1
|
Durán E, Sepúlveda M, Romero-Hasler P, Valdés F, Villamizar Sarmiento MG, Soto-Bustamante E, Neira-Carrillo A, Neira V, Ignacio Covarrubias J, Oyarzun-Ampuero F, Burgess DJ, Valenzuela C. Parenteral iron nutrition: Iron dextran-poloxamer thermosensitive hydrogel for prolonged intramuscular iron supplementation. Int J Pharm 2024; 663:124559. [PMID: 39122197 DOI: 10.1016/j.ijpharm.2024.124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
The objective of this study was to evaluate the potential of novel poloxamer thermosensitive hydrogels (PTHs) formulations for prolonged release of iron dextran particles (IDP) for intramuscular (IM) injection. The thermosensitive behaviour helps to avoid hepcidin overexpression and toxicity by releasing IDPs without iron accumulation in injection or deposit sites. We hypothesized that novel PTH formulation would prolong iron liberation compared to the commercial iron dextran formulation (FEDEX). PTHs loaded with IDPs were developed with increasing iron content (0.1, 0.2 and 0.4 g of iron/g of poloxamer) and characterized as a prolonged release IM iron supplement. The PTHs had a biocompatible pH for IM injection (6.4) and thermosensitive viscosity, increasing from ∼50 (4 °C) to ∼3000 mPa.s (37 °C). PTHs were successfully injected in the sol state (at 4 °C) into pork meat at 37 °C, transitioning to the gel state in situ (in ∼60-190 s). Structural characterization indicated that there were no PTH-IDP chemical interactions, suggesting that IDP entrapment in PTHs was physical upon gelation. In vitro release studies revealed that iron release from PTH (0.4 g of iron/g of poloxamer) reached 100 % by day 10, whereas 100 % release from FEDEX was complete in 4 h. This novel iron PTH formulation achieved a 60 times long iron release compared to the commercial product. In conclusion, the reported strategy shows adequate IDP entrapment/release properties for prolonged iron release following ex vivo IM injection using biocompatible materials. These results provide a strong basis for future preclinical evaluation to elucidate aspects such as drug release, local irritation, biocompatibility, and efficacy.
Collapse
Affiliation(s)
- Emerson Durán
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Ejercito Libertador 146, Santiago 8370003, Chile; Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile; Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11.315, La Pintana, Santiago CP: 8820808, Chile
| | - Marcela Sepúlveda
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - Patricio Romero-Hasler
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1.007, Independencia, Santiago, Chile
| | - Fabrizzio Valdés
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - María Gabriela Villamizar Sarmiento
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Eduardo Soto-Bustamante
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1.007, Independencia, Santiago, Chile
| | - Andrónico Neira-Carrillo
- Laboratorios de Materiales Bio-relacionados (CIMAT) y Síntesis y Caracterización de Polímeros Funcionalizados y Biomoléculas (POLYFORMS), Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile
| | - José Ignacio Covarrubias
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11.315, La Pintana, Santiago, Chile
| | - Felipe Oyarzun-Ampuero
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Diane J Burgess
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Carolina Valenzuela
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11.735, La Pintana, Santiago, Chile.
| |
Collapse
|
2
|
Meissner S, Rees S, Nguyen L, Connor B, Barker D, Harland B, Raos B, Svirskis D. Encapsulation of the growth factor neurotrophin-3 in heparinised poloxamer hydrogel stabilises bioactivity and provides sustained release. BIOMATERIALS ADVANCES 2024; 159:213837. [PMID: 38522310 DOI: 10.1016/j.bioadv.2024.213837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Poloxamer-based hydrogels show promise to stabilise and sustain the delivery of growth factors in tissue engineering applications, such as following spinal cord injury. Typically, growth factors such as neurotrophin-3 (NT-3) degrade rapidly in solution. Similarly, poloxamer hydrogels also degrade readily and are, therefore, only capable of sustaining the release of a payload over a small number of days. In this study, we focused on optimising a hydrogel formulation, incorporating both poloxamer 188 and 407, for the sustained delivery of bioactive NT-3. Hyaluronic acid blended into the hydrogels significantly reduced the degradation of the gel. We identified an optimal hydrogel composition consisting of 20 % w/w poloxamer 407, 5 % w/w poloxamer 188, 0.6 % w/w NaCl, and 1.5 % w/w hyaluronic acid. Heparin was chemically bound to the poloxamer chains to enhance interactions between the hydrogel and the growth factor. The unmodified and heparin-modified hydrogels exhibited sustained release of NT-3 for 28 days while preserving the bioactivity of NT-3. Moreover, these hydrogels demonstrated excellent cytocompatibility and had properties suitable for injection into the intrathecal space, underscoring their suitability as a growth factor delivery system. The findings presented here contribute valuable insights to the development of effective delivery strategies for therapeutic growth factors for tissue engineering approaches, including the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Shaun Rees
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Linh Nguyen
- Department of Pharmacology & Clinical Pharmacology, Centre of Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Bronwen Connor
- Department of Pharmacology & Clinical Pharmacology, Centre of Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
3
|
Getachew M, Tesfaye H, Yihunie W, Ayenew T, Alemu S, Dagnew EM, Biyazin Y, Abebe D, Degefu N, Abebaw A. Sustained release local anesthetics for pain management: relevance and formulation approaches. FRONTIERS IN PAIN RESEARCH 2024; 5:1383461. [PMID: 38645568 PMCID: PMC11026556 DOI: 10.3389/fpain.2024.1383461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
This review attempted to ascertain the rationale for the formulation of sustained-release local anesthetics and summarize the various formulation approaches designed to date to achieve sustained and localized local analgesic effects. The incidence of pain, which is the concern of patients as well as health care professionals, is increasing due to accidents, surgical procedures, and other diseases. Local anesthetics can be used for the management of moderate to severe acute and chronic pain. They also allow regional analgesia, in situations where the cause and source of the pain are limited to a particular site or region, without the need for loss of consciousness or systemic administration of other analgesics thereby decreasing the risk of potential toxicities. Though they have an interesting antipain efficacy, the short duration of action of local anesthetics makes the need for their multiple injections or opioid adjuvants mandatory. To overcome this problem, different formulations are being designed that help achieve prolonged analgesia with a single dose of administration. Combination with adjuvants, liposomal formulations, lipid-based nanoparticles, thermo-responsive nanogels, microspheres, microcapsules, complexation with multivalent counterions and HP-β-CD, lipid-based nanoparticles, and bio-adhesive films, and polymeric matrices are among the approaches. Further safety studies are required to ensure the safe and effective utilization of sustained-release local anesthetics. Moreover, the release kinetics of the various formulations should be adequately established.
Collapse
Affiliation(s)
- Melese Getachew
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Hana Tesfaye
- School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Wubetu Yihunie
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tesfahun Ayenew
- Department of Nursing, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Sintayehu Alemu
- Department of Pharmaceutics, School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Ephrem Mebratu Dagnew
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalemgeta Biyazin
- Department of Pediatrics and Child Health Nursing, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Natanim Degefu
- Department of Pharmaceutics, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Abtie Abebaw
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Zheng LX, Yu Q, Li Q, Zheng CD. Targeted local anesthesia: a novel slow-release Fe 3O 4-lidocaine-PLGA microsphere endowed with a magnetic targeting function. J Anesth 2024; 38:232-243. [PMID: 38310577 DOI: 10.1007/s00540-023-03305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/25/2023] [Indexed: 02/06/2024]
Abstract
PURPOSE Lidocaine microspheres can prolong the analgesic time to 24-48 h, which still cannot meet the need of postoperative analgesia lasting more than 3 days. Therefore, we added Fe3O4 to the lidocaine microspheres and used an applied magnetic field to attract Fe3O4 to fix the microspheres around the target nerves, reducing the diffusion of magnetic lidocaine microspheres to the surrounding tissues and prolonging the analgesic time. METHODS Fe3O4-lidocaine-PLGA microspheres were prepared by the complex-emulsion volatilization method to characterize and study the release properties in vitro. The neural anchoring properties and in vivo morphology of the drug were obtained by magnetic resonance imaging. The nerve blocking effect and analgesic effect of magnetic lidocaine microspheres were evaluated by animal experiments. RESULTS The mean diameter of magnetically responsive lidocaine microspheres: 9.04 ± 3.23 μm. The encapsulation and drug loading of the microspheres were 46.18 ± 3.26% and 6.02 ± 1.87%, respectively. Magnetic resonance imaging showed good imaging of Fe3O4-Lidocain-PLGA microspheres, a drug-carrying model that slowed down the diffusion of the microspheres in the presence of an applied magnetic field. Animal experiments demonstrated that this preparation had a significantly prolonged nerve block, analgesic effect, and a nerve anchoring function. CONCLUSION Magnetically responsive lidocaine microspheres can prolong analgesia by slowly releasing lidocaine, which can be immobilized around the nerve by a magnetic field on the body surface, avoiding premature diffusion of the microspheres to surrounding tissues and improving drug targeting.
Collapse
Affiliation(s)
- Ling-Xi Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qian Yu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiang Li
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 19 Yangshi Street, Qingyang District, Chengdu, 610031, Sichuan, China
| | - Chuan-Dong Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 19 Yangshi Street, Qingyang District, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
5
|
Xu X, Chang S, Zhang X, Hou T, Yao H, Zhang S, Zhu Y, Cui X, Wang X. Fabrication of a controlled-release delivery system for relieving sciatica nerve pain using an ultrasound-responsive microcapsule. Front Bioeng Biotechnol 2022; 10:1072205. [PMID: 36507268 PMCID: PMC9729723 DOI: 10.3389/fbioe.2022.1072205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Lidocaine, a potent local anesthetic, is clinically used in nerve block and pain management. However, due to its short half-life, repeated administration is required. For this reason, here we designed and prepared a lidocaine-encapsulated polylactic acid-glycolic acid (Lidocaine@PLGA) microcapsule with ultrasound responsiveness to relieve the sciatica nerve pain. With a premixed membrane emulsification strategy, the fabricated lidocaine-embedded microcapsules possessed uniform particle size, good stability, injectability, and long-term sustained release both in vitro and in vivo. More importantly, Lidocaine@PLGA microcapsules had the function of ultrasonic responsive release, which made the drug release controllable with the effect of on-off administration. Our research showed that using ultrasound as a trigger switch could promote the rapid release of lidocaine from the microcapsules, achieving the dual effects of long-term sustained release and short-term ultrasound-triggered rapid release, which can enable the application of ultrasound-responsive Lidocaine@PLGA microcapsules to nerve root block and postoperative pain relief.
Collapse
Affiliation(s)
- Xiong Xu
- Department of Orthopaedics, The 8th Medical Center of PLA General Hospital, Beijing, China,Department of Graduate, Hebei North University, Zhangjiakou, China,Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Shuai Chang
- Orthopedics Department, Peking University Third Hospital, Beijing, China
| | - Xiaoyi Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Taotao Hou
- Department of Graduate, Hebei North University, Zhangjiakou, China
| | - Hui Yao
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shusheng Zhang
- ShenYang Tiantai Remote Medical Tech Development Co., Ltd., Shenyang, China
| | - Yuqi Zhu
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Correspondence: Yuqi Zhu, ; Xu Cui, ; Xing Wang,
| | - Xu Cui
- Department of Orthopaedics, The 8th Medical Center of PLA General Hospital, Beijing, China,Correspondence: Yuqi Zhu, ; Xu Cui, ; Xing Wang,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China,Correspondence: Yuqi Zhu, ; Xu Cui, ; Xing Wang,
| |
Collapse
|
6
|
Strategies for Solubility and Bioavailability Enhancement and Toxicity Reduction of Norcantharidin. Molecules 2022; 27:molecules27227740. [PMID: 36431851 PMCID: PMC9693198 DOI: 10.3390/molecules27227740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Cantharidin (CTD) is the main active ingredient isolated from Mylabris, and norcantharidin (NCTD) is a demethylated derivative of CTD, which has similar antitumor activity to CTD and lower toxicity than CTD. However, the clinical use of NCTD is limited due to its poor solubility, low bioavailability, and toxic effects on normal cells. To overcome these shortcomings, researchers have explored a number of strategies, such as chemical structural modifications, microsphere dispersion systems, and nanodrug delivery systems. This review summarizes the structure-activity relationship of NCTD and novel strategies to improve the solubility and bioavailability of NCTD as well as reduce the toxicity. This review can provide evidence for further research of NCTD.
Collapse
|
7
|
Abdeltawab H, Svirskis D, Hill AG, Sharma M. Increasing the Hydrophobic Component of Poloxamers and the Inclusion of Salt Extend the Release of Bupivacaine from Injectable In Situ Gels, While Common Polymer Additives Have Little Effect. Gels 2022; 8:gels8080484. [PMID: 36005085 PMCID: PMC9407117 DOI: 10.3390/gels8080484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Various strategies have been applied to reduce the initial burst of drug release and sustain release from poloxamer-based thermoresponsive gels. This work focussed on investigating different formulation approaches to minimise the initial burst of release and sustain the release of the small hydrophilic drug bupivacaine hydrochloride from poloxamer-based thermoresponsive gels. Various in situ gel formulations were prepared by varying the polypropylene oxide (PPO)/polyethylene oxide (PEO) ratio and by adding additives previously described in the literature. It was observed that increasing the PPO/PEO ratio from 0.28 to 0.30 reduced the initial burst release from 17.3% ± 1.8 to 9.1% ± 1.2 during the first six hours and extended the release profile from 10 to 14 days. Notably, the inclusion of sodium chloride (NaCl 0.4% w/w) further reduced the initial burst release to 1.8% ± 1.1 over the first 6 h. Meanwhile, physical blending with additive polymers had a negligible effect on the burst release and overall release profile. The findings suggest that extended release of bupivacaine hydrochloride, with reduced initial burst release, can be achieved simply by increasing the PPO/PEO ratio and the inclusion of NaCl.
Collapse
Affiliation(s)
- Hani Abdeltawab
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (H.A.); (D.S.)
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (H.A.); (D.S.)
| | - Andrew G. Hill
- Department of Surgery, South Auckland Clinical Campus, The University of Auckland, Middlemore Hospital, Auckland 2025, New Zealand;
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (H.A.); (D.S.)
- Correspondence: ; Tel.: +64-9-373-7599 (ext. 81830); Fax: +64-9-367-7192
| |
Collapse
|
8
|
In Situ Gelling System for Sustained Intraarticular Delivery of Bupivacaine and Ketorolac in Sheep. Eur J Pharm Biopharm 2022; 174:35-46. [DOI: 10.1016/j.ejpb.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/18/2022]
|
9
|
Sustained Delivery of Lactoferrin Using Poloxamer Gels for Local Bone Regeneration in a Rat Calvarial Defect Model. MATERIALS 2021; 15:ma15010212. [PMID: 35009359 PMCID: PMC8745849 DOI: 10.3390/ma15010212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 01/02/2023]
Abstract
Lactoferrin (LF) is a multifunctional milk glycoprotein that promotes bone regeneration. Local delivery of LF at the bone defect site is a promising approach for enhancement of bone regeneration, but efficient systems for sustained local delivery are still largely missing. The aim of this study was to investigate the potential of the poloxamers for sustained delivery of LF to enhance local bone regeneration. The developed LF/poloxamer formulations were liquid at room temperature (20 °C) transforming to a sustained releasing gel depot at body temperature (37 °C). In vitro release studies demonstrated an initial burst release (~50%), followed by slower release of LF for up to 72 h. Poloxamer, with and without LF, increased osteoblast viability at 72 h (p < 0.05) compared to control, and the immune response from THP-1 cells was mild when compared to the suture material. In rat calvarial defects, the LF/poloxamer group had lower bone volume than the controls (p = 0.0435). No difference was observed in tissue mineral density and lower bone defect coverage scores (p = 0.0267) at 12 weeks after surgery. In conclusion, LF/poloxamer formulations support cell viability and do not induce an unfavourable immune response; however, LF delivery via the current formulation of LF200/poloxamer gel did not demonstrate enhanced bone regeneration and was not compatible with the rat calvarial defect model.
Collapse
|
10
|
Jeon JH, Seong YW, Han JE, Cho S, Kim JH, Jheon S, Kim K. Randomized trial of poloxamer 407-based ropivacaine hydrogel after thoracoscopic pulmonary resection. Ann Thorac Surg 2021; 114:1189-1196. [PMID: 34653384 DOI: 10.1016/j.athoracsur.2021.08.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND We conducted a comparative study to evaluate the efficacy of poloxamer 407-based ropivacaine hydrogel at the wound site (Gel) and continuous thoracic paravertebral block (On-Q) for postoperative pain following thoracoscopic pulmonary resection. METHODS This prospective, randomized, noninferiority study included 89 patients randomized into the two groups; Gel (poloxamer 407-based 0.75% ropivacaine, 22.5 mg) and On-Q (0.2% ropivacaine, 4 mg/hour for 48 hours). The primary outcome measure was total fentanyl consumption and secondary outcome measures were the need for rescue analgesia and pain intensity using the numeric rating scale (NRS). RESULTS There was no significant difference in total fentanyl consumption between the Gel group and the On-Q group (1504.29 ± 315.72 mcg vs 1560.32 ± 274.81 mcg, p = 0.374). Pain intensity using the NRS between the Gel group and the On-Q group demonstrated no statistical differences (6 hours: 3.56 vs 3.55, p = 0.958; 24 hours: 3.21 vs 3.00, p = 0.250; 48 hours: 2.75 vs 2.49, p = 0.233; and 72 hours: 2.39 vs 2.33, p = 0.811), and there was no significant difference in the frequency of analgesic rescue medication use (3.70 vs 3.33, p = 0.417). CONCLUSIONS We confirm the noninferiority of Gel compared with On-Q for acute postoperative pain following thoracoscopic pulmonary resection. Considering a technical simplicity and low systemic toxicity of the local injection of Gel, this analgesic modality may be worthy of further research and is thus considered to have potential as a viable alternative to On-Q for regional analgesia.
Collapse
Affiliation(s)
- Jae Hyun Jeon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Won Seong
- Department of Thoracic and Cardiovascular Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Han
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Hee Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kwhanmien Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Li XY, Guan QX, Shang YZ, Wang YH, Lv SW, Yang ZX, Wang R, Feng YF, Li WN, Li YJ. Metal-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to treat liver cancer. World J Gastroenterol 2021; 27:4208-4220. [PMID: 34326620 PMCID: PMC8311525 DOI: 10.3748/wjg.v27.i26.4208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Norcantharidin (NCTD) is suitable for the treatment of primary liver cancer, especially early and middle primary liver cancer. This compound can reduce tumors and improve immune function. However, the side effects of NCTD have limited its application. There is a marked need to reduce the side effects and increase the efficacy of NCTD. AIM To develop a nanomaterial carrier, NCTD-loaded metal-organic framework IRMOF-3 coated with a temperature-sensitive gel (NCTD-IRMOF-3-Gel), aiming to improve the anticancer activity of NCTD and reduce the drug dose. METHODS NCTD-IRMOF-3-Gel was obtained by a coordination reaction. The apparent characteristics and in vitro release of NCTD-IRMOF-3-Gel were investigated. Cell cytotoxicity assays, flow cytometry, and apoptosis experiments in mouse hepatoma (Hepa1-6) cells were used to determine the anti-liver cancer activity of NCTD-IRMOF-3-Gel in in vitro models. RESULTS The particle size of NCTD-IRMOF-3-Gel was 50-100 nm, and the particle size distribution was uniform. The release curve showed that NCTD-IRMOF-3-Gel had an obvious sustained-release effect. The cytotoxicity assays showed that the free drug NCTD and NCTD-IRMOF-3-Gel treatments markedly inhibited Hepa1-6 cell proliferation, and the inhibition rate increased with increasing drug concentration. By flow cytometry, NCTD-IRMOF-3-Gel was observed to block the Hepa1-6 cell cycle in the S and G2/M phases, and the thermosensitive gel nanoparticles may inhibit cell proliferation by inducing cell cycle arrest. Apoptosis experiments showed that NCTD-IRMOF-3-Gel induced the apoptosis of Hepa1-6 cells. CONCLUSION Our results indicated that the NCTD-IRMOF-3-Gel may be beneficial for liver cancer disease treatment.
Collapse
Affiliation(s)
- Xiu-Yan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Qing-Xia Guan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Zhou Shang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yan-Hong Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Shao-Wa Lv
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Zhi-Xin Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Rui Wang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yu-Fei Feng
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Wei-Nan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| | - Yong-Ji Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang Province, China
| |
Collapse
|
12
|
Metal-organic framework IRMOFs coated with a temperature-sensitive gel delivering norcantharidin to treat liver cancer. World J Gastroenterol 2021. [DOI: 10.3748/wjg.v27.i26.4203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
|
13
|
Abdeltawab H, Svirskis D, Boyd BJ, Hill A, Sharma M. Injectable thermoresponsive gels offer sustained dual release of bupivacaine hydrochloride and ketorolac tromethamine for up to two weeks. Int J Pharm 2021; 604:120748. [PMID: 34051318 DOI: 10.1016/j.ijpharm.2021.120748] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 01/26/2023]
Abstract
Bupivacaine and ketorolac are commonly used in combination to reduce perioperative pain. This study aimed to develop and characterize an injectable system that offers simultaneous and prolonged release of bupivacaine and ketorolac. Formulations were prepared using poloxamer 407 with increasing concentrations of poloxamer 188 and sodium chloride. Small Angle X-ray Scattering (SAXS) experiments demonstrated that the poloxamers form gels with a cubic lattice arrangement regardless of the matrix composition, whereas the system porosity is driven by poloxamers concentration. Drug loading slightly reduced the intermicellar spacing. Fourier transform infrared spectroscopy and thermal analysis suggested electrostatic interactions between the loaded drugs and poloxamers. Mechanical and rheological studies confirmed the formulations exhibit Newtonian-like flow at room temperature followed by a transition to a viscous gel at body temperature. Importantly, the developed formulations demonstrated steady and sustained release of both bupivacaine and ketorolac over two weeks. Sodium chloride reduced the initial burst release over the first six hours for BH, from 8.6 ± 0.18% to 1.6 ± 0.11%, and KT, from 7.7 ± 0.27% to 1.5 ± 0.10%. Hence, poloxamer-based thermoresponsive gelling systems are promising delivery platforms for the sustained delivery of bupivacaine and ketorolac, with potential clinical benefits for managing perioperative pain.
Collapse
Affiliation(s)
- Hani Abdeltawab
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, New Zealand
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Andrew Hill
- Department of Surgery, School of Medicine, The University of Auckland, Middlemore Hospital, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, New Zealand.
| |
Collapse
|
14
|
Favatela F, Horst M, Bracone M, Gonzalez J, Alvarez V, Lassalle V. Gelatin/Cellulose nanowhiskers hydrogels intended for the administration of drugs in dental treatments: Study of lidocaine as model case. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Abdeltawab H, Svirskis D, Sharma M. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin Drug Deliv 2020; 17:495-509. [PMID: 32067500 DOI: 10.1080/17425247.2020.1731469] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Poloxamer based in situ gelling systems offer numerous advantages in drug delivery; however, their application as prolonged-release delivery platforms is limited mainly due to their weak mechanical properties and the interconnected aqueous network causing fast gel erosion and drug diffusion.Area covered: The focus of this review is to provide an insightful discussion on the formulation strategies that can be employed to sustain/prolong the drug release from poloxamer based in situ gelling systems. The review also outlines the formulation factors, influencing drug release from these systems.Expert opinion: The nature, composition, and concentration of poloxamers are the most critical factors in defining the rate of drug release from an in situ gelling matrix. Hydrophobic gel matrices have compact micellar arrangements resulting in slow diffusion and erosion. Depending on the intended clinical application, gel characteristics can be modulated, either by physical blending or by chemical crosslinking with additive materials, to slow release and improve residence time at the administration site. Incorporating drug-loaded particles into poloxamer gels sustains drug release by creating multiple rate-limiting release barriers. Chemical modification of poloxamers appears to be a promising strategy to obtain prolonged sustained release for parenteral application without compromising the rheological properties of the formulation.
Collapse
Affiliation(s)
- Hani Abdeltawab
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Manisha Sharma
- School of Pharmacy, Faculty of Medical & Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Comparing human peritoneal fluid and phosphate-buffered saline for drug delivery: do we need bio-relevant media? Drug Deliv Transl Res 2018; 8:708-718. [PMID: 29582351 DOI: 10.1007/s13346-018-0513-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An understanding of biological fluids at the site of administration is important to predict the fate of drug delivery systems in vivo. Little is known about peritoneal fluid; therefore, we have investigated this biological fluid and compared it to phosphate-buffered saline, a synthetic media commonly used for in vitro evaluation of intraperitoneal drug delivery systems. Human peritoneal fluid samples were analysed for electrolyte, protein and lipid levels. In addition, physicochemical properties were measured alongside rheological parameters. Significant inter-patient variations were observed with regard to pH (p < 0.001), buffer capacity (p < 0.05), osmolality (p < 0.001) and surface tension (p < 0.05). All the investigated physicochemical properties of peritoneal fluid differed from phosphate-buffered saline (p < 0.001). Rheological examination of peritoneal fluid demonstrated non-Newtonian shear thinning behaviour and predominantly exhibited the characteristics of an entangled network. Inter-patient and inter-day variability in the viscosity of peritoneal fluid was observed. The solubility of the local anaesthetic lidocaine in peritoneal fluid was significantly higher (p < 0.05) when compared to phosphate-buffered saline. Interestingly, the dissolution rate of lidocaine was not significantly different between the synthetic and biological media. Importantly, and with relevance to intraperitoneal drug delivery systems, the sustained release of lidocaine from a thermosensitive gel formulation occurred at a significantly faster rate into peritoneal fluid. Collectively, these data demonstrate the variation between commonly used synthetic media and human peritoneal fluid. The differences in drug release rates observed illustrate the need for bio-relevant media, which ultimately would improve in vitro-in vivo correlation.
Collapse
|
17
|
Analysis of the Postoperative Periarticular Environment and Influence on Sustained Drug Delivery From a Gel Formulation. J Pharm Sci 2018; 107:2399-2403. [DOI: 10.1016/j.xphs.2018.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 11/16/2022]
|
18
|
de Lima EN, de Andrade ARB, Leal LB, de Santana DP. Levobupivacaine Thermogel for Long-acting Analgesia. AAPS PharmSciTech 2018; 19:2533-2542. [PMID: 29948983 DOI: 10.1208/s12249-018-1083-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023] Open
Abstract
The adequate management of analgesia, by pharmacological methods or not, is a great challenge. Local anesthetics are used for pain relief, mainly by parenteral, intramuscular, catheter, and other routes of administration. The use of in situ forming systems becomes an alternative for the control of pain. The present research investigates development of thermogels containing poloxamer and levobupivacaine. All formulations were prepared by the cold method; the compatibilities of the excipients were evaluated by DSC, rheology and viscosities, transition temperature, syringeability, release kinetics, and permeation. The compatibility of the tested excipients with the drug was initially observed; all formulations had a viscosity increase at 37°C. Different delivery rates were observed in both the release and permeation studies. The developed systems maintained the in vitro release of the drug for a long period, likely decreasing side effects in vivo and avoiding the need for supplementary analgesia by other routes.
Collapse
|
19
|
In vitro and ex vivo characterisation of an in situ gelling formulation for sustained lidocaine release with potential use following knee arthroplasty. Drug Deliv Transl Res 2018; 8:820-829. [DOI: 10.1007/s13346-018-0492-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|