | | - Marco Bocciolone
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Alessandra Pedrocchi
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| |
Collapse
|
34
|
Schofield C, Evans K, Young H, Paguinto SG, Carroll K, Townsend E, Kiefer M, McGuire M, Sodhi J, Bray P, Bayley K, Vorster NM, Downs J. The development of a consensus statement for the prescription of powered wheelchair standing devices in Duchenne muscular dystrophy. Disabil Rehabil 2020; 44:1889-1897. [DOI: 10.1080/09638288.2020.1810786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- C. Schofield
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | | | - H. Young
- The Children’s Hospital at Westmead, Westmead, Australia
| | | | - K. Carroll
- The Royal Children’s Hospital, Parkville, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - E. Townsend
- School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - M. Kiefer
- School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, MA, USA
| | - M. McGuire
- Division of Occupational Therapy and Physical Therapy, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - J. Sodhi
- Institute of Genetic Medicine, International Centre for Life, John Walton Muscular Dystrophy Research Centre, Newcastle Upon Tyne, UK
| | - P. Bray
- The Children’s Hospital at Westmead, Westmead, Australia
- School of Health Sciences, The University of Sydney, Sydney, Australia
| | - K. Bayley
- Centre for Community-Driven Research, Perth, Australia
| | - N. M. Vorster
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - J. Downs
- Telethon Kids Institute, University of Western Australia, Perth, Australia
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| |
Collapse
|
35
|
Bobadilla-Quesada EJ, Natera-de Benito D, Carrera-García L, Ortez C, Exposito-Escudero J, Jimenez-Mallebrera C, Jou C, Codina A, Corbera J, Moya O, Saez V, Gonzalez-Quereda L, Gallano P, Colomer J, Cuadras D, Medina J, Yoldi ME, Nascimento A. Early and long-term effect of the treatment with pyridostigmine in patients with GMPPB-related congenital myasthenic syndrome. Neuromuscul Disord 2020; 30:719-726. [PMID: 32819792 DOI: 10.1016/j.nmd.2020.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Abstract
GMPPB mutations cause congenital myasthenic syndromes (CMS) overlapping with muscular dystrophy. Treatment with pyridostigmine has been reported to be effective in those patients. Nevertheless, results of functional motor assessments to determine its precise impact on the short and long term were not available. We describe the response to treatment with pyridostigmine in three siblings with GMPPB-related CMS using functional motor scales performed regularly over a period of 40 months. The beneficial effect of the treatment was outstanding within the first hours, with all the scales showing a dramatic increase in only two days. This remarkable improvement remained steady during 12 months but a moderate decrease was subsequently detected in two of the three patients. Despite this decline in the scores of the scales at the end of follow up, the functional motor status of the patients was still significantly better than it was before starting treatment. The introduction of pyridostigmine at an early age of the disease in one of the patients, before the onset of scoliosis, may have had a protective effect on it.
Collapse
Affiliation(s)
- Edna Julieth Bobadilla-Quesada
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain.
| | - Laura Carrera-García
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Jessica Exposito-Escudero
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Cecilia Jimenez-Mallebrera
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Cristina Jou
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Joan Corbera
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Obdulia Moya
- Rehabilitation and Physical Unit Department, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Veronica Saez
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Lidia Gonzalez-Quereda
- Department of Genetics, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Pia Gallano
- Department of Genetics, Hospital de la Santa Creu i Sant Pau and CIBERER U705, Barcelona, Spain
| | - Jaume Colomer
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| | - Daniel Cuadras
- Statistics Department, Fundació Sant Joan de Déu, Barcelona, Spain
| | - Julita Medina
- Rehabilitation and Physical Unit Department, Hospital Sant Joan de Deu, Barcelona, Spain
| | - María Eugenia Yoldi
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service, Navarrabiomed, Pamplona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Neuropaediatrics Department, Institut de Recerca Hospital Sant Joan de Déu and CIBERER U703, Barcelona, Spain
| |
Collapse
|
36
|
Goemans N, Wong B, Van den Hauwe M, Signorovitch J, Sajeev G, Cox D, Landry J, Jenkins M, Dieye I, Yao Z, Hossain I, Ward SJ, the Collaborative Trajectory Analysis Project (cTAP). Prognostic factors for changes in the timed 4-stair climb in patients with Duchenne muscular dystrophy, and implications for measuring drug efficacy: A multi-institutional collaboration. PLoS One 2020; 15:e0232870. [PMID: 32555695 PMCID: PMC7302444 DOI: 10.1371/journal.pone.0232870] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
The timed 4-stair climb (4SC) assessment has been used to measure function in Duchenne muscular dystrophy (DMD) practice and research. We sought to identify prognostic factors for changes in 4SC, assess their consistency across data sources, and the extent to which prognostic scores could be useful in DMD clinical trial design and analysis. Data from patients with DMD in the placebo arm of a phase 3 trial (Tadalafil DMD trial) and two real-world sources (Universitaire Ziekenhuizen, Leuven, Belgium [Leuven] and Cincinnati Children's Hospital Medical Center [CCHMC]) were analyzed. One-year changes in 4SC completion time and velocity (stairs/second) were analyzed. Prognostic models included age, height, weight, steroid use, and multiple timed function tests and were developed using multivariable regression, separately in each data source. Simulations were used to quantify impacts on trial sample size requirements. Data on 1-year changes in 4SC were available from the Tadalafil DMD trial (n = 92) Leuven (n = 67), and CCHMC (n = 212). Models incorporating multiple timed function tests, height, and weight significantly improved prognostic accuracy for 1-year change in 4SC (R2: 29%-36% for 4SC velocity, and 29%-34% for 4SC time) compared to models including only age, baseline 4SC and steroid duration (R2:8%-17% for 4SC velocity and 2%-13% for 4SC time). Measures of walking and rising ability contributed important prognostic information for changes in 4SC. In a randomized trial with equal allocation to treatment and placebo, adjustment for such a prognostic score would enable detection (at 80% power) of a treatment effect of 0.25 stairs/second with 100–120 patients, compared to 170–190 patients without prognostic score adjustment. Combining measures of ambulatory function doubled prognostic accuracy for 1-year changes in 4SC completion time and velocity. Randomized clinical trials incorporating a validated prognostic score could reduce sample size requirements by approximately 40%. Knowledge of important prognostic factors can also inform adjusted comparisons to external controls.
Collapse
Affiliation(s)
- Nathalie Goemans
- Department of Child Neurology, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| | - Brenda Wong
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA, United States of America
| | | | - James Signorovitch
- Analysis Group Inc., Boston, Massachusetts, United States of America
- The Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
| | - Gautam Sajeev
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - David Cox
- Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - John Landry
- Eli Lilly and Company, Toronto, Ontario, Canada
| | | | - Ibrahima Dieye
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Zhiwen Yao
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Intekhab Hossain
- Analysis Group Inc., Boston, Massachusetts, United States of America
| | - Susan J. Ward
- The Collaborative Trajectory Analysis Project, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
37
|
Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscul Disord 2020; 30:492-502. [PMID: 32522498 DOI: 10.1016/j.nmd.2020.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
Abstract
We report results from a phase 2, randomized, double-blind, 2-period trial (48 weeks each) of domagrozumab and its open-label extension in patients with Duchenne muscular dystrophy (DMD). Of 120 ambulatory boys (aged 6 to <16 years) with DMD, 80 were treated with multiple ascending doses (5, 20, and 40 mg/kg) of domagrozumab and 40 treated with placebo. The primary endpoints were safety and mean change in 4-stair climb (4SC) time at week 49. Secondary endpoints included other functional tests, pharmacokinetics, and pharmacodynamics. Mean (SD) age was 8.4 (1.7) and 9.3 (2.3) years in domagrozumab- and placebo-treated patients, respectively. Difference in mean (95% CI) change from baseline in 4SC at week 49 for domagrozumab vs placebo was 0.27 (-7.4 to 7.9) seconds (p = 0.94). There were no significant between-group differences in any secondary clinical endpoints. Most patients had ≥1 adverse event in the first 48 weeks; most were mild and not treatment-related. Median serum concentrations of domagrozumab increased with administered dose within each dose level. Non-significant increases in muscle volume were observed in domagrozumab- vs placebo-treated patients. Domagrozumab was generally safe and well tolerated in patients with DMD. Efficacy measures did not support a significant treatment effect. Clinicaltrials.gov identifiers: NCT02310763 and NCT02907619.
Collapse
|
38
|
Arteaga D, Donnelly T, Crum K, Markham L, Killian M, Burnette WB, Soslow J, Buchowski MS. Assessing Physical Activity Using Accelerometers in Youth with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2020; 7:331-342. [PMID: 32417792 PMCID: PMC7369107 DOI: 10.3233/jnd-200478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Physical activity, assessed by accelerometers, has been proposed as a quantitative outcome measure for patients with DMD, but research is limitedObjective:To assess the total amount and patterns of physical activity in patients with DMD using accelerometers. METHODS Physical activity was assessed in patients with DMD (n = 49, 13.6±4.0-year-old) and age- and sex-matched healthy controls (n = 15, 14.0±2.3-year-old) using wrist- and ankle-worn accelerometers. To assess the amount of activity, accelerometer recordings were converted into acceleration estimates (counts/min). Patterns of activity were assessed as the time that participants spent in sedentary, low-intensity, and moderate-to-vigorous physical activity categories. The sedentary category was divided into three (sedentary -1, -2, and -3) and the low-intensity into two (low-intensity-1, and -2) subcategories. RESULTS Physical activity across intensity categories differed between study groups (p < 0.001). Patients with DMD spent on average 98.8% of their daytime in the sedentary and low-intensity categories. Compared to non-ambulatory, ambulatory patients spent more time in sedentary-3 and low-intensity-2 subcategories (p < 0.001). Amount of activity was lower in all patients than controls (p < 0.05) and in non-ambulatory than ambulatory patients and controls (p < 0.001), but similar between ambulatory patients and controls. Activity measures in patients were significantly affected by age and ambulation status (p < 0.05) but not corticosteroid use. CONCLUSION Patients with DMD spent most of their daytime in sedentary and low-intensity activities. Dividing these intensities into three and two subcategories, respectively, allows better characterization of activity patterns in DMD. Ambulation status and age but not corticosteroid use affected activity measures in patients with DMD.
Collapse
Affiliation(s)
- David Arteaga
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Thomas Donnelly
- Energy Balance Laboratory, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Diabetes Research and Training Center, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly Crum
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry Markham
- Division of Cardiology, Department of Pediatrics, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, USA
| | - Mary Killian
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Bryan Burnette
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Soslow
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maciej S Buchowski
- Energy Balance Laboratory, Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
39
|
Hogrel JY, Decostre V, Ledoux I, de Antonio M, Niks EH, de Groot I, Straub V, Muntoni F, Ricotti V, Voit T, Seferian A, Gidaro T, Servais L. Normalized grip strength is a sensitive outcome measure through all stages of Duchenne muscular dystrophy. J Neurol 2020; 267:2022-2028. [PMID: 32206900 DOI: 10.1007/s00415-020-09800-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The main aim was to explore the changes in hand-grip strength in patients with Duchenne muscular dystrophy (DMD) aged 5-29 years. Secondary aims were to test the effect of mutation, ambulatory status and glucocorticoid use on grip strength and its changes over time and to compute the number of subjects needed for a clinical trial to stabilize grip strength. METHODS The analysis was performed on data collected during five international natural history studies on a cohort of DMD patients. Two hundred and two patients with genetically proven DMD were pooled from five different natural history studies. Excepting 13 patients with only one visit, the mean duration of follow-up was 2.2 ± 1.6 years. A total of 977 measurement points were collected. Grip strength was measured on the dominant side with a high precision dynamometer. The analysis was performed using absolute values and normalized values expressed in percentage of predicted values for age. RESULTS For absolute values, grip strength typically increased in ambulatory boys and decreased in non-ambulatory patients. However, when normalized, grip strength was already reduced at age 5 years and thereafter continued to fall away from normal values. The weaker the patients, the less strength they are prone to lose over again. INTERPRETATION Grip strength constitutes a sensitive and continuous outcome measure that can be used across all stages of DMD. Its measurement is easy to standardized, can be used in ambulatory and non-ambulatory patients and does not present any floor or ceiling effect. It is thus attractive as an outcome measure in therapeutic trials.
Collapse
Affiliation(s)
- Jean-Yves Hogrel
- Institute of Myology, GH Pitié-Salpêtrière, 75651, Paris Cedex 13, France.
| | - Valérie Decostre
- Institute of Myology, GH Pitié-Salpêtrière, 75651, Paris Cedex 13, France
| | - Isabelle Ledoux
- Institute of Myology, GH Pitié-Salpêtrière, 75651, Paris Cedex 13, France
| | - Marie de Antonio
- Institute of Myology, GH Pitié-Salpêtrière, 75651, Paris Cedex 13, France
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Imelda de Groot
- Department of Rehabilitation, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle Upon Tyne, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Valeria Ricotti
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Thomas Voit
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Andreea Seferian
- Institute of Myology, GH Pitié-Salpêtrière, 75651, Paris Cedex 13, France
| | - Teresa Gidaro
- Institute of Myology, GH Pitié-Salpêtrière, 75651, Paris Cedex 13, France
| | - Laurent Servais
- Centre de Référence Des Maladies Neuromusculaires, CHU de Liège, Liège, Belgium.,Department of Paediatrics, MDUK Neuromuscular Center, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Finanger E, Vandenborne K, Finkel RS, Lee Sweeney H, Tennekoon G, Yum S, Mancini M, Bista P, Nichols A, Liu H, Fretzen A, Donovan JM. Phase 1 Study of Edasalonexent (CAT-1004), an Oral NF-κB Inhibitor, in Pediatric Patients with Duchenne Muscular Dystrophy. J Neuromuscul Dis 2020; 6:43-54. [PMID: 30452422 PMCID: PMC6398836 DOI: 10.3233/jnd-180341] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Edasalonexent is an orally administered small molecule designed to inhibit NF-κB, which is activated from infancy in Duchenne muscular dystrophy and is central to causing muscle damage and preventing muscle regeneration. Objective: Evaluate the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of three doses of edasalonexent in ambulatory males ≥4 to <8 years of age with genetically confirmed Duchenne muscular dystrophy. Methods: This was a 1-week, open-label, multiple-dose study with 3 sequential ascending doses (33, 67 and 100 mg/kg/day) of edasalonexent administered under different dietary conditions to 17 males with a mean age of 5.5 years. Results: All doses of edasalonexent were well tolerated, with no serious adverse events, no drug discontinuations and no dose reductions. The majority of adverse events were mild, and the most common adverse events were gastrointestinal (primarily diarrhea). Edasalonexent was rapidly absorbed with peak levels observed 2–6 hours after dosing and exposures appeared to increase nearly proportionally to dose for the 2 lower and all 3 doses under low-fat and high-fat meal conditions, respectively. Only minor plasma accumulation of edasalonexent was observed with 7 days of dosing. After treatment with edasalonexent for 7 days, levels of NF-κB-regulated genes and serum proteins were decreased. Conclusions: This first report of edasalonexent oral administration for one week in male pediatric patients with Duchenne muscular dystrophy showed that treatment was well tolerated and inhibited NF-kB pathways.
Collapse
Affiliation(s)
- Erika Finanger
- Oregon Health Sciences University Pediatrics, Portland, OR, USA
| | | | - Richard S Finkel
- Nemours Children's Hospital, Division of Pediatric Neurology, Orlando, FL, USA
| | - H Lee Sweeney
- University of Florida Health Myology Institute, Gainesville, FL, USA
| | - Gihan Tennekoon
- Children's Hospital of Philadelphia Pediatric Neurology, Philadelphia, PA, USA
| | - Sabrina Yum
- Children's Hospital of Philadelphia Pediatric Neurology, Philadelphia, PA, USA
| | | | | | | | - Hanlan Liu
- Catabasis Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
41
|
da Silva TD, Ribeiro-Papa DC, Coe S, Malheiros SRP, Massetti T, Meira Junior CDM, Nicolai Ré AH, Collett J, Monteiro CBDM, Dawes H. Evaluation of speed-accuracy trade-off in a computer task to identify motor difficulties in individuals with Duchenne Muscular Dystrophy - A cross-sectional study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 96:103541. [PMID: 31830680 DOI: 10.1016/j.ridd.2019.103541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Individuals with Duchenne Muscular Dystrophy (DMD) present with progressive loss of motor function which can impair both control of speed and accuracy of movement. AIM to evaluate movement time during a task at various levels of difficulty and to verify whether the level of difficulty affects the speed and/ or accuracy during the task. METHODS the DMD group comprised of 17 individuals age matched with 17 individuals with typical development (TD group). The task evaluates the relationship between speed and accuracy, consisting of the execution of manual movements (using the mouse of the computer) aimed at a target at three different levels of difficulty (ID). RESULTS A MANOVA demonstrated statistically significant differences in dispersion data and intercept values between the groups with greater movement time in the DMD group. An ANOVA indicated differences between groups for ID, except for when there was a higher accuracy demand (higher ID). In the other IDs that required lower accuracy demand, individuals in the DMD group had significantly longer movement time when compared to the TD group. CONCLUSION These results show that the TD and DMD did not differ in the higher ID, therefore it can be concluded that for those with DMD, motor performance is more affected by speed than accuracy of movement.
Collapse
Affiliation(s)
- Talita Dias da Silva
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 Cidade Universitária CEP, 05360-000, São Paulo, SP, Brazil; Departamento de Cardiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, CEP: 04021-001, São Paulo, SP, Brazil; Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom.
| | - Denise Cardoso Ribeiro-Papa
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 Cidade Universitária CEP, 05360-000, São Paulo, SP, Brazil; Departamento de Cardiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Sena Madureira, 1500, Vila Clementino, CEP: 04021-001, São Paulo, SP, Brazil
| | - Shelly Coe
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom
| | - Silvia Regina Pinheiro Malheiros
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Thais Massetti
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Cassio de Miranda Meira Junior
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Alessandro Hervaldo Nicolai Ré
- Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Johnny Collett
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom
| | - Carlos Bandeira de Mello Monteiro
- Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, Rua Cipotânea, 51 Cidade Universitária CEP, 05360-000, São Paulo, SP, Brazil; Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom; Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Av. Arlindo Béttio, 1000 - Ermelino Matarazzo CEP, 03828-000 São Paulo, SP, Brazil
| | - Helen Dawes
- Centre for Movement, Occupational and Rehabilitation Sciences, Oxford Brookes University, OX3 0BP, United Kingdom; Department of Clinical Neurology, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Chrzanowski SM, Darras BT, Rutkove SB. The Value of Imaging and Composition-Based Biomarkers in Duchenne Muscular Dystrophy Clinical Trials. Neurotherapeutics 2020; 17:142-152. [PMID: 31879850 PMCID: PMC7007477 DOI: 10.1007/s13311-019-00825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the drug development pipeline for Duchenne muscular dystrophy (DMD) rapidly advances, clinical trial outcomes need to be optimized. Effective assessment of disease burden, natural history progression, and response to therapy in clinical trials for Duchenne muscular dystrophy are critical factors for clinical trial success. By choosing optimal biomarkers to better assess therapeutic efficacy, study costs and sample size requirements can be reduced. Currently, functional measures continue to serve as the primary outcome for the majority of DMD clinical trials. Quantitative measures of muscle health, including magnetic resonance imaging and spectroscopy, electrical impedance myography, and ultrasound, sensitively identify diseased muscle, disease progression, and response to a therapeutic intervention. Furthermore, such non-invasive techniques have the potential to identify disease pathology prior to onset of clinical symptoms. Despite robust supportive evidence, non-invasive quantitative techniques are still not frequently utilized in clinical trials for Duchenne muscular dystrophy. Non-invasive quantitative techniques have demonstrated the ability to quantify disease progression and potential response to therapeutic intervention, and should be used as a supplement to current standard functional measures. Such methods have the potential to significantly accelerate the development and approval of therapies for DMD.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- Department of Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
43
|
Lavezzi SM, Rocchetti M, Bettica P, Petrini S, De Nicolao G. Assessing drug effect from distributional data: A population approach with application to Duchenne Muscular Dystrophy treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:329-342. [PMID: 31416560 DOI: 10.1016/j.cmpb.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/13/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE In Duchenne Muscular Dystrophy (DMD) treatment, muscle fiber size can be considered as an indicator of muscle health and function. In particular, the statistical distribution of fibers cross-sectional areas (CSAs) has been used as quantitative efficacy endpoint. For each patient, assessment of treatment effect relies on the comparison of pre- and post-treatment biopsies. Since biopsies provide "distributional data", i.e. empirical distributions of fibers CSA, the comparison must be carried out between the empirical pre- and post-treatment distributions. METHODS Here, distributional fiber CSA data are analyzed by means of a hierarchical statistical model based on the population approach, considering both the single patient and the population level. RESULTS The proposed method was used to assess the histological clinical effects of Givinostat, a compound under study for DMD treatment. At the single patient level, a two-component Gaussian mixture adequately represents pre- and post-treatment distributions of log-transformed CSAs; drug effect is described via a dose-dependent multiplicative increase of muscle fiber size. The single patient model was also validated via muscle composition data. At the patient population level, typical model parameters and inter-patient variabilities were obtained. CONCLUSIONS The proposed methodological approach completely characterizes fiber CSA distributions and quantifies drug effect on muscle fiber size, both at the single patient and at the patient population level. This approach might be applied also in other contexts, where outcomes measured in terms of distributional data are to be assessed.
Collapse
Affiliation(s)
- S M Lavezzi
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, via Ferrata 5, Pavia 27100, Italy.
| | - M Rocchetti
- Independent Consultant, via Marcantonio Colonna 43, Milan 20149, Italy
| | - P Bettica
- Italfarmaco S.p.A., via dei Lavoratori 54, Cinisello Balsamo, Milan 20092, Italy
| | - S Petrini
- Confocal Microscopy Core Facility Research Center, Bambino Gesù Children's Hospital, Viale San Paolo 15, Rome 00146, Italy
| | - G De Nicolao
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, via Ferrata 5, Pavia 27100, Italy
| |
Collapse
|
44
|
Flotats-Bastardas M, Ebrahimi-Fakhari D, Bernert G, Ziegler A, Schlachter K, Poryo M, Hahn A, Meyer S. [Non-ambulatory patients with Duchenne muscular dystrophy : Recommendations for monitoring disease progression and course of treatment]. DER NERVENARZT 2019; 90:817-823. [PMID: 31270551 DOI: 10.1007/s00115-019-0754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a severe X‑linked recessive neuromuscular disorder. In children without corticosteroid therapy, progressive muscular weakness is associated with loss of ambulation on average by the age of 9.5 years. OBJECTIVE, MATERIAL AND METHODS On the basis of current guidelines, a group of experts in this field defined a number of clinical parameters and examinations that should be performed on a regular basis to assess changes over time in non-ambulant patients. RESULTS AND CONCLUSION To assess function of the upper extremities the Brooke upper extremity functional rating scale or the performance of upper limb test should be used. For assessment of pulmonary function measurement of forced vital capacity (FVC) is recommended. The extent of cardiac involvement can best be evaluated using cardiac magnetic resonance imaging (MRI), measurement of the ejection fraction (EF) and the left ventricular shortening fraction (LVSF) by echocardiography. The pediatric quality of life inventory should be used for assessment of quality of life. In addition, the body mass index (BMI), the number of infections and need for in-hospital treatment as well as early detection of orthopedic problems, most importantly the development of scoliosis should be monitored. After transition from pediatric to adult care DMD patients should be primarily cared for by adult neurologists and specialists in pulmonary and cardiac medicine.
Collapse
Affiliation(s)
- Marina Flotats-Bastardas
- Klinik für Allgemeine Pädiatrie und Neonatologie, Sektion Neuropädiatrie, Universitätsklinikum des Saarlandes, Geb. 9, 66421, Homburg, Deutschland
| | - Daniel Ebrahimi-Fakhari
- Klinik für Allgemeine Pädiatrie und Neonatologie, Sektion Neuropädiatrie, Universitätsklinikum des Saarlandes, Geb. 9, 66421, Homburg, Deutschland
| | - Günther Bernert
- Sozialmedizinisches Zentrum Süd, Kaiser-Franz-Josef-Spital mit Gottfried von Preyer'schem Kinderspital, Wien, Österreich
| | - Andreas Ziegler
- Sektion für Neuropädiatrie und Stoffwechselmedizin, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Kurt Schlachter
- Klinik für Kinder- und Jugendheilkunde, Landeskrankenhaus Bregenz, Bregenz, Österreich
| | - Martin Poryo
- Klinik für Pädiatrische Kardiologie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - Andreas Hahn
- Abteilung Kinderneurologie, Sozialpädiatrie und Epileptologie, Universitätskinderklinik Gießen, Gießen, Deutschland
| | - Sascha Meyer
- Klinik für Allgemeine Pädiatrie und Neonatologie, Sektion Neuropädiatrie, Universitätsklinikum des Saarlandes, Geb. 9, 66421, Homburg, Deutschland.
| |
Collapse
|
45
|
Leung DG. Advancements in magnetic resonance imaging-based biomarkers for muscular dystrophy. Muscle Nerve 2019; 60:347-360. [PMID: 31026060 DOI: 10.1002/mus.26497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Recent years have seen steady progress in the identification of genetic muscle diseases as well as efforts to develop treatment for these diseases. Consequently, sensitive and objective new methods are required to identify and monitor muscle pathology. Magnetic resonance imaging offers multiple potential biomarkers of disease severity in the muscular dystrophies. This Review uses a pathology-based approach to examine the ways in which MRI and spectroscopy have been used to study muscular dystrophies. Methods that have been used to quantitate intramuscular fat, edema, fiber orientation, metabolism, fibrosis, and vascular perfusion are examined, and this Review describes how MRI can help diagnose these conditions and improve upon existing muscle biomarkers by detecting small increments of disease-related change. Important challenges in the implementation of imaging biomarkers, such as standardization of protocols and validating imaging measurements with respect to clinical outcomes, are also described.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 716 North Broadway, Room 411, Baltimore, Maryland, 21205.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Witherspoon JW, Vuillerot C, Vasavada RP, Waite MR, Shelton M, Chrismer IC, Jain MS, Meilleur KG. Motor function performance in individuals with RYR1-related myopathies. Muscle Nerve 2019; 60:80-87. [PMID: 31004442 PMCID: PMC6619391 DOI: 10.1002/mus.26491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/05/2022]
Abstract
Introduction The objective of this study was to obtain a 6‐month natural history of motor function performance in individuals with RYR1‐ related myopathy (RYR1‐RM) by using the Motor Function Measure‐32 (MFM‐32) and graded functional tests (GFT) while facilitating preparation for interventional trials. Methods In total, 34 participants completed the MFM‐32 and GFTs at baseline and 6‐month visits. Results Motor deficits according to MFM‐32 were primarily observed in the standing and transfers domain (D1; mean 71%). Among the GFTs, participants required the most time to ascend/descend stairs (>7.5 s). Functional movement, determined by GFT grades, was strongly correlated with MFM‐32 (D1; r ≥ 0.770, P < 0.001). Motor Function Measure‐32 and GFT scores did not reflect any change in performance between baseline and 6‐month visits. Discussion The MFM‐32 and GFTs detected motor impairment in RYR1‐RM, which remained stable over 6 months. Thus, these measures may be suitable for assessing change in motor function in response to therapeutic intervention. Muscle Nerve60: 80–87, 2019
Collapse
Affiliation(s)
- Jessica W Witherspoon
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Carole Vuillerot
- L'Escale, Service de Médecine Physique et de Réadaptation Pédiatrique, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, F-69500, Bron, France. Université de Lyon, F-69000, Lyon, France. Université Lyon 1, F-69100, Villeurbanne, France
| | - Ruhi P Vasavada
- Rehabilitation Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Melissa R Waite
- Rehabilitation Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Monique Shelton
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Irene C Chrismer
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Minal S Jain
- Rehabilitation Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine G Meilleur
- National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Weng WC, Lin CW, Shen HC, Chang CC, Tsui PH. Instantaneous frequency as a new approach for evaluating the clinical severity of Duchenne muscular dystrophy through ultrasound imaging. ULTRASONICS 2019; 94:235-241. [PMID: 30287072 DOI: 10.1016/j.ultras.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) results in loss of ambulation for the patients. Ultrasound attenuation correlates with fat content in muscles, resulting in changes in signal frequency. The Hilbert-Huang transform (HHT) allows time-frequency analysis with high time-frequency resolution. This study explored the feasibility of using the instantaneous frequency (IF) obtained from the HHT to diagnose the walking function of patients with DMD. Eighty-five participants (12 control and 73 patients with DMD) underwent a standard-care ultrasound examination of the gastrocnemius to acquire raw image data for ultrasound B-mode and IF calculations, which were compared with the DMD stage using Pearson correlation and receiver operating characteristic (ROC) curve analyses. With increasing DMD stage, the median IF decreased from 7.25 to 7.01 MHz (the correlation coefficient r = -0.73; the probability value p < 0.0001). The area under the ROC curve was 0.97 when using ultrasound IF to discriminate between ambulatory and nonambulatory patients (accuracy: 91.76%; sensitivity: 93.75%; and specificity: 90.57%). The study reveals that ultrasound IF has great potential in DMD evaluation and management.
Collapse
Affiliation(s)
- Wen-Chin Weng
- Department of Pediatrics, National Taiwan University Hospital, and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Hui-Chung Shen
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Chien-Cheng Chang
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
48
|
Yin L, Xie ZY, Xu HY, Zheng SS, Wang ZX, Xiao JX, Yuan Y. T2 Mapping and Fat Quantification of Thigh Muscles in Children with Duchenne Muscular Dystrophy. Curr Med Sci 2019; 39:138-145. [PMID: 30868504 DOI: 10.1007/s11596-019-2012-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/12/2018] [Indexed: 11/24/2022]
Abstract
Quantitative magnetic resonance image (MRI) in individual muscles may be useful for monitoring disease progression in Duchenne muscular dystrophy (DMD). The purpose of this study was to measure T2 relaxation time of thigh muscles in children with DMD and healthy boys, and to correlate the T2 relaxation time of muscles with the fat fraction (FF) at quantitative magnetic resonance and results of clinical assessment. Thirty-two boys with DMD and 18 healthy boys were evaluated with T2 mapping and three-point Dixon MRI. Age, body mass index (BMI), muscle strength assessment, timed functional tests (time to walk or run 10 metres, rise from the floor and ascend four stairs), and the North Star Ambulatory Assessment (NSAA) were evaluated. Spearman's correlation was used to assess the relationships between FF and clinical assessments and T2 relaxation time. The mean T2 relaxation time of thigh muscles in DMD was significantly longer than that in the control group (P<0.05), except for the gracilis (P=0.952). The gracilis, sartorius and adductor longus were relatively spared by fatty infiltration in DMD patients. The T2 relaxation time was correlated significantly with the mean FF in all muscles. Age, BMI, total muscle strength score, timed functional tests and NSAA were significantly correlated with the overall mean T2 relaxation time. T2 mapping may prove clinically useful in monitoring muscle changes as a result of the disease process and in predicting the outcome of DMD patients.
Collapse
Affiliation(s)
- Liang Yin
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Zhi-Ying Xie
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Hai-Yan Xu
- Department of Radiology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Sui-Sheng Zheng
- Department of Radiology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jiang-Xi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
49
|
Propp R, McAdam L, Davis AM, Salbach NM, Weir S, Encisa C, Narayanan UG. Development and content validation of the Muscular Dystrophy Child Health Index of Life with Disabilities questionnaire for children with Duchenne muscular dystrophy. Dev Med Child Neurol 2019; 61:75-81. [PMID: 30058069 DOI: 10.1111/dmcn.13977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 02/04/2023]
Abstract
AIM To develop a patient-reported outcome measure that comprehensively captures the health-related priorities of children with Duchenne muscular dystrophy (DMD). METHOD Children with DMD and their parents completed the iteratively revised versions of the Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD), followed by a cognitive interview to develop a pilot version of a new measure. Multidisciplinary health care professionals completed an item-by-item analysis of the measure and a 14-item sensibility questionnaire. Minimum content validity ratio for each item of the new measure and the mean score (0-7) for the items of the sensibility questionnaire were calculated. RESULTS The CPCHILD underwent changes over 19 interviews with children and their parents, resulting in the pilot Muscular Dystrophy Child Health Index of Life with Disabilities (MDCHILD). The content validity ratio of each MDCHILD item ranged from 0.85 to 1 based on health care professionals' ratings. The mean score exceeded the threshold of four for all items of the sensibility questionnaire. Based on child, parent, and health care professional recommendations, 16 items were added, six eliminated, and 15 items modified from the original CPCHILD. The MDCHILD consists of 47 items over seven domains. INTERPRETATION The MDCHILD met all sensibility criteria by children with DMD, their parents, and health care professionals, and is ready for psychometric evaluation. WHAT THIS PAPER ADDS The Muscular Dystrophy Child Health Index of Life with Disabilities (MDCHILD) is a new patient-reported outcome measure for Duchenne muscular dystrophy (DMD). The Priority Framework of Outcomes underpins the content for the MDCHILD. The MDCHILD incorporates the health-related priorities of males with DMD and their parents. The MDCHILD was deemed sensible by children, their parents, and health care professionals.
Collapse
Affiliation(s)
- Roni Propp
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Laura McAdam
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Aileen M Davis
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physical Therapy, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management & Evaluation, University of Toronto, Toronto, ON, Canada
| | - Nancy M Salbach
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Shannon Weir
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Clarissa Encisa
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Unni G Narayanan
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.,Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Surgery, Division of Orthopaedics, The Hospital for Sick, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Shieh PB, Mcintosh J, Jin F, Souza M, Elfring G, Narayanan S, Trifillis P, Peltz SW, Mcdonald CM, Darras BT. Deflazacort versus prednisone/prednisolone for maintaining motor function and delaying loss of ambulation: A post HOC analysis from the ACT DMD trial. Muscle Nerve 2018; 58:639-645. [PMID: 30028519 PMCID: PMC6767037 DOI: 10.1002/mus.26191] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 11/08/2022]
Abstract
Introduction: ACT DMD was a 48‐week trial of ataluren for nonsense mutation Duchenne muscular dystrophy (nmDMD). Patients received corticosteroids for ≥6 months at entry and stable regimens throughout study. This post hoc analysis compares efficacy and safety for deflazacort and prednisone/prednisolone in the placebo arm. Methods: Patients received deflazacort (n = 53) or prednisone/prednisolone (n = 61). Endpoints included change from baseline in 6‐minute walk distance (6MWD), timed function tests, estimated age at loss of ambulation (extrapolated from 6MWD). Results: Mean changes in 6MWD were ‐39.0 m (deflazacort; 95% confidence limit [CL], ‐68.85, ‐9.17) and ‐70.6 m (prednisone/prednisolone; 95% CL, ‐97.16, ‐44.02). Mean changes in 4‐stair climb were 3.79 s (deflazacort; 95% CL, 1.54, 6.03) and 6.67 s (prednisone/prednisolone; 95% CL, 4.69, 8.64). Conclusions: This analysis, limited by its post hoc nature, suggests greater preservation of 6MWD and 4‐stair climb with deflazacort vs. prednisone/prednisolone. A head‐to‐head comparison will better define these differences. Muscle Nerve58: 639–645, 2018
Collapse
Affiliation(s)
- Perry B Shieh
- University of California, 300 UCLA Medical Plaza B-200, Los Angeles, Los Angeles, California, USA
| | - Joseph Mcintosh
- PTC Therapeutics, Inc. 100 Corporate Court, South Plainfield, NJ, South Plainfield, New Jersey, USA
| | - Fengbin Jin
- PTC Therapeutics, Inc. 100 Corporate Court, South Plainfield, NJ, South Plainfield, New Jersey, USA
| | - Marcio Souza
- PTC Therapeutics, Inc. 100 Corporate Court, South Plainfield, NJ, South Plainfield, New Jersey, USA
| | - Gary Elfring
- PTC Therapeutics, Inc. 100 Corporate Court, South Plainfield, NJ, South Plainfield, New Jersey, USA
| | - Siva Narayanan
- PTC Therapeutics, Inc. 100 Corporate Court, South Plainfield, NJ, South Plainfield, New Jersey, USA
| | - Panayiota Trifillis
- PTC Therapeutics, Inc. 100 Corporate Court, South Plainfield, NJ, South Plainfield, New Jersey, USA
| | - Stuart W Peltz
- PTC Therapeutics, Inc. 100 Corporate Court, South Plainfield, NJ, South Plainfield, New Jersey, USA
| | - Craig M Mcdonald
- University of California Davis School of Medicine, Department of Physical Medicine and Rehabilitation, 4860 Y Street, Suite 3850, Sacramento, California, USA
| | - Basil T Darras
- Boston Children's Hospital, 300 Longwood Avenue, Boston, Massachusetts, USA
| | | |
Collapse
|