1
|
Chen X, Song Y, Tian Y, Dong X, Chang Y, Wang W. miR-149-3p Enhances Drug Sensitivity of AML Cells by Inhibiting Warburg Effect Through PI3K/AKT Pathway. Cell Biochem Biophys 2024; 82:3287-3296. [PMID: 39154128 DOI: 10.1007/s12013-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/19/2024]
Abstract
Acute myeloid leukemia (AML) is a kind of heterogeneous hematologic malignancy with high incidence, which is usually treated by intensive and maintenance treatment with large dose of conventional chemotherapy drugs. However, cell resistance is still an unsolved problem. The abnormal expression of miRNAs is closely related to the pathogenesis and progression of AML, and affects the drug resistance of cancer cells. miR-149-3p plays an important role in the resistance of cancer cells to cisplatin, and plays an excellent anti-tumor activity. By studying the function of miR-149-3p, it is expected to find new therapeutic methods to reverse chemotherapy resistance. In order to explore the mechanism of action of miR-149-3p on AML chemotherapeutic drug sensitivity, we explored the relationship between the Warburg effect and AML chemotherapeutic drug resistance. Based on AML cells, transfection of miR-149-3p inhibitor/NC and Warburg effect inhibitor (2DG) and PI3K/AKT pathway inhibitor (LY294002) were used to investigate the mechanism of IFN-γ regulating chemotherapy resistance of AML cells through Warburg effect. Down-regulation of miR-149-3p significantly inhibited drug sensitivity of AML cells. Down-regulation of miR-149-3p significantly promoted proliferation and invasion of AML cells while inhibiting apoptosis by up-regulating the expression of Bcl-2 and down-regulating the expression of Bax. Down-regulation of miR-149-3p significantly promoted the expression of Warburg effect-related proteins hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and Glucose transporter 1 (GLUT1), glucose consumption, lactic acid, and intracellular ATP production. After inhibiting the Warburg effect with 2DG, the effect of miR-149-3p was inhibited, suggesting that upregulation of miR-149-3p reversed AML cell resistance by inhibiting the Warburg effect. In addition, miR-149-3p interacted with AKT1. Down-regulation of miR-149-3p increased the expression of inosine phosphate 3 kinase (PI3K), protein kinase B (AKT), and multi-drug resistance protein (MDR1). LY294002 inhibited the expression of these proteins, and down-regulation of miR-149-3p reversed the effect of LY294002 and improved the drug resistance of cells. Upregulation of miR-149-3p expression may potentially be a therapeutic target for AML resistance. It has been shown to inhibit PI3K/AKT pathway activation, thereby inhibiting the Warburg effect, and affecting cell proliferation, apoptosis, and drug resistance.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm/drug effects
- Cell Line, Tumor
- Apoptosis/drug effects
- Antineoplastic Agents/pharmacology
- Cisplatin/pharmacology
- Warburg Effect, Oncologic/drug effects
- Morpholines/pharmacology
- Hexokinase/metabolism
- Hexokinase/genetics
- Chromones/pharmacology
- HL-60 Cells
Collapse
Affiliation(s)
- Xi Chen
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Song
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaoyao Tian
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiushuai Dong
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuying Chang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Wang
- Department of Hemotology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
2
|
Shahid AM, Um IH, Elshani M, Zhang Y, Harrison DJ. NUC-7738 regulates β-catenin signalling resulting in reduced proliferation and self-renewal of AML cells. PLoS One 2022; 17:e0278209. [PMID: 36520954 PMCID: PMC9754587 DOI: 10.1371/journal.pone.0278209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) stem cells are required for the initiation and maintenance of the disease. Activation of the Wnt/β-catenin pathway is required for the survival and development of AML leukaemia stem cells (LSCs) and therefore, targeting β-catenin is a potential therapeutic strategy. NUC-7738, a phosphoramidate transformation of 3'-deoxyadenosine (3'-dA) monophosphate, is specifically designed to generate the active anti-cancer metabolite 3'-deoxyadenosine triphosphate (3'-dATP) intracellularly, bypassing key limitations of breakdown, transport, and activation. NUC-7738 is currently in a Phase I/II clinical study for the treatment of patients with advanced solid tumors. Protein expression and immunophenotypic profiling revealed that NUC-7738 caused apoptosis in AML cell lines through reducing PI3K-p110α, phosphorylated Akt (Ser473) and phosphorylated GSK3β (Ser9) resulting in reduced β-catenin, c-Myc and CD44 expression. NUC-7738 reduced β-catenin nuclear expression in AML cells. NUC-7738 also decreased the percentage of CD34+ CD38- CD123+ (LSC-like cells) from 81% to 47% and reduced the total number and size of leukemic colonies. These results indicate that therapeutic targeting of the PI3K/Akt/GSK3β axis can inhibit β-catenin signalling, resulting in reduced clonogenicity and eventual apoptosis of AML cells.
Collapse
Affiliation(s)
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| | - Ying Zhang
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - David James Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| |
Collapse
|
3
|
A pyridinesulfonamide derivative FD268 suppresses cell proliferation and induces apoptosis via inhibiting PI3K pathway in acute myeloid leukemia. PLoS One 2022; 17:e0277893. [PMID: 36413544 PMCID: PMC9681083 DOI: 10.1371/journal.pone.0277893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Aberration of PI3K signaling pathway has been confirmed to be associated with several hematological malignancies including acute myeloid leukemia (AML). FD268, a pyridinesulfonamide derivative characterized by the conjugation of 7-azaindole group, is a newly identified PI3K inhibitor showing high potent enzyme activity at nanomole concentration. In this study, we demonstrated that FD268 dose-dependently inhibits survival of AML cells with the efficacy superior to that of PI-103 (pan-PI3K inhibitor) and CAL-101 (selective PI3Kδ inhibitor) in the tested HL-60, MOLM-16, Mv-4-11, EOL-1 and KG-1 cell lines. Further mechanistic studies focused on HL-60 revealed that FD268 significantly inhibits the PI3K/Akt/mTOR signaling pathway, promotes the activation of pro-apoptotic protein Bad and downregulates the expression of anti-apoptotic protein Mcl-1, thus suppressing the cell proliferation and inducing caspase-3-dependent apoptosis. The bioinformatics analysis of the transcriptome sequencing data also indicated a potential involvement of the PI3K/Akt/mTOR pathway. These studies indicated that FD268 possesses high potent activity toward AML cells via inhibition of PI3K/Akt/mTOR signaling pathway, which sheds some light on the pyridinesulfonamide scaffold for further optimization and investigation.
Collapse
|
4
|
Wang CF, Cai XR, Chi YN, Miao XY, Yang JY, Xiao BK, Huang RQ. Analgesic Activity of Jin Ling Zi Powder and Its Single Herbs: A Serum Metabonomics Study. Chin J Integr Med 2022; 28:1007-1014. [PMID: 33881717 DOI: 10.1007/s11655-021-3277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2019] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the analgesic effect of Jin Ling Zi Powder (JLZ) and its two single herbs. METHODS The hot plate method was used to induce pain. Totally 36 mice were randomly divided into 6 groups by a complete random design, including control, model, aspirin (ASP, 0.14 g/kg body weight), JLZ (14 g/kg body weight), Corydalis yanhusuo (YHS, 14 g/kg body weight), and Toosendan Fructus (TF, 14 g/kg body weight) groups, 6 mice in each group. The mice in the control and model groups were given the same volume of saline, daily for 2 consecutive weeks. At 30, 60, 90, and 120 min after the last administration, the pain threshold of mice in each group was measured, and the improvement rate of pain threshold was calculated. Serum endogenous metabolites were analyzed by gas chromatography-mass spectrometry (GC-MS). RESULTS There was no statistical difference in pain threshold among groups before administration (P>0.05). After 2 weeks of administration, compared with the model group, the pain threshold in JLZ, YHS, TF and ASP groups were increased to varying degrees (P<0.05). JLZ had the best analgesic effect and was superior to YHS and TF groups. A total of 14 potential biomarkers were screened in serum data analysis and potential biomarkers levels were all reversed to different degrees after the treatment with JLZ and its single herbs. These potential biomarkers were mainly related to glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, aminoacyl-tRNA biosynthesis and inositol phosphate metabolism. CONCLUSIONS The analgesic mechanism of JLZ and YHS was mainly due to the combination of glycine and its receptor, producing post-synaptic potential, reducing the excitability of neurons, and weakening the afferent effect of painful information.
Collapse
Affiliation(s)
- Cui-Fang Wang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Rong Cai
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yan-Ni Chi
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330000, China
| | - Xiao-Yao Miao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jian-Yun Yang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Bing-Kun Xiao
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Rong-Qing Huang
- Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing, 100850, China.
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Ma L, Chen Z, Li J, Zhang H, Jia Y, Liu J. DP from Euphorbia fischeriana S. mediated apoptosis in leukemia cells via the PI3k/Akt signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:113889. [PMID: 33524514 DOI: 10.1016/j.jep.2021.113889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euphorbia fischeriana S. (E. fischeriana) is a classic Chinese herb with toxicity that is mainly used for cancer treatment and in insect repellent, anti-inflammatory and anti-edema applications (Liu et al., 2001). 12-Deoxyphorbol13-palmitate (DP), a tetracyclic diterpene monomer compound, was extracted from the roots of E. fischeriana by our research groups. AIM Previous studies found that DP could inhibit the proliferation of leukemia cells in vitro. However, the underlying mechanism of DP in leukemia is unknown. Hence, DP's pharmacological effect on leukemia cells was investigated in this study. MATERIALS AND METHODS DP was obtained from the Natural Medicine Chemistry Laboratory of Qiqihaer Medical University. In vitro, K562 cells and HL60 cells were incubated with DP or DP combined with LY294002 at different concentrations. Cell proliferation and apoptosis were detected by the relevant experimental methods. In vivo, nude mouse xenograft models were established by injecting K562 cells. DP was intraperitoneally administered to observe the influence on the growth of transplanted tumors. Gene detection and immunoblot analysis were performed to validate the mechanisms. RESULTS The cell counting kit-8 (CCK-8) assay proved that DP inhibited the growth of K562 and HL60 cells in a time- or dose-dependent manner. At 12 h, DP could induce apoptosis by Annexin V-FITC/propidium iodide (PI) dual labeling, loss of mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS), acridine orange/ethidium bromide (AO/EB) staining and transmission electron microscopy (TEM) observation in K562 or HL60 cells. Furthermore, in an assay of gene and protein expression, we found that DP could downregulate the gene and protein expression levels of Bcl-2, upregulate the gene and protein expression levels of Bax and Bim, and downregulate the protein expression levels of PI3k, p-Akt, and p-FoxO3a. Moreover, the effects of DP on proliferation and apoptosis in K562 cells were enhanced by LY294002. Then, we tested the antitumor effects of DP in vivo. Nude mouse xenograft models were established by subcutaneously injecting K562 cells. We found that tumor volume was significantly decreased in DP-treated xenograft nude mice. Morphologic changes, apoptosis degree, and related gene and protein expression levels in transplanted tumor tissue of DP-treated nude mice were assessed by different experimental methods. CONCLUSIONS The in vivo and in vitro experimental results indicated that DP might inhibit the proliferation and induce the apoptosis of leukemia cells, which might be a result of suppressing the PI3k/Akt signaling pathways.
Collapse
Affiliation(s)
- Liwei Ma
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Zhe Chen
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Jing Li
- The Third Affiliated Hospital of Qiqihaer Medical University, China
| | - Hongtao Zhang
- The Third Affiliated Hospital of Qiqihaer Medical University, China
| | - Yongming Jia
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China
| | - Jicheng Liu
- Qiqihaer Medical University, Heilongjiang Qiqihaer, China.
| |
Collapse
|
6
|
Profiro de Oliveira JH, Arruda IES, Izak Ribeiro de Araújo J, Chaves LL, de La Rocca Soares MF, Soares-Sobrinho JL. Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology's stages. Expert Opin Ther Pat 2021; 32:89-114. [PMID: 34424127 DOI: 10.1080/13543776.2021.1970746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Many drugs used to combat schistosomiasis, Chagas disease, and leishmaniasis (SCL) have clinical limitations such as: high toxicity to the liver, kidneys and spleen; reproductive, gastrointestinal, and heart disorders; teratogenicity. In this sense, drug delivery systems (DDSs) have been described in the literature as a viable option for overcoming the limitations of these drugs. An analysis of the level of development (TRL) of patents can help in determine the steps that must be taken for promising technologies to reach the market. AREAS COVERED This study aimed to analyze the stage of development of DDSs for the treatment of SCL described in patents. In addition, we try to understand the main reasons why many DDSs do not reach the market. In this study, we examined DDSs for drugs indicated by WHO and treatment of SCL, by performing a search for patents. EXPERT OPINION In this present work we provide arguments that support the hypothesis that there is a lack of integration between academia and industry to finance and continue research, especially the development of clinical studies. We cite the translational research consortia as the potential alternative for developing DDSs to combat NTDs.
Collapse
Affiliation(s)
| | | | | | - Luise Lopes Chaves
- Department of Pharmacy, Federal University of Pernambuco, Recife, Recife-Pernambuco
| | | | | |
Collapse
|
7
|
Zhou Y, Li T, Zhu S, Gong W, Qin X, Du G. Study on antidepressant mechanism of Radix Bupleuri-Radix Paeoniae Alba herb pair by metabonomics combined with 1H nuclear magnetic resonance and ultra-high-performance liquid chromatography-tandem mass spectrometry detection technology. J Pharm Pharmacol 2021; 73:1262-1273. [PMID: 33885788 DOI: 10.1093/jpp/rgab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Radix Bupleuri-Radix Paeoniae Alba (BP), a traditional Chinese medicine herb pair, has treated depression by coordinating the liver in Chinese classical medicine books and modern research. This study aims to verify the antidepressant effect of BP by behavioural examination, and reveal the underlying antidepressant mechanisms of BP. METHODS The antidepressant effects in chronic unpredictable mild stress (CUMS) of BP were observed by behavioural indicators and 1H nuclear magnetic resonance (1H-NMR) and ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) metabonomics techniques combined with the related analysis platforms. KEY FINDINGS BP could significantly improve the depressive behaviour of CUMS rats. Compared with the model group, body weight (P < 0.05), the number of crossing (P < 0.001) and rearing (P < 0.01) and sucrose preference rate (P < 0.01) were significantly enhanced, and the immobility time was shortened in the forced swimming test (P < 0.001) of the BP group. In metabonomics study, 35 depression-related metabolites were identified by 1H NMR and UHPLC-MS/MS metabonomics by comparing model and control groups. BP could significantly retrieve 17 depression-related metabolites. Thirteen depression-related metabolic pathways were found through Met-PA and BP could regulate seven metabolic pathways. CONCLUSIONS BP herb pair had significantly antidepressant effect, which provides a basis for further finding drug targets.
Collapse
Affiliation(s)
- Yuzhi Zhou
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Tian Li
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Shiwei Zhu
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, P.R. China
| | - Wenxia Gong
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Xuemei Qin
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
- China Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, P.R. China
| |
Collapse
|
8
|
Cao H, Neerincx A, de Bono B, Lakner U, Huntington C, Elvin J, Gudgin E, Pridans C, Vickers MA, Huntly B, Trowsdale J, Barrow AD. Sialic acid-binding immunoglobulin-like lectin (Sigelac)-15 is a rapidly internalised cell-surface antigen expressed by acute myeloid leukaemia cells. Br J Haematol 2021; 193:946-950. [PMID: 33951750 DOI: 10.1111/bjh.17496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin (Siglec)-15 has recently been identified as a critical tumour checkpoint, augmenting the expression and function of programmed death-ligand 1. We raised a monoclonal antibody, A9E8, specific for Siglec-15 using phage display. A9E8 stained myeloid leukaemia cell lines and peripheral cluster of differentiation (CD)33+ blasts and CD34+ leukaemia stem cells from patients with acute myeloid leukaemia (AML). By contrast, there was minimal expression on healthy donor leucocytes or CD34+ stem cells from non-AML donors, suggesting targeting Siglec-15 may have significant therapeutic advantages over its fellow Siglec CD33. After binding, A9E8 was rapidly internalised (half-life of 180 s) into K562 cells. Antibodies to Siglec-15 therefore hold therapeutic potential for AML treatment.
Collapse
Affiliation(s)
- Huan Cao
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Andreas Neerincx
- Immunology Division, Pathology Department, University of Cambridge, Cambridge, UK
| | - Bernard de Bono
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ursula Lakner
- Medical Faculty, University of Tübingen, Tübingen, Germany
| | | | | | - Emma Gudgin
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
| | - Mark A Vickers
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Brian Huntly
- University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
| | - John Trowsdale
- Immunology Division, Pathology Department, University of Cambridge, Cambridge, UK
| | - Alexander D Barrow
- Department of Microbiology and Immunology (DMI), The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Annageldiyev C, Tan SF, Thakur S, Dhanyamraju PK, Ramisetti SR, Bhadauria P, Schick J, Zeng Z, Sharma V, Dunton W, Dovat S, Desai D, Zheng H, Feith DJ, Loughran TP, Amin S, Sharma AK, Claxton D, Sharma A. The PI3K/AKT Pathway Inhibitor ISC-4 Induces Apoptosis and Inhibits Growth of Leukemia in Preclinical Models of Acute Myeloid Leukemia. Front Oncol 2020; 10:393. [PMID: 32296637 PMCID: PMC7140985 DOI: 10.3389/fonc.2020.00393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia is a heterogeneous disease with a 5-year survival rate of 28.3%, and current treatment options constrained by dose-limiting toxicities. One of the key signaling pathways known to be frequently activated and dysregulated in AML is PI3K/AKT. Its dysregulation is associated with aggressive cell growth and drug resistance. We investigated the activity of Phenybutyl isoselenocyanate (ISC-4) in primary cells obtained from newly diagnosed AML patients, diverse AML cell lines, and normal cord blood cells. ISC-4 significantly inhibited survival and clonogenicity of primary human AML cells without affecting normal cells. We demonstrated that ISC-4-mediated p-Akt inhibition caused apoptosis in primary AML (CD34+) stem cells and enhanced efficacy of cytarabine. ISC-4 impeded leukemia progression with improved overall survival in a syngeneic C1498 mouse model with no obvious toxic effects on normal myelopoiesis. In U937 xenograft model, bone marrow cells exhibited significant reduction in human CD45+ cells in ISC-4 (~87%) or AraC (~89%) monotherapy groups compared to control. Notably, combination treatment suppressed the leukemic infiltration significantly higher than the single-drug treatments (~94%). Together, the present findings suggest that ISC-4 might be a promising agent for AML treatment.
Collapse
Affiliation(s)
- Charyguly Annageldiyev
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Su-Fern Tan
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Shreya Thakur
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Pavan Kumar Dhanyamraju
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Srinivasa R Ramisetti
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Preeti Bhadauria
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jacob Schick
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zheng Zeng
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Varun Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Wendy Dunton
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hong Zheng
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David J Feith
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States.,Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States.,Division of Hematology and Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Shantu Amin
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Arun K Sharma
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
10
|
Airborne Particulate Matter (PM 10) Inhibits Apoptosis through PI3K/AKT/FoxO3a Pathway in Lung Epithelial Cells: The Role of a Second Oxidant Stimulus. Int J Mol Sci 2020; 21:ijms21020473. [PMID: 31940823 PMCID: PMC7014458 DOI: 10.3390/ijms21020473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Outdoor particulate matter (PM10) exposure is carcinogenic to humans. The cellular mechanism by which PM10 is associated specifically with lung cancer includes oxidative stress and damage to proteins, lipids, and DNA in the absence of apoptosis, suggesting that PM10 induces cellular survival. We aimed to evaluate the PI3K/AKT/FoxO3a pathway as a mechanism of cell survival in lung epithelial A549 cells exposed to PM10 that were subsequently challenged with hydrogen peroxide (H2O2). Our results showed that pre-exposure to PM10 followed by H2O2, as a second oxidant stimulus increased the phosphorylation rate of pAKTSer473, pAKTThr308, and pFoxO3aSer253 2.5-fold, 1.8-fold, and 1.2-fold, respectively. Levels of catalase and p27kip1, which are targets of the PIK3/AKT/FoxO3a pathway, decreased 38.1% and 62.7%, respectively. None of these changes had an influence on apoptosis; however, the inhibition of PI3K using the LY294002 compound revealed that the PI3K/AKT/FoxO3a pathway was involved in apoptosis evasion. We conclude that nontoxic PM10 exposure predisposes lung epithelial cell cultures to evade apoptosis through the PI3K/AKT/FoxO3a pathway when cells are treated with a second oxidant stimulus.
Collapse
|
11
|
Castro I, Sampaio-Marques B, Ludovico P. Targeting Metabolic Reprogramming in Acute Myeloid Leukemia. Cells 2019; 8:cells8090967. [PMID: 31450562 PMCID: PMC6770240 DOI: 10.3390/cells8090967] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
The cancer metabolic reprogramming allows the maintenance of tumor proliferation, expansion and survival by altering key bioenergetics, biosynthetic and redox functions to meet the higher demands of tumor cells. In addition, several metabolites are also needed to perform signaling functions that further promote tumor growth and progression. These metabolic alterations have been exploited in different cancers, including acute myeloid leukemia, as novel therapeutic strategies both in preclinical models and clinical trials. Here, we review the complexity of acute myeloid leukemia (AML) metabolism and discuss how therapies targeting different aspects of cellular metabolism have demonstrated efficacy and how they provide a therapeutic window that should be explored to target the metabolic requirements of AML cells.
Collapse
Affiliation(s)
- Isabel Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal.
| |
Collapse
|
12
|
Tima S, Okonogi S, Ampasavate C, Pickens C, Berkland C, Anuchapreeda S. Development and Characterization of FLT3-Specific Curcumin-Loaded Polymeric Micelles as a Drug Delivery System for Treating FLT3-Overexpressing Leukemic Cells. J Pharm Sci 2016; 105:3645-3657. [PMID: 27751588 DOI: 10.1016/j.xphs.2016.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/30/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
Abstract
This study aimed at developing a curcumin (CM) nanoparticle targeted to Feline McDonough Sarcoma (FMS)-like tyrosine kinase 3 (FLT3) protein on the surface of leukemic cells and at evaluating their properties, specificity, cytotoxicity, and inhibitory effect on FLT3 protein level in FLT3-overexpressing leukemic cells, EoL-1, and MV-4-11 cells. FLT3-specific peptides were conjugated onto modified poloxamer 407 using the copper-catalyzed azide-alkyne cycloaddition reaction. The thin film hydration method was performed for FLT3-specific CM-loaded polymeric micelles (FLT3-CM-micelles) preparation. Flow cytometry and fluorescence microscopy were used to determine rate of cellular uptake. 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to test the cytotoxicity of the micelles on leukemic cells. FLT3-CM-micelles demonstrated a mean particle size less than 50 nm, high entrapment efficiency, and high rate of CM uptake by leukemic cells. The intracellular CM fluorescence is related to FLT3 protein levels on the leukemic cell surfaces. Moreover, FLT3-CM-micelles demonstrated an excellent cytotoxic effect and decreased FLT3 protein expression in the leukemic cells. The FLT3-CM-micelles could enhance both solubility and cytotoxicity of CM on FLT3-overexpressing leukemic cells. These promising nanoparticles may be used for enhancing antileukemic activity of CM and developed as a targeted drug delivery system in the future.
Collapse
Affiliation(s)
- Singkome Tima
- Nanoscience and Nanotechnology Program, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chad Pickens
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Kansas 66047
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Kansas 66047.
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|