1
|
Sparks AM, Spurgin LG, van der Velde M, Fairfield EA, Komdeur J, Burke T, Richardson DS, Dugdale HL. Telomere heritability and parental age at conception effects in a wild avian population. Mol Ecol 2022; 31:6324-6338. [PMID: 33586226 DOI: 10.1111/mec.15804] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Individual variation in telomere length is predictive of health and mortality risk across a range of species. However, the relative influence of environmental and genetic variation on individual telomere length in wild populations remains poorly understood. Heritability of telomere length has primarily been calculated using parent-offspring regression which can be confounded by shared environments. To control for confounding variables, quantitative genetic "animal models" can be used, but few studies have applied animal models in wild populations. Furthermore, parental age at conception may also influence offspring telomere length, but most studies have been cross-sectional. We investigated within- and between-parental age at conception effects and heritability of telomere length in the Seychelles warbler using measures from birds caught over 20 years and a multigenerational pedigree. We found a weak negative within-paternal age at conception effect (as fathers aged, their offspring had shorter telomeres) and a weak positive between-maternal age at conception effect (females that survived to older ages had offspring with longer telomeres). Animal models provided evidence that heritability and evolvability of telomere length were low in this population, and that variation in telomere length was not driven by early-life effects of hatch period or parental identities. Quantitative polymerase chain reaction plate had a large influence on telomere length variation and not accounting for it in the models would have underestimated heritability. Our study illustrates the need to include and account for technical variation in order to accurately estimate heritability, as well as other environmental effects, on telomere length in natural populations.
Collapse
Affiliation(s)
- Alexandra M Sparks
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Marco van der Velde
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | - Jan Komdeur
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Victoria, Mahé, Republic of Seychelles
| | - Hannah L Dugdale
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK.,Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Daios S, Anogeianaki A, Kaiafa G, Kontana A, Veneti S, Gogou C, Karlafti E, Pilalas D, Kanellos I, Savopoulos C. Telomere Length as a marker of biological aging: A critical review of recent literature. Curr Med Chem 2022; 29:5478-5495. [PMID: 35838223 DOI: 10.2174/0929867329666220713123750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Aging is characterized as a syndrome of deleterious, progressive, universal, and irreversible function changes affecting every structural and functional aspect of the organism and accompanied by a generalized increase in mortality. Although a substantial number of candidates for biomarkers of aging have been proposed, none has been validated or universally accepted. Human telomeres constitute hexameric repetitive DNA sequence nucleoprotein complexes that cap chromosome ends, regulating gene expression and modulating stress-related pathways. Telomere length (TL) shortening is observed both in cellular senescence and advanced age, leading to the investigation of TL as a biomarker for aging and a risk factor indicator for the development and progression of the most common age-related diseases. OBJECTIVE The present review underlines the connection between TL and the pathophysiology of the diseases associated with telomere attrition. METHODS We performed a structured search of the PubMed database for peer-reviewed research of the literature regarding leukocyte TL and cardiovascular diseases (CVD), more specifically stroke and heart disease, and focused on the relevant articles published during the last 5 years. We also applied Hill's criteria of causation to strengthen this association. RESULTS We analyzed the recent literature regarding TL length, stroke, and CVD. Although approximately one-third of the available studies support the connection, the results of different studies seem to be rather conflicting as a result of different study designs, divergent methods of TL determination, small study samples, and patient population heterogeneity. After applying Hill's criteria, we can observe that the literature conforms to them weakly, with chronology being the only Hill criterion of causality that probably cannot be contested. CONCLUSION The present review attempted to examine the purported relation between leukocyte TL and age-related diseases such as CVD and more specific stroke and heart disease in view of the best established, comprehensive, medical and epidemiological criteria that have characterized the focused recent relevant research. Although several recommendations have been made that may contribute significantly to the field, a call for novel technical approaches and studies is mandatory to further elucidate the possible association.
Collapse
Affiliation(s)
- Stylianos Daios
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Antonia Anogeianaki
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Kaiafa
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Anastasia Kontana
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Stavroula Veneti
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Christiana Gogou
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Eleni Karlafti
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Dimitrios Pilalas
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Ilias Kanellos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
3
|
Pignolo RJ, Johnson FB. Do the telomere ends justify the physical means? J Am Geriatr Soc 2021; 69:3071-3073. [PMID: 34534358 PMCID: PMC8595667 DOI: 10.1111/jgs.17443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
This editorial comments on the article by Valente et al.
Collapse
Affiliation(s)
| | - F. Brad Johnson
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Subclinical atherosclerosis and immune activation in young HIV-infected patients with telomere shortening. Aging (Albany NY) 2021; 13:18094-18105. [PMID: 34310343 PMCID: PMC8351718 DOI: 10.18632/aging.203350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022]
Abstract
Background: To date, available data on premature aging in young HIV-infected adults are scarce and no reports offer comprehensive assessment of telomere shortening (TS) in relation to subclinical atherosclerosis (SCA). In this study, we investigate if telomere shortening and immune activation markers are associated with SCA, which is one of the main degenerative diseases in young HIV-infected adults. Methods: A descriptive cross-sectional study was carried out in 149 HIV-infected patients on stable antiretroviral regimen (ART). Carotid intima-media thickness (cIMT) was estimated by carotid ultrasound. Quantitative singleplex PCR was performed to evaluate TS. The expression of activation/senescence markers was evaluated by multiparametric flow cytometry. Results: TS was observed in 73 patients (49%). Higher cIMT was observed in patients with TS than those without it (0.86 vs. 0.80 mm; p=0.041). Patients under the age of 50 (defined as young adults) with TS showed higher absolute numbers of activated lymphocyte T cells CD8+CD38+ (3.94 vs. 2.34 cell/μl; p=0.07) and lymphocyte B cells CD19+CD38+ (3.07 vs. 2.10 cell/μl; p=0.004) compared to those without TS. In the multivariate analysis, the only factor independently associated with TS was the absolute number of lymphocyte T cells CD8+CD38+ T cells (OR = 1.18; 95%-CI = 1.00-1.39; p = 0.05). Conclusion: Young HIV-infected adults show premature biological aging with accentuated immune activation. Chronic inflammation with excessive T-cells activation could be associated to TS, premature aging, and SCA in young HIV-infected adults.
Collapse
|
5
|
Oh BK, Choi Y, Choi JS. Telomere shortening and expression of TRF1 and TRF2 in uterine leiomyoma. Mol Med Rep 2021; 24:606. [PMID: 34184077 DOI: 10.3892/mmr.2021.12243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
Uterine leiomyoma is a benign smooth muscle tumor of the uterus that can exhibit histopathological traits that mimic malignancy. Telomere shortening is an early event in tumorigenesis and telomerase activation facilitates tumor progression later in the course of carcinogenesis. Telomeric repeat‑binding factor (TRF)1 and TRF2 protect telomeres, and their gene expression levels are dysregulated in various cancer types. However, the roles of telomeres and telomere protection proteins in uterine leiomyoma remain largely unknown. In this study, telomere length and the mRNA levels of various telomere‑related genes in normal tissues and leiomyoma were determined, and their relationships were evaluated. Uterine leiomyoma and normal myometrium were surgically obtained from 18 and 13 patients, respectively. Telomere length and gene expression were determined by Southern blot analysis and reverse transcription‑quantitative PCR, respectively. In matched samples, telomeres were consistently shorter in leiomyoma tissue than in adjacent normal tissue. TRF1, TRF2, PIN2‑interacting telomerase inhibitor 1 (PINX1), and telomerase RNA component were expressed at comparable levels in both leiomyoma and normal tissues. None of these genes were associated with telomere length in leiomyoma. All tested tissues were negative for telomerase reverse transcriptase, which encodes the catalytic component of telomerase, indicating that cells in uterine leiomyoma were not immortalized. In summary, telomere erosion, which reflects active proliferation during tumor evolution, was evident in uterine leiomyoma. Steady‑state expression of TRF1, TRF2 and PINX1 may be important for maintenance of telomere integrity in leiomyoma, where telomere length is shortened.
Collapse
Affiliation(s)
- Bong-Kyeong Oh
- Institute for the Integration of Medicine and Innovative Technology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Yoojung Choi
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Joong Sub Choi
- Institute for the Integration of Medicine and Innovative Technology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Lindrose AR, McLester-Davis LWY, Tristano RI, Kataria L, Gadalla SM, Eisenberg DTA, Verhulst S, Drury S. Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature. PLoS One 2021; 16:e0245582. [PMID: 33471860 PMCID: PMC7817045 DOI: 10.1371/journal.pone.0245582] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Use of telomere length (TL) as a biomarker for various environmental exposures and diseases has increased in recent years. Various methods have been developed to measure telomere length. Polymerase chain reaction (PCR)-based methods remain wide-spread for population-based studies due to the high-throughput capability. While several studies have evaluated the repeatability and reproducibility of different TL measurement methods, the results have been variable. We conducted a literature review of TL measurement cross-method comparison studies that included a PCR-based method published between January 1, 2002 and May 25, 2020. A total of 25 articles were found that matched the inclusion criteria. Papers were reviewed for quality of methodologic reporting of sample and DNA quality, PCR assay characteristics, sample blinding, and analytic approaches to determine final TL. Overall, methodologic reporting was low as assessed by two different reporting guidelines for qPCR-based TL measurement. There was a wide range in the reported correlation between methods (as assessed by Pearson’s r) and few studies utilized the recommended intra-class correlation coefficient (ICC) for assessment of assay repeatability and methodologic comparisons. The sample size for nearly all studies was less than 100, raising concerns about statistical power. Overall, this review found that the current literature on the relation between TL measurement methods is lacking in validity and scientific rigor. In light of these findings, we present reporting guidelines for PCR-based TL measurement methods and results of analyses of the effect of assay repeatability (ICC) on statistical power of cross-sectional and longitudinal studies. Additional cross-laboratory studies with rigorous methodologic and statistical reporting, adequate sample size, and blinding are essential to accurately determine assay repeatability and replicability as well as the relation between TL measurement methods.
Collapse
Affiliation(s)
- Alyssa R. Lindrose
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail: (ARL); (SD)
| | | | - Renee I. Tristano
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Leila Kataria
- School of Science and Engineering, Tulane University, New Orleans, Louisiana, United States of America
| | - Shahinaz M. Gadalla
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dan T. A. Eisenberg
- Department of Anthropology, Department of Biology, Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington, United States of America
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Stacy Drury
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Tulane University, New Orleans, Louisiana, United States of America
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail: (ARL); (SD)
| |
Collapse
|
7
|
Levstek T, Kozjek E, Dolžan V, Trebušak Podkrajšek K. Telomere Attrition in Neurodegenerative Disorders. Front Cell Neurosci 2020; 14:219. [PMID: 32760251 PMCID: PMC7373805 DOI: 10.3389/fncel.2020.00219] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Telomere attrition is increased in various disorders and is therefore a potential biomarker for diagnosis and/or prognosis of these disorders. The contribution of telomere attrition in the pathogenesis of neurodegenerative disorders is yet to be fully elucidated. We are reviewing the current knowledge regarding the telomere biology in two common neurodegenerative disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). Furthermore, we are discussing future prospective of telomere research in these disorders. The majority of studies reported consistent evidence of the accelerated telomere attrition in AD patients, possibly in association with elevated oxidative stress levels. On the other hand in PD, various studies reported contradictory evidence regarding telomere attrition. Consequently, due to the low specificity and sensitivity, the clinical benefit of telomere length as a biomarker of neurodegenerative disease development and progression is not yet recognized. Nevertheless, longitudinal studies in large carefully selected cohorts might provide further elucidation of the complex involvement of the telomeres in the pathogenesis of neurodegenerative diseases. Telomere length maintenance is a complex process characterized by environmental, genetic, and epigenetic determinants. Thus, in addition to the selection of the study cohort, also the selection of analytical methods and types of biological samples for evaluation of the telomere attrition is of utmost importance.
Collapse
Affiliation(s)
- Tina Levstek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eva Kozjek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Taylor JA, White AJ, Sandler DP. Hazardous air pollutants and telomere length in the Sister Study. Environ Epidemiol 2019; 3:e053. [PMID: 32984752 PMCID: PMC7517667 DOI: 10.1097/ee9.0000000000000053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Telomeres are vital for genomic integrity and telomere length has been linked to many adverse health outcomes. Some hazardous air pollutants, or air toxics, increase oxidative stress and inflammation, two possible determinants of shortened telomere length. No studies have examined air toxic-telomere length associations in a non-occupational setting. METHODS This study included 731 Sister Study participants (enrolled 2003-2007) who were randomly selected to assess telomere length in baseline blood samples. Multiplex qPCR was used to determine telomere to single copy gene (T/S) ratios. Census tract concentration estimates of 29 air toxics from the 2005 National Air Toxics Assessment were linked to baseline residential addresses. Air toxics were classified into tertile-based categories of the exposure. Multivariable linear regression was used to estimate β coefficients and 95% confidence intervals (CI) in single pollutant models. Multipollutant groups were identified with regression trees. RESULTS The average T/S ratio was 1.24. Benzidine (T3vsT1 β= -0.08; 95% CI: -0.14, -0.01) and 1,4-dioxane (T3vsT1 β= -0.06; 95% CI: -0.13, 0.00) in particular, as well as carbon tetrachloride, chloroprene, ethylene dibromide, and propylene dichloride, were associated with shorter relative telomere length. Benzidine (p=0.02) and 1,4-dioxane (p=0.06) demonstrated some evidence of a monotonic trend. The regression tree identified age, BMI, physical activity, ethylene oxide, acrylonitrile, ethylidene dichloride, propylene dichloride, and styrene in multipollutant groups related to telomere length. CONCLUSIONS In this first study of air toxics and telomere length in a non-occupational setting, several air toxics, particularly 1,4-dioxane and benzidine, were associated with shorter relative telomere length.
Collapse
Affiliation(s)
- Nicole M. Niehoff
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Marilie D. Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alexander P. Keil
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Hazel B. Nichols
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Jack A. Taylor
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
9
|
Tarik M, Ramakrishnan L, Sinha S, Sachdev HPS, Tandon N, Roy A, Bhargava SK. Association of birth outcomes and postnatal growth with adult leukocyte telomere length: Data from New Delhi Birth Cohort. MATERNAL AND CHILD NUTRITION 2019; 15:e12857. [PMID: 31216382 DOI: 10.1111/mcn.12857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Abstract
Born small for gestational age due to undernutrition in utero and subsequent catch-up growth is associated with risk of developing chronic diseases in adulthood. Telomere length has been shown to be a predictor of these age-related diseases and may be a link between birth size, a surrogate for foetal undernutrition, and adult chronic diseases. We assessed the relationship of leukocyte telomere length in adult life with birth outcomes and serial change in body mass index (BMI) from birth to adulthood. Leukocyte relative telomere length (RTL) was measured by MMqPCR in 1,309 subjects from New Delhi Birth Cohort who participated in two phases of the study between 2006-2009 (Phase 6) and 2012-2015 (Phase 7) at a mean age of 39.08 (±3.29), and its association with birth outcomes and conditional BMI gain at 2, 11, and 29 years was assessed in a mixed regression model. We did not find any significant association of RTL with body size at birth including birthweight, birth length, and birth BMI. Gestational age was positively associated with RTL (P = .017, multivariate model: P = .039). Conditional BMI gain at 2 and 11 years was not associated with RTL. BMI gain at 29 year was negatively associated with RTL in multivariate model (P = .015). Born small for gestational age was not associated with RTL in adulthood. Leukocyte telomere attrition was observed in those born before 37 weeks of gestational age as well as in those who gained weight as adults, which may predispose to chronic diseases.
Collapse
Affiliation(s)
- Mohamad Tarik
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sikha Sinha
- Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - Harsh Pal Singh Sachdev
- Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
10
|
Nettle D, Seeker L, Nussey D, Froy H, Bateson M. Consequences of measurement error in qPCR telomere data: A simulation study. PLoS One 2019; 14:e0216118. [PMID: 31042766 PMCID: PMC6493763 DOI: 10.1371/journal.pone.0216118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/14/2019] [Indexed: 02/04/2023] Open
Abstract
The qPCR method provides an inexpensive, rapid method for estimating relative telomere length across a set of biological samples. Like all laboratory methods, it involves some degree of measurement error. The estimation of relative telomere length is done subjecting the actual measurements made (the Cq values for telomere and a control gene) to non-linear transformations and combining them into a ratio (the TS ratio). Here, we use computer simulations, supported by mathematical analysis, to explore how errors in measurement affect qPCR estimates of relative telomere length, both in cross-sectional and longitudinal data. We show that errors introduced at the level of Cq values are magnified when the TS ratio is calculated. If the errors at the Cq level are normally distributed and independent of true telomere length, those in the TS ratio are positively skewed and proportional to true telomere length. The repeatability of the TS ratio declines sharply with increasing error in measurement of the Cq values for telomere and/or control gene. In simulated longitudinal data, measurement error alone can produce a pattern of low correlation between successive measures of relative telomere length, coupled with a strong negative dependency of the rate of change on initial relative telomere length. Our results illustrate the importance of reducing measurement error: a small increase in error in Cq values can have large consequences for the power and interpretability of qPCR estimates of relative telomere length. The findings also illustrate the importance of characterising the measurement error in each dataset-coefficients of variation are generally unhelpful, and researchers should report standard deviations of Cq values and/or repeatabilities of TS ratios-and allowing for the known effects of measurement error when interpreting patterns of TS ratio change over time.
Collapse
Affiliation(s)
- Daniel Nettle
- Centre for Behaviour and Evolution & Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Luise Seeker
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Dan Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah Froy
- Centre for Biodiversity Dynamics, Norwegian Institute of Science and Technology, Trondheim, Norway
| | - Melissa Bateson
- Centre for Behaviour and Evolution & Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
11
|
Mensà E, Latini S, Ramini D, Storci G, Bonafè M, Olivieri F. The telomere world and aging: Analytical challenges and future perspectives. Ageing Res Rev 2019; 50:27-42. [PMID: 30615937 DOI: 10.1016/j.arr.2019.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/15/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
Telomeres, the terminal nucleoprotein structures of eukaryotic chromosomes, play pleiotropic functions in cellular and organismal aging. Telomere length (TL) varies throughout life due to the influence of genetic factors and to a complex balancing between "shortening" and "elongation" signals. Telomerase, the only enzyme that can elongate a telomeric DNA chain, and telomeric repeat-containing RNA (TERRA), a long non-coding RNA involved in looping maintenance, play key roles in TL during life. Despite recent advances in the knowledge of TL, TERRA and telomerase activity (TA) biology and their measurement techniques, the experimental and theoretical issues involved raise a number of problems that should carefully be considered by researchers approaching the "telomere world". The increasing use of such parameters - hailed as promising clinically relevant biomarkers - has failed to be paralleled by the development of automated and standardized measurement technology. Consequently, associating given TL values to specific pathological conditions involves on the one hand technological issues and on the other clinical-biological issues related to the planning of clinically relevant association studies. Addressing these issues would help avoid major biases in association studies involving TL and a number of outcomes, especially those focusing on psychological and bio-behavioral variables. The main challenge in telomere research is the development of accurate and reliable measurement methods to achieve simple and sensitive TL, TERRA, and TA detection. The discovery of the localization of telomeres and TERRA in cellular and extracellular compartments had added an additional layer of complexity to the measurement of these age-related biomarkers. Since combined analysis of TL, TERRA and TA may well provide more exhaustive clinical information than a single parameter, we feel it is important for researchers in the various fields to become familiar with their most common measurement techniques and to be aware of the respective merits and drawbacks of these approaches.
Collapse
Affiliation(s)
- Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Latini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Storci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), IRCCS, Biosciences Laboratory, Meldola, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
12
|
Hu H, Li B, Duan S. The Alteration of Subtelomeric DNA Methylation in Aging-Related Diseases. Front Genet 2019; 9:697. [PMID: 30687384 PMCID: PMC6333653 DOI: 10.3389/fgene.2018.00697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
The telomere is located at the end of the chromosome and consists of a non-coding, repetitive DNA sequence. As the cell divides, the length of telomere gradually decreases. A very short telomere can terminate mitosis, and thus telomere length becomes a hallmark of cellular aging. The 500 kb region of each autosomal arm terminal is the so-called subtelomeric region. Both telomere and subtelomere have high-density DNA repeats. Telomeres do not contain genes or CpG sequences, while subtelomeres contain small amounts of genes and high-density CpG sequences, and DNA methylation often occurs in subtelomeres. Previous studies have shown that aberrant methylation of subtelomeric DNA exists in many diseases, and it has a certain effect on the regulation of telomere length. In this review, we focus on the correlation between subtelomeric DNA methylation and aging-related diseases. We also summarize the relationship between subtelomeric methylation and telomere length in different diseases.
Collapse
Affiliation(s)
- Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Piekna-Przybylska D, Maggirwar SB. CD4+ memory T cells infected with latent HIV-1 are susceptible to drugs targeting telomeres. Cell Cycle 2018; 17:2187-2203. [PMID: 30198385 DOI: 10.1080/15384101.2018.1520568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The population of HIV reservoir in infected person is very small, but extremely long-lived and is a major obstacle for an HIV cure. We previously showed that cells with established HIV latency have deficiencies in DNA damage response (DDR). Here, we investigated ability of HIV-1 to interfere with telomere maintenance, and the effects of targeting telomeres on latently infected cells. Our results show that telomeres are elongated in cultured primary memory CD4 + T cells (TCM) after HIV-1 infection and when virus latency is established. Similarly, much longer telomeres were found in several Jurkat-derived latently infected cell lines, indicating that virus stimulates telomere elongation. Exposing primary CD4+ TCM cells to BRACO19, an agent targeting telomeres, resulted in a higher rate of apoptosis for infected cultures at day 3 post-infection, during HIV-1 latency and for PMA-stimulated cultures with low level of HIV-1 reactivation. Importantly, BRACO19 induced apoptosis in infected cells with potency similar to etoposide and camptothecin, whereas uninfected cells were less affected by BRACO19. We also determined that apoptosis induced by BRACO19 is not caused by telomeres shortening, but is related to formation of gamma-H2AX, implicating DNA damage or uncapping of telomeres, which triggers genome instability. In conclusion, our results indicate that HIV-1 stimulates telomere elongation during latency, suggesting that HIV reservoir has greater capacity for clonal expansion and extended lifespan. Higher rates of apoptosis in response to BRACO19 treatment suggest that HIV reservoirs are more susceptible to targeting telomere maintenance and to inhibitors targeting DDR, which is also involved in stabilizing telomeres.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| | - Sanjay B Maggirwar
- a Department of Microbiology and Immunology, School of Medicine and Dentistry , University of Rochester , Rochester , NY , USA
| |
Collapse
|