1
|
Koppenol R, Conceição A, Afonso IT, Afonso-Reis R, Costa RG, Tomé S, Teixeira D, da Silva JP, Côdesso JM, Brito DVC, Mendonça L, Marcelo A, Pereira de Almeida L, Matos CA, Nóbrega C. The stress granule protein G3BP1 alleviates spinocerebellar ataxia-associated deficits. Brain 2023; 146:2346-2363. [PMID: 36511898 PMCID: PMC10232246 DOI: 10.1093/brain/awac473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 09/09/2023] Open
Abstract
Polyglutamine diseases are a group of neurodegenerative disorders caused by an abnormal expansion of CAG repeat tracts in the codifying regions of nine, otherwise unrelated, genes. While the protein products of these genes are suggested to play diverse cellular roles, the pathogenic mutant proteins bearing an expanded polyglutamine sequence share a tendency to self-assemble, aggregate and engage in abnormal molecular interactions. Understanding the shared paths that link polyglutamine protein expansion to the nervous system dysfunction and the degeneration that takes place in these disorders is instrumental to the identification of targets for therapeutic intervention. Among polyglutamine diseases, spinocerebellar ataxias (SCAs) share many common aspects, including the fact that they involve dysfunction of the cerebellum, resulting in ataxia. Our work aimed at exploring a putative new therapeutic target for the two forms of SCA with higher worldwide prevalence, SCA type 2 (SCA2) and type 3 (SCA3), which are caused by expanded forms of ataxin-2 (ATXN2) and ataxin-3 (ATXN3), respectively. The pathophysiology of polyglutamine diseases has been described to involve an inability to properly respond to cell stress. We evaluated the ability of GTPase-activating protein-binding protein 1 (G3BP1), an RNA-binding protein involved in RNA metabolism regulation and stress responses, to counteract SCA2 and SCA3 pathology, using both in vitro and in vivo disease models. Our results indicate that G3BP1 overexpression in cell models leads to a reduction of ATXN2 and ATXN3 aggregation, associated with a decrease in protein expression. This protective effect of G3BP1 against polyglutamine protein aggregation was reinforced by the fact that silencing G3bp1 in the mouse brain increases human expanded ATXN2 and ATXN3 aggregation. Moreover, a decrease of G3BP1 levels was detected in cells derived from patients with SCA2 and SCA3, suggesting that G3BP1 function is compromised in the context of these diseases. In lentiviral mouse models of SCA2 and SCA3, G3BP1 overexpression not only decreased protein aggregation but also contributed to the preservation of neuronal cells. Finally, in an SCA3 transgenic mouse model with a severe ataxic phenotype, G3BP1 lentiviral delivery to the cerebellum led to amelioration of several motor behavioural deficits. Overall, our results indicate that a decrease in G3BP1 levels may be a contributing factor to SCA2 and SCA3 pathophysiology, and that administration of this protein through viral vector-mediated delivery may constitute a putative approach to therapy for these diseases, and possibly other polyglutamine disorders.
Collapse
Affiliation(s)
- Rebekah Koppenol
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - André Conceição
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Inês T Afonso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ricardo Afonso-Reis
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rafael G Costa
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sandra Tomé
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Diogo Teixeira
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | | | - José Miguel Côdesso
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- PhD Program in Biomedial Sciences, Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - David V C Brito
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
| | - Liliana Mendonça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Adriana Marcelo
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carlos A Matos
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Clévio Nóbrega
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|
2
|
Lucaciu SA, Figliuzzi R, Neumann R, Nazarali S, Del Sordo L, Leighton SE, Hauser A, Shao Q, Johnston D, Bai D, Laird DW. GJB4 variants linked to skin disease exhibit a trafficking deficiency en route to gap junction formation that can be restored by co-expression of select connexins. Front Cell Dev Biol 2023; 11:1073805. [PMID: 36861039 PMCID: PMC9968944 DOI: 10.3389/fcell.2023.1073805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Epidermal keratinocytes are enriched with at least nine connexins that are key regulators of epidermal homeostasis. The role of Cx30.3 in keratinocytes and epidermal health became evident when fourteen autosomal dominant mutations in the Cx30.3-encoding GJB4 gene were linked to a rare and incurable skin disorder called erythrokeratodermia variabilis et progressiva (EKVP). While these variants are linked to EKVP, they remain largely uncharacterized hindering therapeutic options. In this study, we characterize the expression and functional status of three EKVP-linked Cx30.3 mutants (G12D, T85P, and F189Y) in tissue-relevant and differentiation-competent rat epidermal keratinocytes. We found that GFP-tagged Cx30.3 mutants were non-functional likely due to their impaired trafficking and primary entrapment within the endoplasmic reticulum (ER). However, all mutants failed to increase BiP/GRP78 levels suggesting they were not inducing an unfolded protein response. FLAG-tagged Cx30.3 mutants were also trafficking impaired yet occasionally exhibited some capacity to assemble into gap junctions. The pathological impact of these mutants may extend beyond their trafficking deficiencies as keratinocytes expressing FLAG-tagged Cx30.3 mutants exhibited increased propidium iodide uptake in the absence of divalent cations. Attempts to rescue the delivery of trafficking impaired GFP-tagged Cx30.3 mutants into gap junctions by chemical chaperone treatment were ineffective. However, co-expression of wild type Cx30.3 greatly enhanced the assembly of Cx30.3 mutants into gap junctions, although endogenous levels of Cx30.3 do not appear to prevent the skin pathology found in patients harboring these autosomal dominant mutations. In addition, a spectrum of connexin isoforms (Cx26, Cx30, and Cx43) exhibited the differential ability to trans-dominantly rescue the assembly of GFP-tagged Cx30.3 mutants into gap junctions suggesting a broad range of connexins found in keratinocytes may favourably interact with Cx30.3 mutants. We conclude that selective upregulation of compatible wild type connexins in keratinocytes may have potential therapeutic value in rescuing epidermal defects invoked by Cx30.3 EKVP-linked mutants.
Collapse
Affiliation(s)
- Sergiu A. Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Rhett Figliuzzi
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Ruth Neumann
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Samina Nazarali
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Luigi Del Sordo
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Stephanie E. Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada,*Correspondence: Dale W. Laird,
| |
Collapse
|
3
|
Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
4
|
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, Byrne LM, Markmiller S, Lau AL, Orellana I, Curtis MA, Faull RLM, Yeo GW, Fowler CD, Reidling JC, Wild EJ, Spitale RC, Thompson LM. Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest 2021; 131:140723. [PMID: 33945510 DOI: 10.1172/jci140723] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology. We examined the miRNA composition of extracellular vesicles (EVs) present in the cerebrospinal fluid (CSF) of patients with HD and show that a subset of their target mRNAs were differentially expressed in the prefrontal cortex. Of these targets, SG components were enriched, including the SG-nucleating Ras GTPase-activating protein-binding protein 1 (G3BP1). We investigated localization and levels of G3BP1 and found a significant increase in the density of G3BP1-positive granules in the cortex and hippocampus of R6/2 transgenic mice and in the superior frontal cortex of the brains of patients with HD. Intriguingly, we also observed that the SG-associated TAR DNA-binding protein 43 (TDP43), a nuclear RNA/DNA binding protein, was mislocalized to the cytoplasm of G3BP1 granule-positive HD cortical neurons. These findings suggest that G3BP1 SG dynamics may play a role in the pathophysiology of HD.
Collapse
Affiliation(s)
| | | | | | - Ryan G Lim
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Ricardo Miramontes
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Lauren M Byrne
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Sebastian Markmiller
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | - Alice L Lau
- Department of Psychiatry & Human Behavior, and
| | - Iliana Orellana
- Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Science, and.,Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, and.,Institute for Genomic Medicine and UCSD Stem Cell Program, University of California San Diego, La Jolla, California, USA
| | | | - Jack C Reidling
- Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA
| | - Edward J Wild
- UCL Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, United Kingdom
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, and.,Department of Chemistry, University of California, Irvine, California, USA
| | - Leslie M Thompson
- Department of Neurobiology & Behavior.,Institute for Memory Impairment and Neurological Disorders, University of California, Irvine, California, USA.,Department of Psychiatry & Human Behavior, and.,Sue and Bill Gross Stem Cell Center, University of California, Irvine, California, USA
| |
Collapse
|
5
|
Marcelo A, Koppenol R, de Almeida LP, Matos CA, Nóbrega C. Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death Dis 2021; 12:592. [PMID: 34103467 PMCID: PMC8187637 DOI: 10.1038/s41419-021-03873-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
Stress granules (SGs) are membraneless cell compartments formed in response to different stress stimuli, wherein translation factors, mRNAs, RNA-binding proteins (RBPs) and other proteins coalesce together. SGs assembly is crucial for cell survival, since SGs are implicated in the regulation of translation, mRNA storage and stabilization and cell signalling, during stress. One defining feature of SGs is their dynamism, as they are quickly assembled upon stress and then rapidly dispersed after the stress source is no longer present. Recently, SGs dynamics, their components and their functions have begun to be studied in the context of human diseases. Interestingly, the regulated protein self-assembly that mediates SG formation contrasts with the pathological protein aggregation that is a feature of several neurodegenerative diseases. In particular, aberrant protein coalescence is a key feature of polyglutamine (PolyQ) diseases, a group of nine disorders that are caused by an abnormal expansion of PolyQ tract-bearing proteins, which increases the propensity of those proteins to aggregate. Available data concerning the abnormal properties of the mutant PolyQ disease-causing proteins and their involvement in stress response dysregulation strongly suggests an important role for SGs in the pathogenesis of PolyQ disorders. This review aims at discussing the evidence supporting the existence of a link between SGs functionality and PolyQ disorders, by focusing on the biology of SGs and on the way it can be altered in a PolyQ disease context.
Collapse
Affiliation(s)
- Adriana Marcelo
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD Program in Biomedial Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Rebekah Koppenol
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- PhD Program in Biomedial Sciences, Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos A Matos
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal.
- Centre for Biomedical Research (CBMR), Universidade do Algarve, Faro, Portugal.
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
6
|
Harnessing the Proteostasis Network in Alcohol-associated Liver Disease. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Lakshmi PK, Kumar S, Pawar S, Kuriakose BB, Sudheesh MS, Pawar RS. Targeting metabolic syndrome with phytochemicals: Focus on the role of molecular chaperones and hormesis in drug discovery. Pharmacol Res 2020; 159:104925. [PMID: 32492491 DOI: 10.1016/j.phrs.2020.104925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Adaptive cellular stress response confers stress tolerance against inflammatory and metabolic disorders. In response to metabolic stress, the key mediator of cellular adaptation and tolerance is a class of molecules called the molecular chaperones (MCs). MCs are highly conserved molecules that play critical role in maintaining protein stability and functionality. Hormesis in this context is a unique adaptation mechanism where a low dose of a stressor (which is toxic at high dose) confers a stress-resistant adaptive cellular phenotype. Hormesis can be observed at different level of biological organization at various measurable endpoints. The MCs are believed to play a key role in adaptation during hormesis. Several phytochemicals are known for their hormetic response and are called phytochemical hormetins. The role of phytochemical-mediated hormesis on the adaptive cellular processes is proposed as a potential therapeutic approach to target inflammation associated with metabolic syndrome. However, the screening of phytochemical hormetins would require a paradigm shift in the methods currently used in drug discovery.
Collapse
Affiliation(s)
- P K Lakshmi
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Shweta Kumar
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Sulakshhna Pawar
- Ravi Shankar College of Pharmacy, Bypass Road, Bhanpur Square, Bhopal, MP 462010, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis, Mushayt, Saudi Arabia
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Rajesh Singh Pawar
- Truba Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal, 462038, India.
| |
Collapse
|
8
|
Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosci 2018; 11:318. [PMID: 30233317 PMCID: PMC6131589 DOI: 10.3389/fnmol.2018.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that leads to progressive neuronal loss, provoking impaired motor control, cognitive decline, and dementia. So far, HD remains incurable, and available drugs are effective only for symptomatic management. HD is caused by a mutant form of the huntingtin protein, which harbors an elongated polyglutamine domain and is highly prone to aggregation. However, many aspects underlying the cytotoxicity of mutant huntingtin (mHTT) remain elusive, hindering the efficient development of applicable interventions to counteract HD. An important strategy to obtain molecular insights into human disorders in general is the use of eukaryotic model organisms, which are easy to genetically manipulate and display a high degree of conservation regarding disease-relevant cellular processes. The budding yeast Saccharomyces cerevisiae has a long-standing and successful history in modeling a plethora of human maladies and has recently emerged as an effective tool to study neurodegenerative disorders, including HD. Here, we summarize some of the most important contributions of yeast to HD research, specifically concerning the elucidation of mechanistic features of mHTT cytotoxicity and the potential of yeast as a platform to screen for pharmacological agents against HD.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
9
|
Di Gregorio SE, Duennwald ML. Yeast as a model to study protein misfolding in aged cells. FEMS Yeast Res 2018; 18:4996350. [DOI: 10.1093/femsyr/foy054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sonja E Di Gregorio
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Martin L Duennwald
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
10
|
Neueder A, Gipson TA, Batterton S, Lazell HJ, Farshim PP, Paganetti P, Housman DE, Bates GP. HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models. Sci Rep 2017; 7:12556. [PMID: 28970536 PMCID: PMC5624871 DOI: 10.1038/s41598-017-12897-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 01/20/2023] Open
Abstract
The heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription that follows a heat shock in lower eukaryotes.
Collapse
Affiliation(s)
- Andreas Neueder
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom.
| | - Theresa A Gipson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Sophie Batterton
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Hayley J Lazell
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Pamela P Farshim
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Paolo Paganetti
- Neuroscience Discovery, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
- Laboratory for Biomedical Neuroscience, Neurocenter of Southern Switzerland, EOC, c/o SIRM, Torricella-Taverne, Switzerland
| | - David E Housman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Gillian P Bates
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
11
|
|