1
|
Musumeci F, Fasce A, Falesiedi M, Oleari F, Grossi G, Carbone A, Schenone S. Approaching Gallium-68 radiopharmaceuticals for tumor diagnosis: a Medicinal Chemist's perspective. Eur J Med Chem 2025; 294:117760. [PMID: 40393260 DOI: 10.1016/j.ejmech.2025.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Nuclear medicine has revolutionized disease diagnosis and treatment, particularly in oncology, by enabling precise imaging and targeted therapies using radiopharmaceuticals. Recently, Gallium-68 (68Ga) has emerged as a powerful positron emission tomography (PET) imaging agent, with a growing role in theranostics when paired with 177Lu for cancer treatment. The ability to obtain 68Ga from 68Ge/68Ga generators, along with its favorable radiochemical and pharmacokinetic properties, has driven an increasing number of clinical applications, which culminated with the approvals of 68Ga-DOTA-TOC and 68Ga-DOTA-TATE for the treatment of neuroendocrine tumors, and 68Ga-PSMA-11 for prostate cancer over the past decade. This review provides a comprehensive overview of 68Ga radiochemistry, chelators, and key compounds in clinical trials, highlighting the potential of this radionuclide in precision oncology.
Collapse
Affiliation(s)
- Francesca Musumeci
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy.
| | - Alessandro Fasce
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Marta Falesiedi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Federica Oleari
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Giancarlo Grossi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, 16132, Genoa, Italy
| |
Collapse
|
2
|
Nerella SG, Singh P, Tulja S. Carbon-11 patents (2012-2022): synthetic methodologies and novel radiotracers for PET imaging. Expert Opin Ther Pat 2022; 32:817-831. [PMID: 35451896 DOI: 10.1080/13543776.2022.2070003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Carbon-11 is a short-lived radionuclide with versatile applications in synthetic methodologies to develop a variety of novel PET radiotracers. Different primary and secondary carbon-11 precursors are generated from cyclotron produced [11C]CO2 and used to insert carbon-11 radionuclide into the target specific bioactive molecules. AREAS COVERED In this review, the patents as well as specific research articles on carbon-11 radiotracer synthesis and PET imaging applications in various diseases are mentioned since 2012 to 2022 through SciFinder database. EXPERT OPINION Carbon-11 is generally easier to insert into more organic scaffolds as a greater variety of functional groups. Despite the short half-life of carbon-11 radionuclide (t1/2 = 20.4 min), it is widely used in PET radiotracer development due to its direct insertion into bioactive compounds and less isotopic dilution unlike other positron emitters like fluorine-18. Various synthons can be easily generated using the primary and secondary carbon-11 precursors like [11C]CO2, [11C]CH4, 11CH3I, 11CO, 11COCl2, 11CN, 11CS2, and 11CH3OTf etc. that would be useful to develop any PET radiotracers by adapting various organic methods. The carbon-11 radiotracers provide target-oriented information associated with the pharmacology, and physiological conditions of the disease status. Various protocols and automated methods were adapted for easy and convenient synthesis of carbon-11 radiotracers. The PET advances drug development and clinical trials by revealing biological target engagement, proof of mechanism, pharmacokinetic, and pharmacodynamic profiles of new drug candidates using selective radiotracers.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru-560 029, India.,Current address; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda-20892, USA
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500 037, India
| | - Sanam Tulja
- Department of Microbiology and Applied Sciences, University of Agricultural Sciences, Bangalore-560 065, India
| |
Collapse
|
3
|
Lepareur N. Cold Kit Labeling: The Future of 68Ga Radiopharmaceuticals? Front Med (Lausanne) 2022; 9:812050. [PMID: 35223907 PMCID: PMC8869247 DOI: 10.3389/fmed.2022.812050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last couple of decades, gallium-68 (68Ga) has gained a formidable interest for PET molecular imaging of various conditions, from cancer to infection, through cardiac pathologies or neuropathies. It has gained routine use, with successful radiopharmaceuticals such as somatostatin analogs ([68Ga]Ga-DOTATOC and [68Ga]GaDOTATATE) for neuroendocrine tumors, and PSMA ligands for prostate cancer. It represents a major clinical impact, particularly in the context of theranostics, coupled with their 177Lu-labeled counterparts. Beside those, a bunch of new 68Ga-labeled molecules are in the preclinical and clinical pipelines, with some of them showing great promise for patient care. Increasing clinical demand and regulatory issues have led to the development of automated procedures for the production of 68Ga radiopharmaceuticals. However, the widespread use of these radiopharmaceuticals may rely on simple and efficient radiolabeling methods, undemanding in terms of equipment and infrastructure. To make them technically and economically accessible to the medical community and its patients, it appears mandatory to develop a procedure similar to the well-established kit-based 99mTc chemistry. Already available commercial kits for the production of 68Ga radiopharmaceuticals have demonstrated the feasibility of using such an approach, thus paving the way for more kit-based 68Ga radiopharmaceuticals to be developed. This article discusses the development of 68Ga cold kit radiopharmacy, including technical issues, and regulatory aspects.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, Rennes, France
- Univ Rennes, Inrae, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, Rennes, France
| |
Collapse
|
4
|
Luurtsema G, Pichler V, Bongarzone S, Seimbille Y, Elsinga P, Gee A, Vercouillie J. EANM guideline for harmonisation on molar activity or specific activity of radiopharmaceuticals: impact on safety and imaging quality. EJNMMI Radiopharm Chem 2021; 6:34. [PMID: 34628570 PMCID: PMC8502193 DOI: 10.1186/s41181-021-00149-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
This guideline on molar activity (Am) and specific activity (As) focusses on small molecules, peptides and macromolecules radiolabelled for diagnostic and therapeutic applications. In this guideline we describe the definition of Am and As, and how these measurements must be standardised and harmonised. Selected examples highlighting the importance of Am and As in imaging studies of saturable binding sites will be given, and the necessity of using appropriate materials and equipment will be discussed. Furthermore, common Am pitfalls and remedies are described. Finally, some aspects of Am in relation the emergence of a new generation of highly sensitive PET scanners will be discussed.
Collapse
Affiliation(s)
- Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Medical University of Vienna, Vienna, Austria
| | | | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Philip Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Antony Gee
- Department of Imaging Sciences, King's College London, London, UK
| | | |
Collapse
|
5
|
Arslan E, Çermik TF. PET/CT Variants and Pitfalls in Liver, Biliary Tract, Gallbladder and Pancreas. Semin Nucl Med 2021; 51:502-518. [PMID: 34049687 DOI: 10.1053/j.semnuclmed.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide variety of pathological anomalies may occur in the liver, biliary system, and pancreas. It is a necessity to use many different imaging techniques in order to distinguish such varied pathologies, especially those from malignant processes. Positron Emission Tomography/Computed Tomography (PET/CT) is an imaging method that has proven its diagnostic value in oncology and can be used for different clinical purposes. Fluoro-18 fluoro-2-deoxy-D-glucose has a wide range of uses as a dominant radiopharmaceutical in routine molecular imaging, however, molecular imaging has started to play a more important role in personalized cancer treatment in recent years with new Fluoro-18 and Gallium-68 labeled tracers. Although molecular imaging has a strong diagnostic effect, the surprises and pitfalls of molecular imaging can lead us to unexpected and misleading results. Prior to PET/CT analysis and reporting, information about possible technical and physiological pitfalls, normal histological features of tissues, inflammatory pathologies, specific clinical features of the case, treatment-related complications and past treatments should be evaluated in advance to avoid misinterpretation. In this review, the physiological and pathophysiological variants as well as pitfalls encountered in PET/CT imaging of the liver, biliary tract, gallbladder, and pancreas will be examined. Other benign and malignant pathologies that have been reported to date and that have led to incorrect evaluation will be listed. It is expected that the devices, software, and artificial intelligence applications that will be developed in the near future will enable much more effective and faster imaging that will reduce the potential causes of error. However, as a result of the dynamic and evolving structure of the information obtained by molecular imaging, the inclusion of the newly developed radiopharmaceuticals in routine practice will continue to carry new potentials as well as new troubles. Although molecular imaging will be the flagship of diagnostic oncology in the 21st century, the correct analysis and interpretation by the physician will continue to form the basis of achieving optimal performance.
Collapse
Affiliation(s)
- Esra Arslan
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health and Sciences Turkey, Istanbul, Turkey.
| | - Tevfik Fikret Çermik
- Istanbul Training and Research Hospital, Clinic of Nuclear Medicine, University of Health and Sciences Turkey, Istanbul, Turkey
| |
Collapse
|
6
|
Herrero Álvarez N, Bauer D, Hernández-Gil J, Lewis JS. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021; 16:2909-2941. [PMID: 33792195 DOI: 10.1002/cmdc.202100135] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Nuclear medicine is defined as the use of radionuclides for diagnostic and therapeutic applications. The imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are based on γ-emissions of specific energies. The therapeutic technologies are based on β- -particle-, α-particle-, and Auger electron emitters. In oncology, PET and SPECT are used to detect cancer lesions, to determine dosimetry, and to monitor therapy effectiveness. In contrast, radiotherapy is designed to irreparably damage tumor cells in order to eradicate or control the disease's progression. Radiometals are being explored for the development of diagnostic and therapeutic radiopharmaceuticals. Strategies that combine both modalities (diagnostic and therapeutic), referred to as theranostics, are promising candidates for clinical applications. This review provides an overview of the basic concepts behind therapeutic and diagnostic radiopharmaceuticals and their significance in contemporary oncology. Select radiometals that significantly impact current and upcoming cancer treatment strategies are grouped as clinically suitable theranostics pairs. The most important physical and chemical properties are discussed. Standard production methods and current radionuclide availability are provided to indicate whether a cost-efficient use in a clinical routine is feasible. Recent preclinical and clinical developments and outline perspectives for the radiometals are highlighted in each section.
Collapse
Affiliation(s)
- Natalia Herrero Álvarez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit, Herestraat 49, 3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill-Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
7
|
Gee AD, Andersson J, Bhalla R, Choe YS, Dick DW, Herth MM, Hostetler ED, Jáuregui-Haza UJ, Huang YY, James ML, Jeong JM, Korde A, Kuge Y, Kung HF, Lapi SE, Osso JA, Parent E, Patt M, Pricile EF, Riss PJ, Santos-Oliveira R, Taylor S, Vasdev N, Vercouillie J, Wadsak W, Yang Z, Zhu H, Scott PJH. Training the next generation of radiopharmaceutical scientists. Nucl Med Biol 2020; 88-89:10-13. [PMID: 32650289 DOI: 10.1016/j.nucmedbio.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Antony D Gee
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Lambeth Palace Rd, London SE1 7EH, UK.
| | - Jan Andersson
- Edmonton Radiopharmaceutical Centre & Cyclotron, Diagnostic Imaging, Alberta Health Services, Canada
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Yearn Seong Choe
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - David W Dick
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | | | - Ulises J Jáuregui-Haza
- Instituto Tecnológico de Santo Domingo, Av. de Los Próceres #49,10602, Santo Domingo, Dominican Republic
| | - Ya-Yao Huang
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, No.1, Jen Ai Road Section 1, Taipei 100, Taiwan
| | - Michelle L James
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 1201 Welch Rd, Palo Alto, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, 1201 Welch Rd, Palo Alto, CA 94305, USA
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Republic of Korea; Department of Nuclear Medicine, Seoul National University Hospital, Republic of Korea
| | - Aruna Korde
- Radioisotope Products and Radiation Technology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Suzanne E Lapi
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joao Alberto Osso
- Radioisotope Products and Radiation Technology Section, Division of Physical and Chemical Sciences, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria
| | - Ephraim Parent
- Department of Radiology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marianne Patt
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | | | - Patrick J Riss
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Ralph Santos-Oliveira
- Presidency, Brazilian Association of Radiopharmacy, Rio de Janeiro 243480945, Brazil
| | - Stephen Taylor
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, 250 College St., Toronto M5T 1R8, ON, Canada
| | - Johnny Vercouillie
- UMR Inserm U1253, iBrain, Université de Tours, UFR de Médecine, 10 Boulevard Tonnellé, 37032 Tours Cedex 01, France; INSERM CIC 1415, University Hospital, Tours, France
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Kontoghiorghes GJ, Kontoghiorghe CN. Iron and Chelation in Biochemistry and Medicine: New Approaches to Controlling Iron Metabolism and Treating Related Diseases. Cells 2020; 9:E1456. [PMID: 32545424 PMCID: PMC7349684 DOI: 10.3390/cells9061456] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Iron is essential for all living organisms. Many iron-containing proteins and metabolic pathways play a key role in almost all cellular and physiological functions. The diversity of the activity and function of iron and its associated pathologies is based on bond formation with adjacent ligands and the overall structure of the iron complex in proteins or with other biomolecules. The control of the metabolic pathways of iron absorption, utilization, recycling and excretion by iron-containing proteins ensures normal biologic and physiological activity. Abnormalities in iron-containing proteins, iron metabolic pathways and also other associated processes can lead to an array of diseases. These include iron deficiency, which affects more than a quarter of the world's population; hemoglobinopathies, which are the most common of the genetic disorders and idiopathic hemochromatosis. Iron is the most common catalyst of free radical production and oxidative stress which are implicated in tissue damage in most pathologic conditions, cancer initiation and progression, neurodegeneration and many other diseases. The interaction of iron and iron-containing proteins with dietary and xenobiotic molecules, including drugs, may affect iron metabolic and disease processes. Deferiprone, deferoxamine, deferasirox and other chelating drugs can offer therapeutic solutions for most diseases associated with iron metabolism including iron overload and deficiency, neurodegeneration and cancer, the detoxification of xenobiotic metals and most diseases associated with free radical pathology.
Collapse
Affiliation(s)
- George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, CY-3021 Limassol, Cyprus;
| | | |
Collapse
|
9
|
Cimini A, Ricci M, Chiaravalloti A, Filippi L, Schillaci O. Theragnostic Aspects and Radioimmunotherapy in Pediatric Tumors. Int J Mol Sci 2020; 21:ijms21113849. [PMID: 32481723 PMCID: PMC7312954 DOI: 10.3390/ijms21113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
The use of theragnostic radiopharmaceuticals in nuclear medicine has grown rapidly over the years to combine the diagnosis and therapy of tumors. In this review, we performed web-based and desktop literature research to investigate and explain the potential role of theragnostic imaging in pediatric oncology. We focused primarily on patients with aggressive malignancies such as neuroblastoma and brain tumors, to select patients with the highest chance of benefit from personalized therapy. Moreover, the most critical and groundbreaking applications of radioimmunotherapy in children’s oncology were examined in this peculiar context. Preliminary results showed the potential feasibility of theragnostic imaging and radioimmunotherapy in pediatric oncology. They revealed advantages in the management of the disease, thereby allowing an intra-personal approach and adding new weapons to conventional therapies.
Collapse
Affiliation(s)
- Andrea Cimini
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
- Correspondence: ; Tel.: +39-062-090-2467
| | - Maria Ricci
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Luca Filippi
- Nuclear Medicine Section, “Santa Maria Goretti” Hospital, 04100 Latina, Italy;
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (M.R.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
10
|
[ 68Ga]Ga-NOTA-MAL-Cys 39-exendin-4, a potential GLP-1R targeted PET tracer for the detection of insulinoma. Nucl Med Biol 2019; 74-75:19-24. [PMID: 31450071 DOI: 10.1016/j.nucmedbio.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 01/11/2023]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) is a kind of G protein coupled receptor which regulates the insulin secretion and serves as potential target in the diagnosis of functional pancreas neuroendocrine tumor. The aim of this study was to evaluate the feasibility of GLP-1R targeted tracer [68Ga]Ga-NOTA-MAL-Cys39-exendin-4 in the detection of insulinoma. METHODS NOTA-MAL-Cys39-exendin-4 was synthesized and then radiolabeled with gallium-68 in iQS® Ga-68 Fluidic Labeling Module. The in vitro binding affinity and cell uptake studies were evaluated in INS-1 cells. The in vivo micro-PET/CT imaging and biodistribution studies were performed on INS-1 xenograft tumor models. RESULTS [68Ga]Ga-NOTA-MAL-Cys39-exendin-4 can be efficiently radiolabelled with a yield of about 85% (non-decay corrected) and radiochemical purity of >95% with a favorable stability. The molar activity was at least 145.5 GBq/μmol. The affinity (IC50) for [68Ga]Ga-NOTA-MAL-Cys39-exendin-4 was 12.99 ± 0.81 nM. Micro-PET/CT images showed intense tumor uptake with good contrast to background. Biodistribution study showed the predominant uptake was in the kidney, followed by pancreas, and the liver and spleen just showed mild uptake in the blood-pool phase with rapid clearance. At 1 h post- injection, the tumor to blood, muscle and pancreas ratios were 30.64, 40.21 and 6.46, respectively. Blocking studies showed significantly decreased tumor uptake, which further confirmed binding affinity of [68Ga]Ga-NOTA-MAL-Cys39-exendin-4 to GLP-1R. CONCLUSION [68Ga]Ga-NOTA-MAL-Cys39-exendin-4 was easily synthesized with high yield, favorable biodistribution and high affinity to islet tumor cell, making the tracer may have great potential in the detection of GLP-1R positive tumor such as an insulinoma.
Collapse
|
11
|
Liu N, Wan Q, Cheng Z, Chen Y. Radionuclide-Labeled Peptides for Imaging and Treatment of CXCR4- Overexpressing Malignant Tumors. Curr Top Med Chem 2019; 19:17-32. [PMID: 30706786 DOI: 10.2174/1568026619666190201094952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/16/2018] [Accepted: 12/19/2018] [Indexed: 01/07/2023]
Abstract
Malignant tumors are a major cause of death. The lack of methods that provide an early diagnosis and adequate treatment of cancers is the main obstacle to precision medicine. The C-X-C chemokine receptor 4 (CXCR4) is overexpressed in various tumors and plays a key role in tumor pathogenesis. Therefore, CXCR4-targeted molecular imaging can quickly and accurately detect and quantify CXCR4 abnormalities in real time. The expression level and activation status of CXCR4 are very important for screening susceptible populations and providing an accurate diagnosis and optimal treatment. In view of the fact that radionuclide-labeled peptides have become widely used for the diagnosis and treatment of tumors, this manuscript reviews the potential of different radionuclide-labeled peptide inhibitors for the targeted imaging of CXCR4- positive tumors and targeted treatment. The article also discusses the specificity and in vivo distribution of radionuclide-labeled peptide inhibitors, and translation of these inhibitors to the clinic.
Collapse
Affiliation(s)
- Nan Liu
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No.25, Taiping St, Luzhou, Sichuan 646000, China
| | - Qiang Wan
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No.25, Taiping St, Luzhou, Sichuan 646000, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford Canary Center at Stanford for Cancer Early Detection, Department of Radiology and Bio-X Program, 1201 Welch Road, Lucas Expansion, P095 Stanford University, California, United States
| | - Yue Chen
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, No. 25, Taiping St, Luzhou, Sichuan 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No.25, Taiping St, Luzhou, Sichuan 646000, China
| |
Collapse
|
12
|
Chen KT, Nguyen K, Ieritano C, Gao F, Seimbille Y. A Flexible Synthesis of 68Ga-Labeled Carbonic Anhydrase IX (CAIX)-Targeted Molecules via CBT/1,2-Aminothiol Click Reaction. Molecules 2018; 24:molecules24010023. [PMID: 30577607 PMCID: PMC6337199 DOI: 10.3390/molecules24010023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
We herein describe a flexible synthesis of a small library of 68Ga-labeled CAIX-targeted molecules via an orthogonal 2-cyanobenzothiazole (CBT)/1,2-aminothiol click reaction. Three novel CBT-functionalized chelators (1–3) were successfully synthesized and labeled with the positron emitter gallium-68. Cross-ligation between the pre-labeled bifunctional chelators (BFCs) and the 1,2-aminothiol-acetazolamide derivatives (8 and 9) yielded six new 68Ga-labeled CAIX ligands with high radiochemical yields. The click reaction conditions were optimized to improve the reaction rate for applications with short half-life radionuclides. Overall, our methodology allows for a simple and efficient radiosynthetic route to produce a variety of 68Ga-labeled imaging agents for tumor hypoxia.
Collapse
Affiliation(s)
- Kuo-Ting Chen
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
| | - Kevin Nguyen
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T2A3, Canada.
| | - Christian Ieritano
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T2A3, Canada.
| | - Feng Gao
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T2A3, Canada.
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T2A3, Canada.
| |
Collapse
|