1
|
Yang F, Yang J, Zhang Z, Tu G, Yao X, Xue W, Zhu F. Recent Advances in Computer-aided Antiviral Drug Design Targeting HIV-1 Integrase and Reverse Transcriptase Associated Ribonuclease H. Curr Med Chem 2021; 29:1664-1676. [PMID: 34238145 DOI: 10.2174/0929867328666210708090123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS) has been a chronic, life-threatening disease for a long time. However, a broad range of antiretroviral drug regimens are applicable for the successful suppression of virus replication in human immunodeficiency virus type 1 (HIV-1) infected people. The mutation-induced drug resistance problems during the treatment of AIDS forced people to continuously look for new antiviral agents. HIV-1 integrase (IN) and reverse transcriptase associated ribonuclease (RT-RNase H), two pivotal enzymes in HIV-1 replication progress, has gain popularity as drug-able targets for designing novel HIV-1 antiviral drugs. During the development of HIV-1 IN and/or RT-RNase H inhibitors, computer-aided drug design (CADD), including homology modeling, pharmacophore, docking, molecular dynamics (MD) simulation, and binding free energy calculation, represents a significant tool to accelerate the discovery of new drug candidates and reduce costs in antiviral drug development. In this review, we summarized the recent advances in the design of single-and dual-target inhibitors against HIV-1 IN or/and RT-RNase H as well as the prediction of mutation-induced drug resistance based on computational methods. We highlighted the results of the reported literature and proposed some perspectives on the design of novel and more effective antiviral drugs in the future.
Collapse
Affiliation(s)
- Fengyuan Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Jingyi Yang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Zhao Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Chander S, Tang CR, Penta A, Wang P, Bhagwat DP, Vanthuyne N, Albalat M, Patel P, Sankpal S, Zheng YT, Sankaranarayanan M. Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents. Bioorg Chem 2018; 79:212-222. [DOI: 10.1016/j.bioorg.2018.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/13/2018] [Accepted: 04/27/2018] [Indexed: 02/08/2023]
|
3
|
Das A, Bhattacharya S. Different Types of Molecular Docking Based on Variations of Interacting Molecules. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Molecular docking plays an important role in drug discovery research by facilitating target identification, target validation, virtual screening for lead identification and lead optimization. Depending upon the nature of the disease of interest, targets can be either protein or DNA while drugs are mostly organic small molecules. Different types of molecular docking techniques like protein-protein or protein-DNA or protein-small molecule or DNA-small molecule are employed for achieving the above mentioned objectives. This chapter provides a clear idea of the position of molecular docking in drug discovery with detailed discussion on different types of molecular docking based on the varieties of interacting partners. Subsequently the authors provide a detailed list of tools that can be used for docking in drug discovery and discus some examples of molecular docking in drug discovery before concluding with a remark on future areas of improvement in molecular docking related to drug discovery.
Collapse
|
4
|
Das A, Bhattacharya S. Different Types of Molecular Docking Based on Variations of Interacting Molecules. METHODS AND ALGORITHMS FOR MOLECULAR DOCKING-BASED DRUG DESIGN AND DISCOVERY 2016. [DOI: 10.4018/978-1-5225-0115-2.ch006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Molecular docking plays an important role in drug discovery research by facilitating target identification, target validation, virtual screening for lead identification and lead optimization. Depending upon the nature of the disease of interest, targets can be either protein or DNA while drugs are mostly organic small molecules. Different types of molecular docking techniques like protein-protein or protein-DNA or protein-small molecule or DNA-small molecule are employed for achieving the above mentioned objectives. This chapter provides a clear idea of the position of molecular docking in drug discovery with detailed discussion on different types of molecular docking based on the varieties of interacting partners. Subsequently the authors provide a detailed list of tools that can be used for docking in drug discovery and discus some examples of molecular docking in drug discovery before concluding with a remark on future areas of improvement in molecular docking related to drug discovery.
Collapse
|
5
|
Quevedo MA, Ribone SR, Briñón MC, Dehaen W. Development of a receptor model for efficient in silico screening of HIV-1 integrase inhibitors. J Mol Graph Model 2014; 52:82-90. [PMID: 25023663 DOI: 10.1016/j.jmgm.2014.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022]
Abstract
Integrase (IN) is a key viral enzyme for the replication of the type-1 human immunodeficiency virus (HIV-1), and as such constitutes a relevant therapeutic target for the development of anti-HIV agents. However, the lack of crystallographic data of HIV IN complexed with the corresponding viral DNA has historically hindered the application of modern structure-based drug design techniques to the discovery of new potent IN inhibitors (INIs). Consequently, the development and validation of reliable HIV IN structural models that may be useful for the screening of large databases of chemical compounds is of particular interest. In this study, four HIV-1 IN homology models were evaluated respect to their capability to predict the inhibition potency of a training set comprising 36 previously reported INIs with IC50 values in the low nanomolar to the high micromolar range. Also, 9 inactive structurally related compounds were included in this training set. In addition, a crystallographic structure of the IN-DNA complex corresponding to the prototype foamy virus (PFV) was also evaluated as structural model for the screening of inhibitors. The applicability of high throughput screening techniques, such as blind and ligand-guided exhaustive rigid docking was assessed. The receptor models were also refined by molecular dynamics and clustering techniques to assess protein sidechain flexibility and solvent effect on inhibitor binding. Among the studied models, we conclude that the one derived from the X-ray structure of the PFV integrase exhibited the best performance to rank the potencies of the compounds in the training set, with the predictive power being further improved by explicitly modeling five water molecules within the catalytic side of IN. Also, accounting for protein sidechain flexibility enhanced the prediction of inhibition potencies among the studied compounds. Finally, an interaction fingerprint pattern was established for the fast identification of potent IN inhibitors. In conclusion, we report an exhaustively validated receptor model if IN that is useful for the efficient screening of large chemical compounds databases in the search of potent HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Mario A Quevedo
- Departamento de Farmacia, Facultad de Ciencias Químicas, Ciudad Universitaria, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | - Sergio R Ribone
- Departamento de Farmacia, Facultad de Ciencias Químicas, Ciudad Universitaria, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Margarita C Briñón
- Departamento de Farmacia, Facultad de Ciencias Químicas, Ciudad Universitaria, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
6
|
González-Díaz H, Herrera-Ibatá DM, Duardo-Sánchez A, Munteanu CR, Orbegozo-Medina RA, Pazos A. ANN Multiscale Model of Anti-HIV Drugs Activity vs AIDS Prevalence in the US at County Level Based on Information Indices of Molecular Graphs and Social Networks. J Chem Inf Model 2014; 54:744-55. [DOI: 10.1021/ci400716y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Humberto González-Díaz
- Department
of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48940, Leioa, Vizcaya, Spain
- IKERBASQUE, Basque
Foundation for Science, 48011, Bilbao, Vizcaya, Spain
| | - Diana María Herrera-Ibatá
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| | - Aliuska Duardo-Sánchez
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| | - Cristian R. Munteanu
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| | - Ricardo Alfredo Orbegozo-Medina
- Department
of Microbiology and Parasitology, University of Santiago de Compostela (USC), 15782, Santiago de Compostela, A Coruña, Spain
| | - Alejandro Pazos
- Department of Information and Communication Technologies, University of A Coruña UDC, 15071, A Coruña, A Coruña, Spain
| |
Collapse
|
7
|
Quashie PK, Mesplède T, Wainberg MA. HIV Drug Resistance and the Advent of Integrase Inhibitors. Curr Infect Dis Rep 2013. [PMID: 23180144 DOI: 10.1007/s11908-012-0305-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review focuses on the topic of HIV integrase inhibitors that are potent antiretroviral drugs that efficiently decrease viral load in patients. However, emergence of resistance mutations against this new class of drugs represents a threat to their long-term efficacy. Here, we provide new information about the most recent mutations identified and other mutations that confer resistance to several integrase inhibitors, such as new resistance mutations-for example, G118R, R263K, and S153Y-that have been identified through in vitro selection studies with second-generation integrase strand transfer inhibitors (INSTIs). These add to the three main resistance pathways involving mutations at positions Y143, N155, and Q148. Deep sequencing, structural modeling, and biochemical analyses are methods that currently help in the understanding of the mechanisms of resistance conferred by these mutations. Although the new resistance mutations appear to confer only low levels of cross-resistance to second-generation drugs, the Q148 pathway with numerous secondary mutations has the potential to significantly decrease susceptibility to all drugs of the INSTI family of compounds.
Collapse
Affiliation(s)
- Peter K Quashie
- McGill University AIDS Centre, Lady Davis for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | |
Collapse
|
8
|
Wainberg MA. The Need for Development of New HIV-1 Reverse Transcriptase and Integrase Inhibitors in the Aftermath of Antiviral Drug Resistance. SCIENTIFICA 2012; 2012:238278. [PMID: 24278679 PMCID: PMC3820659 DOI: 10.6064/2012/238278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/01/2012] [Indexed: 05/20/2023]
Abstract
The use of highly active antiretroviral therapy (HAART) involves combinations of drugs to achieve maximal virological response and reduce the potential for the emergence of antiviral resistance. There are two broad classes of reverse transcriptase inhibitors, the nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). Since the first classes of such compounds were developed, viral resistance against them has necessitated the continuous development of novel compounds within each class. This paper considers the NRTIs and NNRTIs currently in both preclinical and clinical development or approved for second line therapy and describes the patterns of resistance associated with their use, as well as the underlying mechanisms that have been described. Due to reasons of both affordability and availability, some reverse transcriptase inhibitors with low genetic barrier are more commonly used in resource-limited settings. Their use results to the emergence of specific patterns of antiviral resistance and so may require specific actions to preserve therapeutic options for patients in such settings. More recently, the advent of integrase strand transfer inhibitors represents another major step forward toward control of HIV infection, but these compounds are also susceptible to problems of HIV drug resistance.
Collapse
Affiliation(s)
- Mark A. Wainberg
- Lady Davis Institute, McGill University AIDS Centre, Jewish General Hospital, Montreal, QC, Canada H3T 1E2
| |
Collapse
|
9
|
Quashie PK, Sloan RD, Wainberg MA. Novel therapeutic strategies targeting HIV integrase. BMC Med 2012; 10:34. [PMID: 22498430 PMCID: PMC3348091 DOI: 10.1186/1741-7015-10-34] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/12/2012] [Indexed: 01/17/2023] Open
Abstract
Integration of the viral genome into host cell chromatin is a pivotal and unique step in the replication cycle of retroviruses, including HIV. Inhibiting HIV replication by specifically blocking the viral integrase enzyme that mediates this step is an obvious and attractive therapeutic strategy. After concerted efforts, the first viable integrase inhibitors were developed in the early 2000s, ultimately leading to the clinical licensure of the first integrase strand transfer inhibitor, raltegravir. Similarly structured compounds and derivative second generation integrase strand transfer inhibitors, such as elvitegravir and dolutegravir, are now in various stages of clinical development. Furthermore, other mechanisms aimed at the inhibition of viral integration are being explored in numerous preclinical studies, which include inhibition of 3' processing and chromatin targeting. The development of new clinically useful compounds will be aided by the characterization of the retroviral intasome crystal structure. This review considers the history of the clinical development of HIV integrase inhibitors, the development of antiviral drug resistance and the need for new antiviral compounds.
Collapse
Affiliation(s)
- Peter K Quashie
- McGill University AIDS Centre, Lady Davis Institute, Montreal, Canada
| | | | | |
Collapse
|
10
|
Allosteric inhibition of the hepatitis C virus NS5B polymerase: in silico strategies for drug discovery and development. Future Med Chem 2011; 3:1027-55. [DOI: 10.4155/fmc.11.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic infection by hepatitis C virus (HCV) often leads to severe liver disease including cirrhosis, hepatocellular carcinoma and liver failure. Despite it being more than 20 years since the identification of HCV, the current standard of care for treating the infection is based on aspecific therapy often associated with severe side effects and low-sustained virological response. Research is ongoing to develop new and better medications, including a broad range of allosteric NS5B polymerase inhibitors. This article reviews traditional computational methodologies and more recently developed in silico strategies aimed at identifying and optimizing non-nucleoside inhibitors targeting allosteric sites of HCV NS5B polymerase. The drug-discovery approaches reviewed could provide take-home lessons for general computer-aided research projects.
Collapse
|
11
|
Liao C, Sitzmann M, Pugliese A, Nicklaus MC. Software and resources for computational medicinal chemistry. Future Med Chem 2011; 3:1057-85. [PMID: 21707404 PMCID: PMC3413324 DOI: 10.4155/fmc.11.63] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Computer-aided drug design plays a vital role in drug discovery and development and has become an indispensable tool in the pharmaceutical industry. Computational medicinal chemists can take advantage of all kinds of software and resources in the computer-aided drug design field for the purposes of discovering and optimizing biologically active compounds. This article reviews software and other resources related to computer-aided drug design approaches, putting particular emphasis on structure-based drug design, ligand-based drug design, chemical databases and chemoinformatics tools.
Collapse
Affiliation(s)
- Chenzhong Liao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|