1
|
Gomes CM, Sebastião MJ, Silva G, Moura F, Simão D, Gomes-Alves P, Alves PM, Brito C. Miniaturization of hiPSC-derived 3D neural cultures in stirred-tank bioreactors for parallelized preclinical assessment of rAAV. Front Bioeng Biotechnol 2024; 12:1379597. [PMID: 38737536 PMCID: PMC11082387 DOI: 10.3389/fbioe.2024.1379597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction: Engineered 3D models employing human induced pluripotent stem cell (hiPSC) derivatives have the potential to recapitulate the cell diversity and structure found in the human central nervous system (CNS). Therefore, these complex cellular systems offer promising human models to address the safety and potency of advanced therapy medicinal products (ATMPs), such as gene therapies. Specifically, recombinant adeno-associated viruses (rAAVs) are currently considered highly attractive for CNS gene therapy due to their broad tropism, low toxicity, and moderate immunogenicity. To accelerate the clinical translation of rAAVs, in-depth preclinical evaluation of efficacy and safety in a human setting is primordial. The integration of hiPSC-derived CNS models in rAAV development will require, amongst other factors, robust, small-scale, high-throughput culture platforms that can feed the preclinical trials. Methods: Herein, we pioneer the miniaturization and parallelization of a 200 mL stirred-tank bioreactor-based 3D brain cell culture derived from hiPSCs. We demonstrate the applicability of the automated miniaturized Ambr® 15 Cell Culture system for the maintenance of hiPSC-derived neurospheroids (iNSpheroids), composed of neuronal and glial cells. Critical process parameters were optimized, namely, cell density and agitation mode. Results: Under optimized conditions, stable iNSpheroid cultures were attained in the microbioreactors for at least 15 days, with high cell viability and astrocytic and neuronal phenotype maintenance. This culture setup allowed the parallelization of different rAAVs, in different multiplicity of infections (MOIs), to address rAAV-host interactions at a preclinical scale. The iNSpheroids were exposed to rAAV2- and rAAV9-eGFP in the microbioreactors. Transgene expression was detected 14 days post-transduction, revealing different astrocyte/neuron tropism of the two serotypes. Discussion: We advocate that the iNSpheroid cultures in miniaturized bioreactors are reliable and reproducible screening tools for addressing rAAV transduction and tropism, compatible with preclinical demands.
Collapse
Affiliation(s)
- Catarina M. Gomes
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Gabriela Silva
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
| | - Filipa Moura
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Simão
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Biológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
2
|
Baudequin T, Wee H, Cui Z, Ye H. Towards Ready-to-Use Iron-Crosslinked Alginate Beads as Mesenchymal Stem Cell Carriers. Bioengineering (Basel) 2023; 10:bioengineering10020163. [PMID: 36829657 PMCID: PMC9951883 DOI: 10.3390/bioengineering10020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Micro-carriers, thanks to high surface/volume ratio, are widely studied as mesenchymal stem cell (MSCs) in vitro substrate for proliferation at clinical rate. In particular, Ca-alginate-based biomaterials (sodium alginate crosslinked with CaCl2) are commonly investigated. However, Ca-alginate shows low bioactivity and requires functionalization, increasing labor work and costs. In contrast, films of sodium alginate crosslinked with iron chloride (Fe-alginate) have shown good bioactivity with fibroblasts, but MSCs studies are lacking. We propose a first proof-of-concept study of Fe-alginate beads supporting MSCs proliferation without functionalization. Macro- and micro-carriers were prepared (extrusion and electrospray) and we report for the first time Fe-alginate electrospraying optimization. FTIR spectra, stability with various mannuronic acids/guluronic acids (M/G) ratios and size distribution were analyzed before performing cell culture. After confirming literature results on films with human MSCs, we showed that Macro-Fe-alginate beads offered a better environment for MSCs adhesion than Ca-alginate. We concluded that Fe-alginate beads showed great potential as ready-to-use carriers.
Collapse
Affiliation(s)
- Timothée Baudequin
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Biomechanics and Bioengineering, CNRS, Centre de Recherche Royallieu, Université de Technologie de Compiègne, CS 60 319, 60203 Compiègne, France
| | - Hazel Wee
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Zhanfeng Cui
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DQ, UK
- Correspondence:
| |
Collapse
|
3
|
The Role of Process Systems Engineering in Applying Quality by Design (QbD) in Mesenchymal Stem Cell Production. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Ochs J, Hanga MP, Shaw G, Duffy N, Kulik M, Tissin N, Reibert D, Biermann F, Moutsatsou P, Ratnayake S, Nienow A, Koenig N, Schmitt R, Rafiq Q, Hewitt CJ, Barry F, Murphy JM. Needle to needle robot-assisted manufacture of cell therapy products. Bioeng Transl Med 2022; 7:e10387. [PMID: 36176619 PMCID: PMC9472012 DOI: 10.1002/btm2.10387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/26/2022] [Accepted: 05/14/2022] [Indexed: 12/20/2022] Open
Abstract
Advanced therapeutic medicinal products (ATMPs) have emerged as novel therapies for untreatable diseases, generating the need for large volumes of high-quality, clinically-compliant GMP cells to replace costly, high-risk and limited scale manual expansion processes. We present the design of a fully automated, robot-assisted platform incorporating the use of multiliter stirred tank bioreactors for scalable production of adherent human stem cells. The design addresses a needle-to-needle closed process incorporating automated bone marrow collection, cell isolation, expansion, and collection into cryovials for patient delivery. AUTOSTEM, a modular, adaptable, fully closed system ensures no direct operator interaction with biological material; all commands are performed through a graphic interface. Seeding of source material, process monitoring, feeding, sampling, harvesting and cryopreservation are automated within the closed platform, comprising two clean room levels enabling both open and closed processes. A bioprocess based on human MSCs expanded on microcarriers was used for proof of concept. Utilizing equivalent culture parameters, the AUTOSTEM robot-assisted platform successfully performed cell expansion at the liter scale, generating results comparable to manual production, while maintaining cell quality postprocessing.
Collapse
Affiliation(s)
- Jelena Ochs
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Mariana P. Hanga
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
- Chemical EngineeringUniversity College LondonLondonUK
| | - Georgina Shaw
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - Niamh Duffy
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - Michael Kulik
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Nokilaj Tissin
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Daniel Reibert
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | | | - Panagiota Moutsatsou
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
| | - Shibani Ratnayake
- School of Biosciences, Life and Health Sciences CollegeAston UniversityBirminghamUK
| | - Alvin Nienow
- Chemical EngineeringUniversity of BirminghamBirminghamUK
| | - Niels Koenig
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
| | - Robert Schmitt
- Fraunhofer Institute for Production Technology (IPT)AachenGermany
- Faculty of Mechanical EngineeringRWTH Aachen UniversityAachenGermany
| | - Qasim Rafiq
- Biochemical Engineering, Advanced Centre for Biochemical EngineeringUniversity College LondonLondonUK
| | | | - Frank Barry
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| | - J. Mary Murphy
- Regenerative Medicine Institute, Biomedical Sciences BuildingNational University of Ireland GalwayGalwayIreland
| |
Collapse
|
5
|
Nguyen LTB, Baudequin T, Cui Z, Ye H. Validation and scalability of homemade polycaprolactone macrobeads grafted with thermo-responsive poly(N-isopropylacrylamide) for mesenchymal stem cell expansion and harvesting. Biotechnol Bioeng 2022; 119:2345-2358. [PMID: 35586933 PMCID: PMC9542213 DOI: 10.1002/bit.28133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 11/07/2022]
Abstract
In this study, polycaprolactone (PCL) macrobeads were prepared by an oil-in-water (o/w) emulsion solvent evaporation method with poly(vinyl alcohol) (PVA) as an emulsifier and conjugated to poly(N-isopropylacrylamide) (PNIPAAm) to be used as cell carriers with noninvasive cell detachment properties (thermo-response). Following previous studies with PCL-PNIPAAm carriers, our objectives were to confirm the successful conjugation on homemade macrobeads and to show the advantages of homemade production over commercial beads to control morphological, biological, and fluidization properties. The effects of PCL concentration on the droplet formation and of flow rate and PVA concentration on the size of the beads were demonstrated. The size of the beads, all spherical, ranged from 0.5 to 3.7 mm with four bead categories based on production parameters. The morphology and size of the beads were observed by scanning electron microscopy to show surface roughness enhancing cell attachment and proliferation compared to commercial beads. The functionalization steps with PNIPAAm were then characterized and confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersion spectroscopy. PNIPAAm-grafted macrobeads allowed mesenchymal stem cells (MSCs) to spread and grow for up to 21 days. By reducing the temperature to 25°C, the MSCs were successfully detached from the PCL-PNIPAAm beads as observed with fluorescence microscopy. Furthermore, we validated the scalability potential of both macrobeads production and conjugation with PCL, to produce easily kilograms of thermo-responsive macrocarriers in a lab environment. This could help moving such approaches towards clinically and industrially relevant processes were cell expansion is needed at very large scale.
Collapse
Affiliation(s)
- Linh T B Nguyen
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, Royal Free Hospital, London, United Kingdom
| | - Timothée Baudequin
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Zhanfeng Cui
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Costariol E, Rotondi MC, Amini A, Hewitt CJ, Nienow AW, Heathman TRJ, Rafiq QA. Demonstrating the Manufacture of Human CAR‐T Cells in an Automated Stirred‐Tank Bioreactor. Biotechnol J 2020; 15:e2000177. [DOI: 10.1002/biot.202000177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/01/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Elena Costariol
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering University College London London WC1E 6BT UK
| | - Marco C. Rotondi
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering University College London London WC1E 6BT UK
| | - Arman Amini
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering University College London London WC1E 6BT UK
| | - Christopher J. Hewitt
- Aston Medical Research Institute, School of Life and Health Sciences Aston University Birmingham B4 7ET UK
| | - Alvin W. Nienow
- Aston Medical Research Institute, School of Life and Health Sciences Aston University Birmingham B4 7ET UK
- School of Chemical Engineering University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Thomas R. J. Heathman
- Hitachi Chemical Advanced Therapeutic Solutions (HCATS) 4 Pearl Court Allendale NJ 07401 USA
| | - Qasim A. Rafiq
- Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering University College London London WC1E 6BT UK
| |
Collapse
|
7
|
Costariol E, Rotondi M, Amini A, Hewitt CJ, Nienow AW, Heathman TRJ, Micheletti M, Rafiq QA. Establishing the scalable manufacture of primary human T-cells in an automated stirred-tank bioreactor. Biotechnol Bioeng 2019; 116:2488-2502. [PMID: 31184370 DOI: 10.1002/bit.27088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/17/2019] [Accepted: 06/06/2019] [Indexed: 12/30/2022]
Abstract
Advanced cell and gene therapies such as chimeric antigen receptor T-cell immunotherapies (CAR-T), present a novel therapeutic modality for the treatment of acute and chronic conditions including acute lymphoblastic leukemia and non-Hodgkin lymphoma. However, the development of such immunotherapies requires the manufacture of large numbers of T-cells, which remains a major translational and commercial bottleneck due to the manual, small-scale, and often static culturing systems used for their production. Such systems are used because there is an unsubstantiated concern that primary T-cells are shear sensitive, or prefer static conditions, and therefore do not grow as effectively in more scalable, agitated systems, such as stirred-tank bioreactors, as compared with T-flasks and culture bags. In this study, we demonstrate that not only T-cells can be cultivated in an automated stirred-tank bioreactor system (ambr® 250), but that their growth is consistently and significantly better than that in T-flask static culture, with equivalent cell quality. Moreover, we demonstrate that at progressively higher agitation rates over the range studied here, and thereby, higher specific power inputs (P/M W kg-1 ), the higher the final viable T-cell density; that is, a cell density of 4.65 ± 0.24 × 106 viable cells ml-1 obtained at the highest P/M of 74 × 10-4 W kg-1 in comparison with 0.91 ± 0.07 × 106 viable cells ml-1 at the lowest P/M of 3.1 × 10-4 W kg-1 . We posit that this improvement is due to the inability at the lower agitation rates to effectively suspend the Dynabeads®, which are required to activate the T-cells; and that contact between them is improved at the higher agitation rates. Importantly, from the data obtained, there is no indication that T-cells prefer being grown under static conditions or are sensitive to fluid dynamic stresses within a stirred-tank bioreactor system at the agitation speeds investigated. Indeed, the opposite has proven to be the case, whereby, the cells grow better under higher agitation speeds while maintaining their quality. This study is the first demonstration of primary T-cell ex vivo manufacture activated by Dynabeads® in an automated stirred-tank bioreactor system such as the ambr® 250 and the findings have the potential to be applied to multiple other cell candidates for advanced therapy applications.
Collapse
Affiliation(s)
- Elena Costariol
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Marco Rotondi
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Arman Amini
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Christopher J Hewitt
- School of Life and Health Sciences, Aston Medical Research Institute, Aston University, Birmingham, UK
| | - Alvin W Nienow
- School of Life and Health Sciences, Aston Medical Research Institute, Aston University, Birmingham, UK.,School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Thomas R J Heathman
- Hitachi Chemical Advanced Therapeutics Solutions (HCATS), Allendale, New Jersey
| | - Martina Micheletti
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| | - Qasim A Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, UK
| |
Collapse
|
8
|
Nguyen LTB, Odeleye AOO, Chui CY, Baudequin T, Cui Z, Ye H. Development of thermo-responsive polycaprolactone macrocarriers conjugated with Poly(N-isopropyl acrylamide) for cell culture. Sci Rep 2019; 9:3477. [PMID: 30837639 PMCID: PMC6401373 DOI: 10.1038/s41598-019-40242-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/12/2019] [Indexed: 01/20/2023] Open
Abstract
Poly(N-isopropyl acrylamide) (PNIPAAm) is a well-known 'smart' material responding to external stimuli such as temperature. PNIPAAm was successfully conjugated to polycaprolactone (PCL) bead surfaces through amidation reaction. Functionalization steps were characterized and confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and Energy Dispersion Spectroscopy. PNIPAAm-conjugated PCL allowed human dermal fibroblast cells (HDF) and mesenchymal stem cells (MSC) to adhere, spread, and grow successfully. By reducing the temperature to 30 °C, more than 70% of HDF were detached from PNIPAAm-conjugated PCL macrocarriers with 85% viability. The cell detachment ratio by trypsin treatment was slightly higher than that induced by reduced temperature, however, cell detachment from PNIPAAm-conjugated macrocarriers by lowering the temperature significantly reduced cell death and increased both cell viability and the recovery potential of the detached cells. HDF attachment and detachment were also observed by Live-Dead staining and phase contrast imaging. The expression of extracellular matrix proteins such as Laminin and Fibronectin was also affected by the trypsinization process but not by the reduced temperature process. Taken together, our results showed that thermo-responsive macrocarriers could be a promising alternative method for the non-invasive detachment of cells, in particular for tissue engineering, clinical applications and the use of bioreactors.
Collapse
Affiliation(s)
- Linh T B Nguyen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Akinlolu O O Odeleye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
- Adaptimmune Limited, 60 Jubilee Avenue, Milton Park, Abingdon, OX14 4RX, UK
| | - Chih-Yao Chui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Timothée Baudequin
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
9
|
Rafiq QA, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, Hewitt CJ. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Biotechnol Bioeng 2017. [PMID: 28627713 PMCID: PMC5615370 DOI: 10.1002/bit.26359] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high-throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum-based medium was applied to a serum-free process in the ambr15, resulting in >250% increase in yield compared to the serum-based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, NJS . The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06-0.54%, respectively. The combination of both serum-free and automated processing improved the reproducibility more than 10-fold compared to the serum-based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum-free medium, control, and automation improves both process yield and consistency. Biotechnol. Bioeng. 2017;114: 2253-2266. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qasim A Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, United Kingdom.,Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Mariana P Hanga
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Thomas R J Heathman
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom.,PCT, A Hitachi Group Company, Allendale, New Jersey
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Alvin W Nienow
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom.,School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David J Williams
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Christopher J Hewitt
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
10
|
Rafiq QA, Twomey K, Kulik M, Leschke C, O'Dea J, Callens S, Gentili C, Barry FP, Murphy M. Developing an automated robotic factory for novel stem cell therapy production. Regen Med 2016; 11:351-4. [PMID: 27168080 DOI: 10.2217/rme-2016-0040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Qasim A Rafiq
- Aston Medical Research Institute, School of Life & Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Karen Twomey
- Tyndall National Institute, Life Sciences Interface Group, Lee Maltings, University College, Cork, Ireland
| | - Michael Kulik
- Fraunhofer Institute for Production Technology IPT, Aachen, Germany
| | - Christian Leschke
- Zellwerk GmbH, Ziegeleistraße 7, D-16727, Oberkrämer OT Eichstädt, Germany
| | - John O'Dea
- Crospon, Galway Business Park, Galway, H91 P2DK, Ireland
| | - Sarah Callens
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Chiara Gentili
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Frank P Barry
- Orbsen Therapeutics, Orbsen Building, NUIG, Galway, Ireland.,Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing & Health Sciences, National University of Ireland, Galway, Ireland
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing & Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
11
|
Heathman TR, Rafiq QA, Chan AK, Coopman K, Nienow AW, Kara B, Hewitt CJ. Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Nienow AW, Hewitt CJ, Heathman TR, Glyn VA, Fonte GN, Hanga MP, Coopman K, Rafiq QA. Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Rafiq QA, Coopman K, Nienow AW, Hewitt CJ. Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnol J 2016; 11:473-86. [PMID: 26632496 PMCID: PMC4991290 DOI: 10.1002/biot.201400862] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 07/07/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022]
Abstract
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost-effective manufacturing processes. Microcarriers enable the culture of anchorage-dependent cells in stirred-tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We systematically evaluated 13 microcarriers for human bone marrow-derived MSC (hBM-MSCs) expansion from three donors to establish a reproducible and transferable methodology for microcarrier selection. Monolayer studies demonstrated input cell line variability with respect to growth kinetics and metabolite flux. HBM-MSC1 underwent more cumulative population doublings over three passages in comparison to hBM-MSC2 and hBM-MSC3. In 100 mL spinner flasks, agitated conditions were significantly better than static conditions, irrespective of donor, and relative microcarrier performance was identical where the same microcarriers outperformed others with respect to growth kinetics and metabolite flux. Relative growth kinetics between donor cells on the microcarriers were the same as the monolayer study. Plastic microcarriers were selected as the optimal microcarrier for hBM-MSC expansion. HBM-MSCs were successfully harvested and characterised, demonstrating hBM-MSC immunophenotype and differentiation capacity. This approach provides a systematic method for microcarrier selection, and the findings identify potentially significant bioprocessing implications for microcarrier-based allogeneic cell therapy manufacture.
Collapse
Affiliation(s)
- Qasim A Rafiq
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, United Kingdom.,Wolfson School of Manufacturing and Mechanical Engineering, Loughborough University, Leicestershire, United Kingdom.,Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Karen Coopman
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, United Kingdom
| | - Alvin W Nienow
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, United Kingdom.,School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Christopher J Hewitt
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Leicestershire, United Kingdom. .,Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom.
| |
Collapse
|
14
|
Rafiq QA, Ortega I, Jenkins SI, Wilson SL, Patel AK, Barnes AL, Adams CF, Delcassian D, Smith D. The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products. Regen Med 2015; 10:989-1003. [PMID: 26628407 DOI: 10.2217/rme.15.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.
Collapse
Affiliation(s)
- Qasim A Rafiq
- Centre for Biological Engineering, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,Aston Medical Research Institute, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Ilida Ortega
- Bioengineering & Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, S10 2TA, UK
| | - Stuart I Jenkins
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Samantha L Wilson
- Academic Ophthalmology, Division of Clincial Neuroscience, Queen's Medical Centre Campus, University of Nottingham, NG7 2UH, UK
| | - Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering & Modeling, University of Nottingham, Nottingham, NG7 2RD, UK.,David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Christopher F Adams
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Derfogail Delcassian
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK.,Wolfson Centre for Stem Cells, Centre for Biological Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - David Smith
- Centre for Biological Engineering, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,PCT, a Caladrius company, 4 Pearl Court, Suite C, Allendale, NJ 07401, USA
| |
Collapse
|