1
|
Silva A, Mourão J, Vale N. Molecular Precision Medicine: Application of Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions Between Lidocaine and Rocuronium/Propofol/Paracetamol. Int J Mol Sci 2025; 26:1506. [PMID: 40003969 PMCID: PMC11855824 DOI: 10.3390/ijms26041506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The perioperative period, encompassing preoperative, intraoperative, and postoperative phases, is crucial for comprehensive patient care. During this time, the use of opioids and other drugs can lead to drug-drug interactions (DDIs), potentially resulting in adverse drug reactions (ADRs) that increase morbidity, mortality, and healthcare costs. This study investigates the drug-drug interactions (DDIs) between rocuronium, propofol, paracetamol, and lidocaine, focusing on the CYP-mediated metabolism of these drugs in the perioperative context, where these drugs are frequently co-administered. Using physiologically based pharmacokinetic (PBPK) modeling through the GastroPlus™ software and in vitro experiments with Hep G2 cells, we aimed to assess potential toxicities and pharmacokinetic interactions. Cellular viability assays revealed significant toxicity when lidocaine was combined with propofol and rocuronium, while paracetamol exhibited no considerable impact on viability. PBPK simulations confirmed moderate interactions with rocuronium and weak interactions with propofol but no relevant interactions with paracetamol. These findings emphasize the need for dose adjustments in perioperative settings to enhance patient safety, particularly with propofol and rocuronium, while supporting the co-administration of lidocaine and paracetamol. These findings show the importance of moving towards a personalized medicine model, adjusting the clinical use of lidocaine according to individual patient needs, thus promoting safer and more effective perioperative care and moving beyond the "one-size-fits-all" approach in anesthetic management.
Collapse
Affiliation(s)
- Abigail Silva
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Laboratory of Personalized Medicine, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Joana Mourão
- Department of Anesthesiology, Centro Hospitalar Universitário de São João, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- RISE-Health, Surgery and Physiology Department, Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, RISE-Health, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal;
- Laboratory of Personalized Medicine, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- RISE-Health, Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Aqil A, Yasmeen I, Parveen I, Nadaf A, Jiba U, Adil M, Hasan N, Kesharwani P, Ahmad FJ. WITHDRAWN: In-Depth Analysis of Mangiferin and Its Formulations for Alleviating Neurodegenerative Diseases: A Comprehensive Review. Eur J Pharmacol 2025:177354. [PMID: 39938857 DOI: 10.1016/j.ejphar.2025.177354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal
Collapse
Affiliation(s)
- Anjlina Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Iqra Yasmeen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Imsha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Adil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
3
|
Hui Z, Lai-Fa W, Xue-Qin W, Ling D, Bin-Sheng H, Li JM. Mechanisms and therapeutic potential of chinonin in nervous system diseases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1405-1420. [PMID: 38975978 DOI: 10.1080/10286020.2024.2371040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
The flavonoid compound chinonin is one of the main active components of Rhizoma anemarrhena with multiple activities, including anti-inflammatory and antioxidant properties, protection of mitochondrial function and regulation of immunity. In this paper, we reviewed recent research progress on the protective effect of chinonin on brain injury in neurological diseases. "Chinonin" OR "Mangiferin" AND "Nervous system diseases" OR "Neuroprotection" was used as the terms for search in PumMed. After discarding duplicated and irrelevant articles, a total of 23 articles relevant to chinonin published between 2012 and 2023 were identified in our study.
Collapse
Affiliation(s)
- Zhang Hui
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Wang Lai-Fa
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Wang Xue-Qin
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
| | - Deng Ling
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China
| | - He Bin-Sheng
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| | - Jian-Ming Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha 410219, China
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China
| |
Collapse
|
4
|
Castro-Muñoz R, Cabezas R, Plata-Gryl M. Mangiferin: A comprehensive review on its extraction, purification and uses in food systems. Adv Colloid Interface Sci 2024; 329:103188. [PMID: 38761602 DOI: 10.1016/j.cis.2024.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
With the target of fabricating healthier products, food manufacturing companies look for natural-based nutraceuticals that can potentially improve the physicochemical properties of food systems while being nutritive to the consumer and providing additional health benefits (biological activities). In this regard, Mangiferin joins all these requirements as a potential nutraceutical, which is typically contained in Mangifera indica products and its by-products. Unfortunately, knowing the complex chemical composition of Mango and its by-products, the extraction and purification of Mangiferin remains a challenge. Therefore, this comprehensive review revises the main strategies proposed by scientists for the extraction and purification of Mangiferin. Importantly, this review identifies that there is no report reviewing and criticizing the literature in this field so far. Our attention has been targeted on the timely findings on the primary extraction techniques and the relevant insights into isolation and purification. Our discussion has emphasized the advantages and limitations of the proposed strategies, including solvents, extracting conditions and key interactions with the target xanthone. Additionally, we report the current research gaps in the field after analyzing the literature, as well as some examples of functional food products containing Mangiferin.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland.
| | - René Cabezas
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Maksymilian Plata-Gryl
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80 - 233 Gdansk, G. Narutowicza St. 11/12, Poland
| |
Collapse
|
5
|
Chomchoei N, Leelapornpisid P, Tipduangta P, Sangthong P, Papan P, Sirithunyalug B, Samutrtai P. Potential of electro-sprayed purified mangiferin nanoparticles for anti-aging cosmetic applications. RSC Adv 2023; 13:34987-35002. [PMID: 38046636 PMCID: PMC10690135 DOI: 10.1039/d3ra06308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023] Open
Abstract
The fabrication of mangiferin nanoparticles using an electrospraying technique is a new and promising method for developing nanoparticles with higher efficiency and safety. This study aimed to fabricate mangiferin nanoparticles (MNPs) using cellulose acetate (CA) as a polymer at various parameters using electrospraying. Commercial mangiferin (CM) was purified from 88.46 to 95.71% by a recrystallization method to improve its purity and biological activities and remove any residue. The properties of recrystallized mangiferin (RM) were characterized using DSC, FTIR, X-ray diffraction (XRD) and HPLC. Then its biological activity and proteomics were determined. Proteomics analysis of RM showed that up-regulated proteins were involved in more biological processes than CM. MNPs were fabricated by varying the electrospraying parameters including voltage, the distance between the needle-tip-collector and flow rate. Skin permeation, release and irritation were also evaluated. The results revealed that the average particle size of the MNPs ranged between 295.47 ± 5.58 and 448.87 ± 3.00 nm, and had a smooth spherical morphology in SEM images. The MNPs also showed good potential in antioxidant and anti-aging properties. The encapsulation efficiency of MNPs was determined to be 85.31%. From skin permeation studies of CM, RM, and MNPs, the mangiferin content was found in the stratum corneum and dermis skin layers. Moreover, the MNPs solution had 23.68 ± 0.27% and 11.98 ± 0.13% of mangiferin in the stratum corneum and viable epidermis and dermis, respectively. Additionally, the irritation test by HET-CAM was mild and safe. Therefore, MNPs produced by electrospraying are a promising delivery system for cosmetic/cosmeceutical applications.
Collapse
Affiliation(s)
- Neungreuthai Chomchoei
- PhD Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Phakorn Papan
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| | - Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai 50200 Thailand
| |
Collapse
|
6
|
Sirirungsee V, Samutrtai P, Sangthong P, Papan P, Leelapornpisid P, Saenjum C, Sirithunyalug B. Electrosprayed Nanoparticles Containing Mangiferin-Rich Extract from Mango Leaves for Cosmeceutical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2931. [PMID: 37999285 PMCID: PMC10674866 DOI: 10.3390/nano13222931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruits in Thailand. Mango has been used as a traditional medicine because it possesses many biological activities, such as antioxidant properties, anti-inflammatory properties, microorganism-growth inhibition, etc. Among its natural pharmacologically active compounds, mangiferin is the main active component found in mango leaves. Mangiferin has the potential to treat a variety of diseases due to its multifunctional activities. This study aims to prepare a mangiferin-rich extract (MRE) from mango leaves and develop nanoparticles containing the MRE using an electrospraying technique to apply it in a cosmeceutical formulation. The potential cosmeceutical mechanisms of the MRE were investigated using proteomic analysis. The MRE is involved in actin-filament organization, the positive regulation of cytoskeleton organization, etc. Moreover, the related mechanism to its cosmeceutical activity is metalloenzyme-activity regulation. Nanoparticles were prepared from 0.8% w/v MRE and 2% w/v Eudragit® L100 solution using an electrospraying process. The mean size of the MRE-loaded nanoparticles (MNPs) received was 247.8 nm, with a PDI 0.271. The MRE entrapment by the process was quantified as 84.9%, indicating a high encapsulation efficiency. For the skin-retention study, the mangiferin content in the MNP-containing emulsion-gel membranes was examined and found to be greater than in the membranes of the MRE solution, illustrating that the MNPs produced by the electrospraying technique help transdermal delivery for cosmetic applications.
Collapse
Affiliation(s)
- Vissuta Sirirungsee
- Master’s Degree Program in Cosmetic Science, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pawitrabhorn Samutrtai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.P.)
| | - Phakorn Papan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.P.)
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (P.S.); (P.L.)
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Sarwar AR, Iqbal FM, Jamil MA, Abbas K. Nanocrystals of Mangiferin Using Design Expert: Preparation, Characterization, and Pharmacokinetic Evaluation. Molecules 2023; 28:5918. [PMID: 37570887 PMCID: PMC10420877 DOI: 10.3390/molecules28155918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Making nanoscale drug carriers could boost the bioavailability of medications that are slightly water soluble. One of the most promising approaches for enhancing the chemical stability and bioavailability of a variety of therapeutic medicines is liquid nanocrystal technology. This study aimed to prepare nanocrystals of mangiferin for sustained drug delivery and enhance the pharmacokinetic profile of the drug. The fractional factorial design (FFD) was used via a selection of independent and dependent variables. The selected factors were the concentration of mangiferin (A), hydroxypropyl methyl cellulose (HPMC) (B), pluronic acid (C), tween 80 (D), and the ratio of antisolvent to solvent (E). The selected responses were the particle size, polydispersity index (PDI), zeta potential, and entrapment efficiency. The nanocrystals were further evaluated for mangiferin release, release kinetics, Fourier transforms infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), particle size, zeta potential, and scanning electron microscopy (SEM). The stability studies of developed nanocrystals were performed for 6 months and pharmacokinetics on albino rabbits. The value of entrapment efficiencies ranged from 23.98% to 86.23%. The percentage release of mangiferin varied from 62.45 to 99.02%. FTIR and DSC studies showed the stability of mangiferin in the nanocrystals. The particle size of the optimized formulation was almost 100 nm and -12 mV the value of the zeta potential. The results of stability studies showed that the nanocrystals of mangiferin were stable for a period of six months. The peak plasma concentration of mangiferin from nanocrystals and suspension of mangiferin were 412 and 367 ng/mL, respectively. The value of AUC0-t of nanocrystals and suspension of mangiferin was 23,567.45 ± 10.876 and 18,976.12 ± 9.765 µg×h/mL, respectively, indicating that the nanocrystals of mangiferin showed greater availability of mangiferin compared to the suspension of the formulation. The developed nanocrystals showed a good release pattern of mangiferin, better stability studies, and enhanced the pharmacokinetics of the drug.
Collapse
Affiliation(s)
- Abdur Rehman Sarwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.R.S.); (M.A.J.)
| | - Furqan Muhammad Iqbal
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.R.S.); (M.A.J.)
| | - Muhammad Anjum Jamil
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; (A.R.S.); (M.A.J.)
| | - Khizar Abbas
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
8
|
Hoer D, Barton HA, Paini A, Bartels M, Ingle B, Domoradzki J, Fisher J, Embry M, Villanueva P, Miller D, Nguyen J, Zhang Q, Edwards SW, Tan YM. Predicting nonlinear relationships between external and internal concentrations with physiologically based pharmacokinetic modeling. Toxicol Appl Pharmacol 2022; 440:115922. [PMID: 35176293 PMCID: PMC10519136 DOI: 10.1016/j.taap.2022.115922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022]
Abstract
Although external concentrations are more readily quantified and often used as the metric for regulating and mitigating exposures to environmental chemicals, the toxicological response to an environmental chemical is more directly related to its internal concentrations than the external concentration. The processes of absorption, distribution, metabolism, and excretion (ADME) determine the quantitative relationship between the external and internal concentrations, and these processes are often susceptible to saturation at high concentrations, which can lead to nonlinear changes in internal concentrations that deviate from proportionality. Using generic physiologically-based pharmacokinetic (PBPK) models, we explored how saturable absorption or clearance influence the shape of the internal to external concentration (IEC) relationship. We used the models for hypothetical chemicals to show how differences in kinetic parameters can impact the shape of an IEC relationship; and models for styrene and caffeine to explore how exposure route, frequency, and duration impact the IEC relationships in rat and human exposures. We also analyzed available plasma concentration data for 2,4-dichlorophenoxyacetic acid to demonstrate how a PBPK modeling approach can be an alternative to common statistical methods for analyzing dose proportionality. A PBPK modeling approach can be a valuable tool used in the early stages of a chemical safety assessment program to optimize the design of longer-term animal toxicity studies or to interpret study results.
Collapse
Affiliation(s)
- Daniel Hoer
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy.
| | | | - Brandall Ingle
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | | | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, USA
| | - Philip Villanueva
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - David Miller
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - James Nguyen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA.
| |
Collapse
|
9
|
Bartels M, van Osdol W, Le Merdy M, Chappelle A, Kuhl A, West R. In silico predictions of absorption of MDI substances after dermal or inhalation exposures to support a category based read-across assessment. Regul Toxicol Pharmacol 2022; 129:105117. [PMID: 35017021 DOI: 10.1016/j.yrtph.2022.105117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023]
Abstract
Methylenediphenyl diisocyanate (MDI) substances used polyurethane production can range from their simplest monomeric forms (e.g., 4,4'-MDI) to mixtures of the monomers with various homologues, homopolymer, and prepolymer derivatives. The relative dermal or inhalation absorption of 39 constituents of these substances in human were predicted using the GastroPlus® program. Predicted dermal uptake and absorption of the three MDI monomers from an acetone vehicle was 84-86% and 1.4-1.5%, respectively, with lower uptake and absorption predicted for the higher MW analogs. Lower absorption was predicted from exposures in a more lipophilic vehicle (1-octanol). Modeled inhalation exposures afforded the highest pulmonary absorption for the MDI monomers (38-54%), with 3-27% for the MW range of 381-751, and <0.1% for the remaining, higher MW derivatives. Predicted oral absorption, representing mucociliary transport, ranged from 5 to 10% for the MDI monomers, 10-25% for constituents of MW 381-751, and ≤3% for constituents with MW > 900. These in silico evaluations should be useful in category-based, worst-case, Read-Across assessments for MDI monomers and modified MDI substances for potential systemic effects. Predictions of appreciable mucociliary transport may also be useful to address data gaps in oral toxicity testing for this category of compounds.
Collapse
Affiliation(s)
| | | | | | - Anne Chappelle
- International Isocyanate Institute, Mountain Lakes, NJ, USA
| | - Adam Kuhl
- Huntsman LLC, The Woodlands, Texas, USA
| | - Robert West
- International Isocyanate Institute, Mountain Lakes, NJ, USA
| |
Collapse
|
10
|
Wu F, Zhou Y, Li L, Shen X, Chen G, Wang X, Liang X, Tan M, Huang Z. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Front Chem 2020; 8:726. [PMID: 33062633 PMCID: PMC7517894 DOI: 10.3389/fchem.2020.00726] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Because undesirable pharmacokinetics and toxicity are significant reasons for the failure of drug development in the costly late stage, it has been widely recognized that drug ADMET properties should be considered as early as possible to reduce failure rates in the clinical phase of drug discovery. Concurrently, drug recalls have become increasingly common in recent years, prompting pharmaceutical companies to increase attention toward the safety evaluation of preclinical drugs. In vitro and in vivo drug evaluation techniques are currently more mature in preclinical applications, but these technologies are costly. In recent years, with the rapid development of computer science, in silico technology has been widely used to evaluate the relevant properties of drugs in the preclinical stage and has produced many software programs and in silico models, further promoting the study of ADMET in vitro. In this review, we first introduce the two ADMET prediction categories (molecular modeling and data modeling). Then, we perform a systematic classification and description of the databases and software commonly used for ADMET prediction. We focus on some widely studied ADMT properties as well as PBPK simulation, and we list some applications that are related to the prediction categories and web tools. Finally, we discuss challenges and limitations in the preclinical area and propose some suggestions and prospects for the future.
Collapse
Affiliation(s)
- Fengxu Wu
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Yuquan Zhou
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Langhui Li
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xianhuan Shen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ganying Chen
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xianyang Liang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, China
| | - Mengyuan Tan
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Dongguan, China
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
11
|
Thin-layer chromatographic analysis of mangiferin (a bioactive antioxidant from dietary plant sources): a mini-review. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-020-00044-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
13
|
Wu X, Zhang H, Miah MK, Caritis SN, Venkataramanan R. Physiologically Based Pharmacokinetic Approach Can Successfully Predict Pharmacokinetics of Citalopram in Different Patient Populations. J Clin Pharmacol 2019; 60:477-488. [DOI: 10.1002/jcph.1541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Xuemei Wu
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Pittsburgh Pittsburgh Pennsylvania USA
- Department of PharmacyFujian Medical University Union Hospital Fuzhou Fujian China
| | - Hongfei Zhang
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Pittsburgh Pittsburgh Pennsylvania USA
| | - Mohammad Kowser Miah
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Pittsburgh Pittsburgh Pennsylvania USA
| | - Steve N. Caritis
- Department of Obstetrics, Gynecology, and Reproductive SciencesSchool of MedicineUniversity of Pittsburgh Pittsburgh Pennsylvania USA
| | - Raman Venkataramanan
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Pittsburgh Pittsburgh Pennsylvania USA
- Department of SurgerySchool of MedicineThomas Starzl Transplantation Institute Pittsburgh Pennsylvania USA
- Department of PathologySchool of MedicineUniversity of Pittsburgh Pittsburgh Pennsylvania USA
| |
Collapse
|
14
|
Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: Mixture-design optimization, micellization, and solubilization behavior. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|