1
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
2
|
Lan KW, Huang WY, Chiu YL, Hsu FT, Chien YC, Hsiau YY, Wang TW, Keng PY. In vivo investigation of boron-rich nanodrugs for treating triple-negative breast cancers via boron neutron capture therapy. BIOMATERIALS ADVANCES 2023; 155:213699. [PMID: 37979440 DOI: 10.1016/j.bioadv.2023.213699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is characterized by highly proliferative cancer cells and is the only subtype of breast cancer that lacks a targeted therapy. Boron neutron capture therapy (BNCT) is an approach that combines chemotherapy with radiotherapy and can potentially offer beneficial targeted treatment for TNBC patients owing to its unique ability to eradicate cancer cells selectively while minimizing damage to the surrounding healthy cells. Since BNCT relies on specific delivery of a high loading of B10 to the tumor site, there is growing research interest to develop more potent boron-based drugs for BNCT that can overcome the limitations of small-molecule boron compounds. In this study, polyethylene-glycol-coated boron carbon oxynitride nanoparticles (PEG@BCNO) of size 134.2±23.6nm were prepared as a promising drug for BNCT owing to their high boron content and enhanced biocompatibility. The therapeutic efficiency of PEG@BCNO was compared with a state-of-the-art 10BPA boron drug in mice bearing MDA-MB-231 tumor. In the orthotopic mouse model, PEG@BCNO showed higher B10 accumulation in the tumor tissues (6 μg 10B/g tissue compared to 3 μg 10B/g tissue in mice administered B10-enriched 10BPA drug) despite using the naturally occurring 11B/10B boron precursor in the preparation of the BCNO nanoparticles. The in vivo biodistribution of PEG@BCNO in mice bearing MDA-MB-231 showed a tumor/blood ratio of ~3.5, which is comparable to that of the state-of-the-art 10BPA-fructose drug. We further demonstrated that upon neutron irradiation, the mice bearing MDA-MB-231 tumor cells treated with PEG@BCNO and 10BPA showed tumor growth delay times of 9 days and 1 day, respectively, compared to mice in the control group after BNCT. The doubling times (DTs) for mice treated with PEG@BCNO and 10BPA as well as mice in the control group were calculated to be 31.5, 19.8, and 17.7 days, respectively. Immunohistochemical staining for the p53 and caspase-3 antibodies revealed that mice treated with PEG@BCNO showed lower probability of cancer recurrence and greater level of cellular apoptosis than mice treated with 10BPA and mice in the control group. Our study thus demonstrates the potential of pegylated BCNO nanoparticles in effectively inhibiting the growth of TNBC tumors compared to the state-of-the-art boron drug 10BPA.
Collapse
Affiliation(s)
- Kai-Wei Lan
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Wei-Yuan Huang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Yi-Lin Chiu
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Fang-Tzu Hsu
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Yun-Chen Chien
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Yong-Yun Hsiau
- College of Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Tzu-Wei Wang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC
| | - Pei Yuin Keng
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan, ROC.
| |
Collapse
|
3
|
Bernier NA, Teh J, Reichel D, Zahorsky-Reeves JL, Perez JM, Spokoyny AM. Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14500-14508. [PMID: 34843246 PMCID: PMC8761388 DOI: 10.1021/acs.langmuir.1c02506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Host-guest interactions represent a growing research area with recent work demonstrating the ability to chemically manipulate both host molecules as well as guest molecules to vary the type and strength of bonding. Much less is known about the interactions of the guest molecules and hybrid materials containing similar chemical features to typical macrocyclic hosts. This work uses in vitro and in vivo kinetic analyses to investigate the interaction of closo-dodecahydrododecaborate derivatives with ferumoxytol, an iron oxide nanoparticle with a carboxylated dextran coating. We find that several boron cluster derivatives can become encapsulated into ferumoxytol, and the lack of pH dependence in these interactions suggests that ion pairing, hydrophobic/hydrophilic interaction, and hydrogen bonding are not the driving force for encapsulation in this system. Biodistribution experiments in BALB/c mice show that this system is nontoxic at the reported dosage and demonstrate that encapsulation of dodecaborate-based clusters in ferumoxytol can alter the biodistribution of the guest molecules.
Collapse
Affiliation(s)
- Nicholas A. Bernier
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joanne L. Zahorsky-Reeves
- Division of Lab Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding Author:,
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Corresponding Author:,
| |
Collapse
|
4
|
Matsumoto Y, Fukumitsu N, Ishikawa H, Nakai K, Sakurai H. A Critical Review of Radiation Therapy: From Particle Beam Therapy (Proton, Carbon, and BNCT) to Beyond. J Pers Med 2021; 11:jpm11080825. [PMID: 34442469 PMCID: PMC8399040 DOI: 10.3390/jpm11080825] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/24/2022] Open
Abstract
In this paper, we discuss the role of particle therapy—a novel radiation therapy (RT) that has shown rapid progress and widespread use in recent years—in multidisciplinary treatment. Three types of particle therapies are currently used for cancer treatment: proton beam therapy (PBT), carbon-ion beam therapy (CIBT), and boron neutron capture therapy (BNCT). PBT and CIBT have been reported to have excellent therapeutic results owing to the physical characteristics of their Bragg peaks. Variable drug therapies, such as chemotherapy, hormone therapy, and immunotherapy, are combined in various treatment strategies, and treatment effects have been improved. BNCT has a high dose concentration for cancer in terms of nuclear reactions with boron. BNCT is a next-generation RT that can achieve cancer cell-selective therapeutic effects, and its effectiveness strongly depends on the selective 10B accumulation in cancer cells by concomitant boron preparation. Therefore, drug delivery research, including nanoparticles, is highly desirable. In this review, we introduce both clinical and basic aspects of particle beam therapy from the perspective of multidisciplinary treatment, which is expected to expand further in the future.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
- Correspondence: ; Tel.: +81-29-853-7100
| | | | - Hitoshi Ishikawa
- National Institute of Quantum and Radiological Science and Technology Hospital, Chiba 263-8555, Japan;
| | - Kei Nakai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan; (K.N.); (H.S.)
- Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba 305-8576, Japan
| |
Collapse
|
5
|
Heide F, McDougall M, Harder-Viddal C, Roshko R, Davidson D, Wu J, Aprosoff C, Moya-Torres A, Lin F, Stetefeld J. Boron rich nanotube drug carrier system is suited for boron neutron capture therapy. Sci Rep 2021; 11:15520. [PMID: 34330984 PMCID: PMC8324832 DOI: 10.1038/s41598-021-95044-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a two-step therapeutic process that utilizes Boron-10 in combination with low energy neutrons to effectively eliminate targeted cells. This therapy is primarily used for difficult to treat head and neck carcinomas; recent advances have expanded this method to cover a broader range of carcinomas. However, it still remains an unconventional therapy where one of the barriers for widespread adoption is the adequate delivery of Boron-10 to target cells. In an effort to address this issue, we examined a unique nanoparticle drug delivery system based on a highly stable and modular proteinaceous nanotube. Initially, we confirmed and structurally analyzed ortho-carborane binding into the cavities of the nanotube. The high ratio of Boron to proteinaceous mass and excellent thermal stability suggest the nanotube system as a suitable candidate for drug delivery into cancer cells. The full physicochemical characterization of the nanotube then allowed for further mechanistic molecular dynamic studies of the ortho-carborane uptake and calculations of corresponding energy profiles. Visualization of the binding event highlighted the protein dynamics and the importance of the interhelical channel formation to allow movement of the boron cluster into the nanotube. Additionally, cell assays showed that the nanotube can penetrate outer membranes of cancer cells followed by localization around the cells' nuclei. This work uses an integrative approach combining experimental data from structural, molecular dynamics simulations and biological experiments to thoroughly present an alternative drug delivery device for BNCT which offers additional benefits over current delivery methods.
Collapse
Affiliation(s)
- Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Matthew McDougall
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Candice Harder-Viddal
- Department of Chemistry and Physics, Canadian Mennonite University, Winnipeg, MB, R3P 2N2, Canada
| | - Roy Roshko
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - David Davidson
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Camila Aprosoff
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
6
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
7
|
Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT). J Control Release 2021; 330:788-796. [DOI: 10.1016/j.jconrel.2020.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 01/11/2023]
|
8
|
Abstract
This review describes the latest polymeric systems used as boron transporters for boron neutron capture therapy.
Collapse
Affiliation(s)
- Anaïs Pitto-Barry
- School of Chemistry and Biosciences
- University of Bradford
- Bradford BD7 1DP
- UK
| |
Collapse
|
9
|
Bregadze VI, Sivaev IB, Dubey RD, Semioshkin A, Shmal'ko AV, Kosenko ID, Lebedeva KV, Mandal S, Sreejyothi P, Sarkar A, Shen Z, Wu A, Hosmane NS. Boron-Containing Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. Chemistry 2020; 26:13832-13841. [PMID: 32521076 DOI: 10.1002/chem.201905083] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/16/2022]
Abstract
A series of boron-containing lipids were prepared by reactions of cyclic oxonium derivatives of polyhedron boranes and metallacarboranes (closo-dodecaborate anion, cobalt and iron bis(dicarbollides)) with amine and carboxylic acids which are derived from cholesterol. Stable liposomal formulations, on the basis of synthesized boron-containing lipids, hydrogenated soybean l-α-phosphatidylcholine and (HSPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) as excipients, were prepared and then characterized by dynamic light scattering (DLS) that revealed the formation of particles to be smaller than 200 nm in diameter. The resulting liposomal formulations showed moderate to excellent loading and entrapment efficiency, thus justifying the design of the compounds to fit in the lipid bilayer and ensuring ease of in vivo use for future application. The liposomal formulations based on cobalt and iron bis(dicarbollide)-based lipids were found to be nontoxic against both human breast normal epithelial cells MCF-10A and human breast cancer cells MCF-7.
Collapse
Affiliation(s)
- Vladimir I Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Ravindra Dhar Dubey
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi, 110092, India
| | - Andrey Semioshkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Akim V Shmal'ko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Irina D Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Kseniya V Lebedeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Swadhin Mandal
- Indian Institute of Science Education and Research, Mohanpur, 741246, India
| | | | - Arindam Sarkar
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi, 110092, India
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of, Magnetic Materials and Devices, Ningbo Institute of Materials Technology, and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Narayan S Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
10
|
Synthesis and Evaluation of Dodecaboranethiol Containing Kojic Acid (KA-BSH) as a Novel Agent for Boron Neutron Capture Therapy. Cells 2020; 9:cells9061551. [PMID: 32630612 PMCID: PMC7349888 DOI: 10.3390/cells9061551] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a form of tumor-cell selective particle irradiation using low-energy neutron irradiation of boron-10 (10B) to produce high-linear energy transfer (LET) alpha particles and recoiling 7Li nuclei (10B [n, alpha] 7Li) in tumor cells. Therefore, it is important to achieve the selective delivery of large amounts of 10B to tumor cells, with only small amounts of 10B to normal tissues. To develop practical materials utilizing 10B carriers, we designed and synthesized novel dodecaboranethiol (BSH)-containing kojic acid (KA-BSH). In the present study, we evaluated the effects of this novel 10B carrier on cytotoxicity, 10B concentrations in F98 rat glioma cells, and micro-distribution of KA-BSH in vitro. Furthermore, biodistribution studies were performed in a rat brain tumor model. The tumor boron concentrations showed the highest concentrations at 1 h after the termination of administration. Based on these results, neutron irradiation was evaluated at the Kyoto University Research Reactor Institute (KURRI) with KA-BSH. Median survival times (MSTs) of untreated and irradiated control rats were 29.5 and 30.5 days, respectively, while animals that received KA-BSH, followed by neutron irradiation, had an MST of 36.0 days (p = 0.0027, 0.0053). Based on these findings, further studies are warranted in using KA-BSH as a new B compound for malignant glioma.
Collapse
|
11
|
Kawamura J, Kitamura H, Otake Y, Fuse S, Nakamura H. Size-Controllable and Scalable Production of Liposomes Using a V-Shaped Mixer Micro-Flow Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jun Kawamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hiroshi Kitamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shinichiro Fuse
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
12
|
Druzina AA, Shmalko AV, Andreichuk EP, Zhidkova OB, Kosenko ID, Semioshkin A, Sivaev IB, Mandal S, Shen Z, Bregadze VI. ‘Click’ synthesis of cobalt bis(dicarbollide)–cholesterol conjugates. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Viñas C, Núñez R, Bennour I, Teixidor F. Periphery Decorated and Core Initiated Neutral and Polyanionic Borane Large Molecules: Forthcoming and Promising Properties for Medicinal Applications. Curr Med Chem 2019; 26:5036-5076. [PMID: 31161983 DOI: 10.2174/0929867326666190603123838] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 11/22/2022]
Abstract
A mini-review based on radial growing macromolecules and core initiated Borane
periphery decorated with o-carboranes and metallacarboranes that has been developed in the
authors laboratories is reported. The review is divided into four sections; three of them are
related to the design and synthesis of these large boron-containing molecules and the fourth
deals with the unique properties of anionic metallacarborane molecules that provide a glimpse
of their potential for their promising use in medicinal applications. Their unique stability
along with their geometrical and electronic properties, as well as the precise steric structure of
1,2-closo-C2B10H12 (o-carborane) that has the potential for the incorporation of many substituents:
at the carbon (Cc), at the boron and at both carbon and boron vertices, suggests this
cluster as an innovative building block or platform for novel applications that cannot be
achieved with organic hydrocarbon compounds. Poly(aryl-ether) dendrimers grown from
fluorescent cores, such as 1,3,5-triarylbenzene or meso-porphyrins, have been decorated with
boron clusters to attain rich boron containing dendrimers. Octasilsesquioxane cubes have been
used as a core for its radial growth to get boron-rich large molecules. The unique properties of
cobaltabisdicarbollide cluster, which include: i) self-assembly in water to produce monolayer
nano-vesicles, ii) crossing lipid bilayer membranes, iii) interacting with membrane cells, iv)
facilitating its visualization within cells by Raman and fluorescence techniques and v) their
use as molecular platform for “in vivo” imaging are discussed in detail.
Collapse
Affiliation(s)
- Clara Viñas
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC). Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Rosario Núñez
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC). Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ines Bennour
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC). Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC). Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Khan AA, Maitz C, Quanyu C, Hawthorne F. BNCT induced immunomodulatory effects contribute to mammary tumor inhibition. PLoS One 2019; 14:e0222022. [PMID: 31479484 PMCID: PMC6719824 DOI: 10.1371/journal.pone.0222022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022] Open
Abstract
In the United States, breast cancer is one of the most common and the second leading cause of cancer-related death in women. Treatment modalities for mammary tumor are surgical removal of the tumor tissue followed by either chemotherapy or radiotherapy or both. Radiation therapy is a whole body irradiation regimen that suppresses the immune system leaving hosts susceptible to infection or secondary tumors. Boron neutron capture therapy (BNCT) in that regard is more selective, the cells that are mostly affected are those that are loaded with 109 or more 10B atoms. Previously, we have described that liposomal encapsulation of boron-rich compounds such as TAC and MAC deliver a high payload to the tumor tissue when injected intravenously. Here we report that liposome-mediated boron delivery to the tumor is inversely proportional to the size of the murine mammary (EMT-6) tumors. The plausible reason for the inverse ratio of boron and EMT-6 tumor size is the necrosis in these tumors, which is more prominent in the large tumors. The large tumors also have receding blood vessels contributing further to poor boron delivery to these tumors. We next report that the presence of boron in blood is essential for the effects of BNCT on EMT-6 tumor inhibition as direct injection of boron-rich liposomes did not provide any added advantage in inhibition of EMT-6 tumor in BALB/c mice following irradiation despite having a significantly higher amount of boron in the tumor tissue. BNCT reaction in PBMCs resulted in the modification of these cells to anti-tumor phenotype. In this study, we report the immunomodulatory effects of BNCT when boron-rich compounds are delivered systemically.
Collapse
Affiliation(s)
- Aslam Ali Khan
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
- Bond Life Science Center, University of Missouri, Columbia, United States of America
- Department of Veterinary Pathobiology, University of Missouri, Columbia, United States of America
| | - Charlie Maitz
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Cai Quanyu
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| | - Fred Hawthorne
- International Institute of Nano and Molecular Medicine, University of Missouri, Columbia, United States of America
| |
Collapse
|
15
|
Ishii S, Sato S, Asami H, Hasegawa T, Kohno JY, Nakamura H. Design of S–S bond containing maleimide-conjugated closo-dodecaborate (SSMID): identification of unique modification sites on albumin and investigation of intracellular uptake. Org Biomol Chem 2019; 17:5496-5499. [DOI: 10.1039/c9ob00584f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The S–S bond containing maleimide-conjugated closo-dodecaborate (SSMID) was synthesised to identify the binding sites in bovin serum albumin (BSA).
Collapse
Affiliation(s)
- Satomu Ishii
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Shinichi Sato
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Hiroya Asami
- Department of Chemistry
- Facility of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Tomoko Hasegawa
- Department of Chemistry
- Facility of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Jun-Ya Kohno
- Department of Chemistry
- Facility of Science
- Gakushuin University
- Tokyo 171-8588
- Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
16
|
Garcia AA, Rayevski A, Andrade-Jorge E, Trujillo-Ferrara JG. Structural and biological overview of Boron-containing amino acids in the medicinal chemistry field. Curr Med Chem 2018; 26:5077-5089. [PMID: 30259808 DOI: 10.2174/0929867325666180926150403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
Amino acids are the basic structural units of proteins as well as the precursors of many compounds with biological activity. The addition of boron reportedly induces changes in the chemical-biological profile of amino acids. METHODS We compiled information on the biological effect of some compounds and discuss the structure-activity relationship of the addition of boron. The specific focus presently is on borinic derivatives of α-amino acids, the specific changes in biological activity caused by the addition of a boron-containing moiety, and the identification of some attractive compounds for testing as potential new drugs. RESULTS Borinic derivatives of α-amino acids have been widely synthesized and tested as potential new therapeutic tools. The B-N (1.65 A°) or B-C (1.61 A°) or B-O (1.50 A°) bond is often key for the stability at different pHs and temperatures and activity of these compounds. The chemical features of synthesized derivatives, such as the specific moieties and the logP, polarizability and position of the boron atom are clearly linked to their pharmacodynamic and pharmacokinetic profiles. Some mechanisms of action have been suggested or demonstrated, while those responsible for other effects remain unknown. CONCLUSION The increasing number of synthetic borinic derivatives of α-amino acids as well as the recently reported crystal structures are providing new insights into the stability of these compounds at different pHs and temperatures, their interactions on drug targets, and the ring formation of five-membered heterocycles. Further research is required to clarify the ways to achieve specific synthesis, the mechanisms involved in the observed biological effect, and the toxicological profile of this type of boron-containing compounds (BCCs).
Collapse
Affiliation(s)
- Antonio Abad Garcia
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Alexey Rayevski
- Chuiko Institute of Surface Chemistry, National Academy of Science of Ukranie. 17 Generala Naumova St., 03164, Kyiv. Ukraine
| | - Erik Andrade-Jorge
- Departamento de Bioquimica y Seccion de Estudios de Posgrado e Investigacion. Escuela Superior de Medicina. Plan de San Luis y Diaz Miron s/n, 11340, Mexico City. Mexico
| | - Jose G Trujillo-Ferrara
- Departamento de Bioquímica y Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina. Plan de San Luis y Diaz Mirón s/n, 11340, Mexico City. Mexico
| |
Collapse
|
17
|
Yinghuai Z, Lin X, Xie H, Li J, Hosmane NS, Zhang Y. The Current Status and Perspectives of Delivery Strategy for Boron-based Drugs. Curr Med Chem 2018; 26:5019-5035. [PMID: 30182851 DOI: 10.2174/0929867325666180904105212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
Boron-containing compounds are essential micronutrients for animals and plants despite their low-level natural occurrence. They can strengthen the cell walls of the plants and they play important role in supporting bone health. However, surprisingly, boron-containing compounds are seldom found in pharmaceutical drugs. In fact, there are no inherent disadvantages reported so far in terms of the incorporation of boron into medicines. Indeed, drugs based on boron-containing compounds, such as tavaborole (marked name Kerydin) and bortezomib (trade name Velcade) have been investigated and they are used in clinical treatment. In addition, following the advanced development of boron neutron capture therapy and a new emerging proton boron fusion therapy, more boron-containing medicinals are to be expected. This review discusses the current status and perspectives of delivery strategy for boron-containing drugs.
Collapse
Affiliation(s)
- Zhu Yinghuai
- School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau. Macao
| | - Xinglong Lin
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Hongming Xie
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| | - Jianlin Li
- HEC Research and Development Center, Dongguan 523871. China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115-2862. United States
| | - Yingjun Zhang
- New Drug Research Institute, HEC Pharma Group, Dongguan 523871. China
| |
Collapse
|
18
|
Abstract
Abstract
Nanostructured boron compounds have emerged as one of the promising frontiers in boron chemistry. These species possess unique physical and chemical properties in comparison with classical small boron compounds. The nanostructured boron composites generally have large amounts of boron contents and thus have the potential to deliver significant amount of boron to the tumor cells, that is crucial for boron neutron capture therapy (BNCT). In theory, BNCT is based on a nuclear capture reaction with the 10B isotope absorbing a slow neutron to initiate a nuclear fission reaction with the release of energetic particles, such as lithium and helium (α particles), which travel the distance of around nine microns within the cell DNA or RNA to destroy it. The recent studies have demonstrated that the nanostructured boron composites can be combined with the advanced targeted drug delivery system and drug detection technology. The successful combination of these three areas should significantly improve the BNCT in cancer treatment. This mini review summarizes the latest developments in this unique area of cancer therapy.
Collapse
Affiliation(s)
- Yinghuai Zhu
- School of Pharmacy , Macau University of Science and Technology , Avenida Wai Long, Taipa , Macau 999078 , Macau
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb, IL 60115 , USA
| |
Collapse
|
19
|
Mehta A, Ghaghada K, Mukundan S. Molecular Imaging of Brain Tumors Using Liposomal Contrast Agents and Nanoparticles. Magn Reson Imaging Clin N Am 2016; 24:751-763. [PMID: 27742115 DOI: 10.1016/j.mric.2016.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first generation of cross-sectional brain imaging using computed tomography (CT), ultrasonography, and eventually MR imaging focused on determining structural or anatomic changes associated with brain disorders. The current state-of-the-art imaging, functional imaging, uses techniques such as CT and MR perfusion that allow determination of physiologic parameters in vivo. In parallel, tissue-based genomic, transcriptomic, and proteomic profiling of brain tumors has created several novel and exciting possibilities for molecular targeting of brain tumors. The next generation of imaging translates these molecular in vitro techniques to in vivo, noninvasive, targeted reconstruction of tumors and their microenvironments.
Collapse
Affiliation(s)
- Arnav Mehta
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, 757 Westwood Plaza, Los Angeles, CA 90095, USA; Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ketan Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Srinivasan Mukundan
- Division of Neuroradiology, Department of Radiology, Brigham and Woman's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Safronov AV, Jalisatgi SS, Hawthorne MF. Novel Convenient Synthesis of (10)B-Enriched Sodium Borohydride. Inorg Chem 2016; 55:5116-7. [PMID: 27195803 DOI: 10.1021/acs.inorgchem.6b01002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient and efficient synthesis of (10)B-enriched sodium borohydride [Na(10)BH4] from commercially available (10)B-enriched boric acid [(10)B(OH)3] is described. The reaction sequence (10)B(OH)3 → (10)B(On-Bu)3 → (10)BH3·Et3N → Na(10)BH4 afforded the product in 60-80% yield. The reaction was successfully scaled to hundreds of gram per run.
Collapse
Affiliation(s)
- Alexander V Safronov
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri-Columbia , 1514 Research Park Drive, Columbia, Missouri 65211, United States
| | - Satish S Jalisatgi
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri-Columbia , 1514 Research Park Drive, Columbia, Missouri 65211, United States
| | - M Frederick Hawthorne
- International Institute of Nano and Molecular Medicine, School of Medicine, University of Missouri-Columbia , 1514 Research Park Drive, Columbia, Missouri 65211, United States
| |
Collapse
|
21
|
Laskova J, Kozlova A, Białek-Pietras M, Studzińska M, Paradowska E, Bregadze V, Leśnikowski ZJ, Semioshkin A. Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Suzuki R, Omata D, Oda Y, Unga J, Negishi Y, Maruyama K. Cancer Therapy with Nanotechnology-Based Drug Delivery Systems: Applications and Challenges of Liposome Technologies for Advanced Cancer Therapy. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Alberti D, Protti N, Toppino A, Deagostino A, Lanzardo S, Bortolussi S, Altieri S, Voena C, Chiarle R, Geninatti Crich S, Aime S. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:741-50. [PMID: 25596074 DOI: 10.1016/j.nano.2014.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/04/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation.
Collapse
Affiliation(s)
- Diego Alberti
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| | - Nicoletta Protti
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Antonio Toppino
- Department of Chemistry, University of Torino, Torino, Italy
| | | | - Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| | - Silva Bortolussi
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Saverio Altieri
- Department of Nuclear and Theoretical Physics, University of Pavia, Pavia, Italy; Nuclear Physics National Institute (INFN), section of Pavia, Pavia, Italy
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy; Center for Experimental Research and Medical Studies (CERMS), Città della Salute e della Scienza, Torino, Italy; Department of Pathology, Children's Hospital Harvard Medical School, Boston, MA, USA
| | | | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences; University of Torino, Torino, Italy
| |
Collapse
|
24
|
Koganei H, Tachikawa S, El-Zaria ME, Nakamura H. Synthesis of oligo-closo-dodecaborates by Hüisgen click reaction as encapsulated agents for the preparation of high-boron-content liposomes for neutron capture therapy. NEW J CHEM 2015. [DOI: 10.1039/c5nj00856e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High boron-content molecules and their encapsulated liposomes.
Collapse
Affiliation(s)
- Hayato Koganei
- Department of Life Science
- Faculty of Science
- Gakushuin University
- Toshima-ku
- Japan
| | - Shoji Tachikawa
- Department of Life Science
- Faculty of Science
- Gakushuin University
- Toshima-ku
- Japan
| | - Mohamed E. El-Zaria
- Department of Life Science
- Faculty of Science
- Gakushuin University
- Toshima-ku
- Japan
| | - Hiroyuki Nakamura
- Chemical Research Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503
- Japan
| |
Collapse
|
25
|
Alberti D, Toppino A, Geninatti Crich S, Meraldi C, Prandi C, Protti N, Bortolussi S, Altieri S, Aime S, Deagostino A. Synthesis of a carborane-containing cholesterol derivative and evaluation as a potential dual agent for MRI/BNCT applications. Org Biomol Chem 2014; 12:2457-67. [PMID: 24604345 DOI: 10.1039/c3ob42414f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study the synthesis and characterization of a new dual, imaging and therapeutic, agent is proposed with the aim of improving the efficacy of Boron Neutron Capture Therapy (BNCT) in cancer treatment. The agent (Gd-B-AC01) consists of a carborane unit (ten boron atoms) bearing a cholesterol unit on one side (to pursue the incorporation into the liposome bi-layer) and a Gd(iii)/1,4,7,10-tetraazacyclododecane monoamide complex on the other side (as a MRI reporter to attain the quantification of the B/Gd concentration). In order to endow the BNCT agent with specific delivery properties, the liposome embedded with the MRI/BNCT dual probes has been functionalized with a pegylated phospholipid containing a folic acid residue at the end of the PEG chain. The vector allows the binding of the liposome to folate receptors that are overexpressed in many tumor types, and in particular, in human ovarian cancer cells (IGROV-1). An in vitro test on IGROV-1 cells demonstrated that Gd-B-AC01 loaded liposomes are efficient carriers for the delivery of the MRI/BNCT probes to the tumor cells. Finally, the BNCT treatment of IGROV-1 cells showed that the number of surviving cells was markedly smaller when the cells were irradiated after internalization of the folate-targeted GdB10-AC01/liposomes.
Collapse
Affiliation(s)
- Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, 10126, Torino, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dickinson P. Advances in diagnostic and treatment modalities for intracranial tumors. J Vet Intern Med 2014; 28:1165-85. [PMID: 24814688 PMCID: PMC4857954 DOI: 10.1111/jvim.12370] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/24/2014] [Accepted: 03/25/2014] [Indexed: 12/23/2022] Open
Abstract
Intracranial neoplasia is a common clinical condition in domestic companion animals, particularly in dogs. Application of advances in standard diagnostic and therapeutic modalities together with a broad interest in the development of novel translational therapeutic strategies in dogs has resulted in clinically relevant improvements in outcome for many canine patients. This review highlights the status of current diagnostic and therapeutic approaches to intracranial neoplasia and areas of novel treatment currently in development.
Collapse
Affiliation(s)
- P.J. Dickinson
- Department of Surgical and Radiological SciencesSchool of Veterinary MedicineUniversity of California DavisDavisCA
| |
Collapse
|
27
|
Tachikawa S, Miyoshi T, Koganei H, El-Zaria ME, Viñas C, Suzuki M, Ono K, Nakamura H. Spermidinium closo-dodecaborate-encapsulating liposomes as efficient boron delivery vehicles for neutron capture therapy. Chem Commun (Camb) 2014; 50:12325-8. [DOI: 10.1039/c4cc04344h] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significant anti-tumor effects and longer survivals were observed in the tumor-bearing mice treated with spermidinium closo-dodecaborate-encapsulating liposomes after thermal neutron irradiation.
Collapse
Affiliation(s)
- Shoji Tachikawa
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503, Japan
- Department of Chemistry
- Faculty of Science
| | - Tatsuro Miyoshi
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588, Japan
| | - Hayato Koganei
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588, Japan
| | - Mohamed E. El-Zaria
- Department of Chemistry
- Faculty of Science
- Gakushuin University
- Tokyo 171-8588, Japan
- Department of Chemistry
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Barcelona, Spain
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center
- Kyoto University Research Reactor Institute
- Asashiro-nishi, Kumatori-cho
- Osaka 590-0494, Japan
| | - Koji Ono
- Particle Radiation Oncology Research Center
- Kyoto University Research Reactor Institute
- Asashiro-nishi, Kumatori-cho
- Osaka 590-0494, Japan
| | - Hiroyuki Nakamura
- Chemical Resources Laboratory
- Tokyo Institute of Technology
- Yokohama 226-8503, Japan
- Department of Chemistry
- Faculty of Science
| |
Collapse
|
28
|
Nakamura H. [Development of high boron content liposomes and their promising antitumor effect for neutron capture therapy]. YAKUGAKU ZASSHI 2013; 133:1297-306. [PMID: 24292174 DOI: 10.1248/yakushi.13-00222-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High accumulation and selective delivery of boron into tumor tissue are the most important requirements to achieve the efficient cell-killing effect of boron neutron capture therapy (BNCT) that relies on the nuclear reaction of two essentially nontoxic species, boron-10 ((10)B) and thermal neutrons in boron-loaded tissues. Recent development of boron cluster lipids and their liposomal boron delivery system (BDS) are summarized in this article. Boron compounds that have no affinity to tumor can potentially be delivered to tumor tissues by liposomes, therefore, liposomal BDS would be one of the most attractive approaches for efficient BNCT of various cancers. There are two approaches for BDS: encapsulation of boron compounds into liposomes and incorporation of boron-conjugated lipids into the liposomal bilayer. The combination of both approaches has a potential for reduction of the total dose of liposomes without reducing the efficacy of BNCT.
Collapse
|
29
|
|