1
|
Tripathi G, Singh AK, Kumar A. Arylpyrazoles: Heterocyclic Scaffold of Immense Therapeutic Application. CURR ORG CHEM 2020. [DOI: 10.2174/1570179417999200628035645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Among the major class of heterocycles, the N-heterocycles, such as pyrazoles,
are scaffolds of vast medicinal values. Various drugs and other biologically active molecules
are known to contain these N-heterocycles as core motifs. Specifically, arylpyrazoles
have exhibited a diverse range of biological activities, including anti-inflammatory, anticancerous,
antimicrobial and various others. For instance, arylpyrazoles are present as
core moieties in various insecticides, fungicides and drugs such as Celebrex and Trocoxil.
The present review will be highlighting the significant therapeutic importance of pyrazole
derivatives developed in the last few years.
Collapse
Affiliation(s)
- Garima Tripathi
- Department of Chemistry, T. N. B. College, Tilka Manjhi Bhagalpur University, Bhagalpur, Bihar, India
| | - Anil Kumar Singh
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| | - Abhijeet Kumar
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
2
|
Prasad B, Lakshma Nayak V, Srikanth PS, Baig MF, Subba Reddy NV, Babu KS, Kamal A. Synthesis and biological evaluation of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides as antimitotic agents. Bioorg Chem 2018; 83:535-548. [PMID: 30472555 DOI: 10.1016/j.bioorg.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 01/11/2023]
Abstract
A library of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides (7a-al) have been designed, synthesized and screened for their anti-proliferative activity against some selected human cancer cell lines namely DU-145, A-549, MCF-7 and HeLa. Most of them have shown promising cytotoxicity against lung cancer cell line (A549), amongst them 7f was found to be the most potent anti-proliferative congener. Furthermore, 7f exhibited comparable tubulin polymerization inhibition (IC50 value 2.04 µM) to the standard E7010 (IC50 value 2.15 µM). Moreover, flow cytometric analysis revealed that this compound induced apoptosis via cell cycle arrest at G2/M phase in A549 cells. Induction of apoptosis was further observed by examining the mitochondrial membrane potential and was also confirmed by Hoechst staining as well as Annexin V-FITC assays. Furthermore, molecular docking studies indicated that compound 7f binds to the colchicine binding site of the β-tubulin. Thus, 7f exhibits anti-proliferative properties by inhibiting the tubulin polymerization through the binding at the colchicine active site and by induction of apoptosis.
Collapse
Affiliation(s)
- Budaganaboyina Prasad
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Department of Chemistry, Osmania University, Hyderabad 500007, Telangana, India
| | - V Lakshma Nayak
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - P S Srikanth
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mirza Feroz Baig
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - N V Subba Reddy
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Korrapati Suresh Babu
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Department of Chemistry, Osmania University, Hyderabad 500007, Telangana, India
| | - Ahmed Kamal
- Medicinal Chemistry and Biotechnology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110 062 New Delhi, India.
| |
Collapse
|
3
|
The Role of RhoJ in Endothelial Cell Biology and Tumor Pathology. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6386412. [PMID: 27556037 PMCID: PMC4983353 DOI: 10.1155/2016/6386412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 02/04/2023]
Abstract
Background. RhoJ, an endothelially expressed member of Cdc42 (cell division cycle 42) subfamily of Rho GTPase, plays an important role in endocytic pathway, adipocyte differentiation, endothelial motility, tube formation, and focal adhesion. RhoJ is a selective and effective therapeutic target in tumor tissues or retinopathy. Methods. A systematic review was related to “small Rho GTPase” or “RhoJ” with “endothelial motility, tube formation and focal adhesion” and “tumor therapy”. This led to many cross-references involving RhoJ and these data have been incorporated into the following study. Results. We have grouped the role of RhoJ according to three main effects: RhoJ regulates endocytic pathway and adipocyte differentiation in early studies, and RhoJ shows an important role in endothelial cell biology; furthermore, RhoJ blockade serves as a target in tumor vasculature and enhances the effects of anticancer drug. Conclusions. More research is necessary to understand the role of RhoJ in many aspects, on the basis of current knowledge of the role of RhoJ blockade in tumor vessels, there are opportunities for the therapy of tumor, and RhoJ is expressed outside tumour vasculature and is involved in wound healing. Taking advantage of the opportunities could result in a development in tumor therapy.
Collapse
|
4
|
Devkota L, Lin CM, Strecker TE, Wang Y, Tidmore JK, Chen Z, Guddneppanavar R, Jelinek CJ, Lopez R, Liu L, Hamel E, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Design, synthesis, and biological evaluation of water-soluble amino acid prodrug conjugates derived from combretastatin, dihydronaphthalene, and benzosuberene-based parent vascular disrupting agents. Bioorg Med Chem 2016; 24:938-956. [PMID: 26852340 DOI: 10.1016/j.bmc.2016.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/27/2015] [Accepted: 01/05/2016] [Indexed: 01/21/2023]
Abstract
Targeting tumor vasculature represents an intriguing therapeutic strategy in the treatment of cancer. In an effort to discover new vascular disrupting agents with improved water solubility and potentially greater bioavailability, various amino acid prodrug conjugates (AAPCs) of potent amino combretastatin, amino dihydronaphthalene, and amino benzosuberene analogs were synthesized along with their corresponding water-soluble hydrochloride salts. These compounds were evaluated for their ability to inhibit tubulin polymerization and for their cytotoxicity against selected human cancer cell lines. The amino-based parent anticancer agents 7, 8, 32 (also referred to as KGP05) and 33 (also referred to as KGP156) demonstrated potent cytotoxicity (GI50=0.11-40nM) across all evaluated cell lines, and they were strong inhibitors of tubulin polymerization (IC50=0.62-1.5μM). The various prodrug conjugates and their corresponding salts were investigated for cleavage by the enzyme leucine aminopeptidase (LAP). Four of the glycine water-soluble AAPCs (16, 18, 44 and 45) showed quantitative cleavage by LAP, resulting in the release of the highly cytotoxic parent drug, whereas partial cleavage (<10-90%) was observed for other prodrugs (15, 17, 24, 38 and 39). Eight of the nineteen AAPCs (13-16, 42-45) showed significant cytotoxicity against selected human cancer cell lines. The previously reported CA1-diamine analog and its corresponding hydrochloride salt (8 and 10, respectively) caused extensive disruption (at a concentration of 1.0μM) of human umbilical vein endothelial cells growing in a two-dimensional tubular network on matrigel. In addition, compound 10 exhibited pronounced reduction in bioluminescence (greater than 95% compared to saline control) in a tumor bearing (MDA-MB-231-luc) SCID mouse model 2h post treatment (80mg/kg), with similar results observed upon treatment (15mg/kg) with the glycine amino-dihydronaphthalene AAPC (compound 44). Collectively, these results support the further pre-clinical development of the most active members of this structurally diverse collection of water-soluble prodrugs as promising anticancer agents functioning through a mechanism involving vascular disruption.
Collapse
Affiliation(s)
- Laxman Devkota
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Chen-Ming Lin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Yifan Wang
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Justin K Tidmore
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Zhi Chen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Rajsekhar Guddneppanavar
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Christopher J Jelinek
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Ramona Lopez
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States.,OXiGENE Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
5
|
Herdman CA, Devkota L, Lin CM, Niu H, Strecker TE, Lopez R, Liu L, George CS, Tanpure RP, Hamel E, Chaplin DJ, Mason RP, Trawick ML, Pinney KG. Structural interrogation of benzosuberene-based inhibitors of tubulin polymerization. Bioorg Med Chem 2015; 23:7497-520. [PMID: 26775540 PMCID: PMC4828293 DOI: 10.1016/j.bmc.2015.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
The discovery of 3-methoxy-9-(30,40,50-trimethoxyphenyl)-6,7-dihydro-5H-benzo[7]annulen-4-ol (a benzosuberene-based analogue referred to as KGP18) was originally inspired by the natural products colchicine and combretastatin A-4 (CA4). The relative structural simplicity and ease of synthesis of KGP18, coupled with its potent biological activity as an inhibitor of tubulin polymerization and its cytotoxicity (in vitro) against human cancer cell lines, has resulted in studies focused on new analogue design and synthesis. Our goal was to probe the relationship of structure to function in this class of anticancer agents. A series of twenty-two new benzosuberene-based analogues of KGP18 was designed and synthesized. These compounds vary in their methoxylation pattern and separately incorporate trifluoromethyl groups around the pendant aryl ring for the evaluation of the effect of functional group modifications on the fused six-membered aromatic ring. In addition, the 8,9-saturated congener of KGP18 has been synthesized to assess the necessity of unsaturation at the carbon atom bearing the pendant aryl ring. Six of the molecules from this benzosuberene-series of compounds were active (IC50 < 5 lM) as inhibitors of tubulin polymerization while four analogues were comparable (IC50 approximately 1 lM) in their tubulin inhibitory activity to CA4 and KGP18. The potency of a bis-trifluoromethyl analogue 74 and the unsaturated KGP18 derivative 73 as inhibitors of tubulin assembly along with their moderate cytotoxicity suggested the potential utility of these compounds as vascular disrupting agents (VDAs) to selectively target microvessels feeding tumors. Accordingly, water-soluble and DMSO-soluble phosphate prodrug salts of each were synthesized for preliminary in vivo studies to assess their potential efficacy as VDAs.
Collapse
Affiliation(s)
- Christine A. Herdman
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Laxman Devkota
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Chen-Ming Lin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Haichan Niu
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Tracy E. Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Ramona Lopez
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Clinton S. George
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - David J. Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
- OXiGENE Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9058, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
6
|
Yan GH, Li XF, Ge BC, Shi XD, Chen YF, Yang XM, Xu JP, Liu SW, Zhao PL, Zhou ZZ, Zhou CQ, Chen WH. Synthesis and anticancer activities of 3-arylflavone-8-acetic acid derivatives. Eur J Med Chem 2014; 90:251-7. [PMID: 25461325 DOI: 10.1016/j.ejmech.2014.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/25/2014] [Accepted: 11/15/2014] [Indexed: 12/13/2022]
Abstract
This paper describes the synthesis and the antiproliferative activities of compounds 9a-r, 3-aryl analogs of flavone-8-acetic acid that bear diverse substituents on the benzene rings at the 2- and 3-positions of the flavone nucleus. Their direct and indirect cytotoxicities were evaluated against HT-29 human colon adenocarcinoma cell lines, A549 lung adenocarcinoma cell lines and Human Peripheral Blood Mononuclear Cells (HPBMCs). The results indicate that most of the compounds bearing electron-withdrawing substituents (9b-m) exhibited moderate direct cytotoxicities. And compounds 9e and 9i showed comparable indirect cytotoxicities with 5, 6-dimethylxanthenone-4-acetic acid (DMXAA), and low direct cytotoxicities toward HPBMCs. Interestingly, the compounds 9n-r bearing methoxy groups at the 2- or 3-position of the flavone nucleus exhibited higher indirect cytotoxicities against A549 cell lines than DMXAA, and lower cytotoxicities against HPBMCs. In addition, compounds 9p-r were found to be able to induce tumor necrosis factor α (TNF-α) production in HPBMCs.
Collapse
Affiliation(s)
- Guang-Hua Yan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Fang Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Bing-Chen Ge
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xiu-Dong Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yu-Fang Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xue-Mei Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Jiang-Ping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Shu-Wen Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Pei-Liang Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhong-Zhen Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Chun-Qiong Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Wen-Hua Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
7
|
Kim C, Yang H, Fukushima Y, Saw PE, Lee J, Park JS, Park I, Jung J, Kataoka H, Lee D, Heo WD, Kim I, Jon S, Adams RH, Nishikawa SI, Uemura A, Koh GY. Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption. Cancer Cell 2014; 25:102-17. [PMID: 24434213 DOI: 10.1016/j.ccr.2013.12.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/31/2013] [Accepted: 12/19/2013] [Indexed: 01/28/2023]
Abstract
Current antiangiogenic therapy is limited by its cytostatic nature and systemic side effects. To address these limitations, we have unveiled the role of RhoJ, an endothelial-enriched Rho GTPase, during tumor progression. RhoJ blockade provides a double assault on tumor vessels by both inhibiting tumor angiogenesis and disrupting the preformed tumor vessels through the activation of the RhoA-ROCK (Rho kinase) signaling pathway in tumor endothelial cells, consequently resulting in a functional failure of tumor vasculatures. Moreover, enhanced anticancer effects were observed when RhoJ blockade was employed in concert with a cytotoxic chemotherapeutic agent, angiogenesis-inhibiting agent, or vascular-disrupting agent. These results identify RhoJ blockade as a selective and effective therapeutic strategy for targeting tumor vasculature with minimal side effects.
Collapse
Affiliation(s)
- Chan Kim
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Hanseul Yang
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Yoko Fukushima
- Division of Vascular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Phei Er Saw
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Junyeop Lee
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jin-Sung Park
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Intae Park
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jinmyung Jung
- Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, Korea
| | - Hiroshi Kataoka
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Injune Kim
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Sangyong Jon
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max-Planck-Institute of Molecular Biomedicine, 48149 Münster, Germany
| | - Shin-Ichi Nishikawa
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Akiyoshi Uemura
- Division of Vascular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Gou Young Koh
- National Research Laboratory of Vascular Biology and Stem Cells, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea.
| |
Collapse
|
8
|
Sanghai N, Jain V, Preet R, Kandekar S, Das S, Trivedi N, Mohapatra P, Priyadarshani G, Kashyap M, Das D, Satapathy SR, Siddharth S, Guchhait SK, Kundu CN, Bharatam PV. Combretastatin A-4 inspired novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines as tubulin polymerization inhibitors, antimitotic and anticancer agents. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00357d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel 2-aryl-3-arylamino-imidazo-pyridines/pyrazines that exhibit potent tubulin polymerization inhibition, anticancer activity, anti-migration of cancer cells, chromosomal damage, and apoptosis have been developed.
Collapse
Affiliation(s)
- Nitesh Sanghai
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
| | - Vaibhav Jain
- Department of Pharmacoinformatics
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
| | - Ranjan Preet
- School of Biotechnology, KIIT University
- Bhubaneswar, India
| | - Somnath Kandekar
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
| | - Sarita Das
- School of Biotechnology, KIIT University
- Bhubaneswar, India
| | - Neha Trivedi
- Department of Pharmacoinformatics
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
| | | | - Garima Priyadarshani
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
| | - Maneesh Kashyap
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
| | - Dipon Das
- School of Biotechnology, KIIT University
- Bhubaneswar, India
| | | | | | - Sankar K. Guchhait
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
| | | | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar (Mohali), India
- Department of Pharmacoinformatics
- National Institute of Pharmaceutical Education and Research (NIPER)
| |
Collapse
|
9
|
Stocker V, Ghinet A, Leman M, Rigo B, Millet R, Farce A, Desravines D, Dubois J, Waterlot C, Gautret P. On the synthesis and biological properties of isocombretastatins: a case of ketone homologation during Wittig reaction attempts. RSC Adv 2013. [DOI: 10.1039/c2ra22391k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|