1
|
Nosrati H, Fallah Tafti M, Aghamollaei H, Bonakdar S, Moosazadeh Moghaddam M. Directed Differentiation of Adipose-Derived Stem Cells Using Imprinted Cell-Like Topographies as a Growth Factor-Free Approach. Stem Cell Rev Rep 2024; 20:1752-1781. [PMID: 39066936 DOI: 10.1007/s12015-024-10767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
The influence of surface topography on stem cell behavior and differentiation has garnered significant attention in regenerative medicine and tissue engineering. The cell-imprinting method has been introduced as a promising approach to mimic the geometry and topography of cells. The cell-imprinted substrates are designed to replicate the topographies and dimensions of target cells, enabling tailored interactions that promote the differentiation of stem cells towards desired specialized cell types. In fact, by replicating the size and shape of cells, biomimetic substrates provide physical cues that profoundly impact stem cell differentiation. These cues play a pivotal role in directing cell morphology, cytoskeletal organization, and gene expression, ultimately influencing lineage commitment. The biomimetic substrates' ability to emulate the native cellular microenvironment supports the creation of platforms capable of steering stem cell fate with high precision. This review discusses the role of mechanical factors that impact stem cell fate. It also provides an overview of the design and fabrication principles of cell-imprinted substrates. Furthermore, the paper delves into the use of cell-imprinted polydimethylsiloxane (PDMS) substrates to direct adipose-derived stem cells (ADSCs) differentiation into a variety of specialized cells for tissue engineering and regenerative medicine applications. Additionally, the review discusses the limitations of cell-imprinted PDMS substrates and highlights the efforts made to overcome these limitations.
Collapse
Affiliation(s)
- Hamed Nosrati
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Fallah Tafti
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Shakoor S, Kibble E, El-Jawhari JJ. Bioengineering Approaches for Delivering Growth Factors: A Focus on Bone and Cartilage Regeneration. Bioengineering (Basel) 2022; 9:bioengineering9050223. [PMID: 35621501 PMCID: PMC9137461 DOI: 10.3390/bioengineering9050223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Growth factors are bio-factors that target reparatory cells during bone regeneration. These growth factors are needed in complicated conditions of bone and joint damage to enhance tissue repair. The delivery of these growth factors is key to ensuring the effectiveness of regenerative therapy. This review discusses the roles of various growth factors in bone and cartilage regeneration. The methods of delivery of natural or recombinant growth factors are reviewed. Different types of scaffolds, encapsulation, Layer-by-layer assembly, and hydrogels are tools for growth factor delivery. Considering the advantages and limitations of these methods is essential to developing regenerative therapies. Further research can accordingly be planned to have new or combined technologies serving this purpose.
Collapse
|
3
|
Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering. Int J Nanomedicine 2020; 15:6097-6111. [PMID: 32884266 PMCID: PMC7434569 DOI: 10.2147/ijn.s249829] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023] Open
Abstract
The development of biomaterials, stem cells and bioactive factors has led to cartilage tissue engineering becoming a promising tactic to repair cartilage defects. Various polymer three-dimensional scaffolds that provide an extracellular matrix (ECM) mimicking environment play an important role in promoting cartilage regeneration. In addition, numerous growth factors have been found in the regenerative process. However, it has been elucidated that the uncontrolled delivery of these factors cannot fully exert regenerative potential and can also elicit undesired side effects. Considering the complexity of the ECM, neither scaffolds nor growth factors can independently obtain successful outcomes in cartilage tissue engineering. Therefore, collectively, an appropriate combination of growth factors and scaffolds have great potential to promote cartilage repair effectively; this approach has become an area of considerable interest in recent investigations. Of late, an increasing trend was observed in cartilage tissue engineering towards this combination to develop a controlled delivery system that provides adequate physical support for neo-cartilage formation and also enables spatiotemporally delivery of growth factors to precisely and fully exert their chondrogenic potential. This review will discuss the role of polymer scaffolds and various growth factors involved in cartilage tissue engineering. Several growth factor delivery strategies based on the polymer scaffolds will also be discussed, with examples from recent studies highlighting the importance of spatiotemporal strategies for the controlled delivery of single or multiple growth factors in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiaxin Liu
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Guan
- School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tongqing Zhou
- School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xin Duan
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhou Xiang
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|