1
|
Li G, Ohishi T, Kaneko MK, Takei J, Mizuno T, Kawada M, Saito M, Suzuki H, Kato Y. Defucosylated Mouse-Dog Chimeric Anti-EGFR Antibody Exerts Antitumor Activities in Mouse Xenograft Models of Canine Tumors. Cells 2021; 10:cells10123599. [PMID: 34944112 PMCID: PMC8700185 DOI: 10.3390/cells10123599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to tumor malignancy via gene amplification and protein overexpression. Previously, we developed an anti-human EGFR (hEGFR) monoclonal antibody, namely EMab-134, which detects hEGFR and dog EGFR (dEGFR) with high sensitivity and specificity. In this study, we produced a defucosylated mouse–dog chimeric anti-EGFR monoclonal antibody, namely E134Bf. In vitro analysis revealed that E134Bf highly exerted antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against a canine osteosarcoma cell line (D-17) and a canine fibroblastic cell line (A-72), both of which express endogenous dEGFR. Moreover, in vivo administration of E134Bf significantly suppressed the development of D-17 and A-72 compared with the control dog IgG in mouse xenografts. These results indicate that E134Bf exerts antitumor effects against dEGFR-expressing canine cancers and could be valuable as part of an antibody treatment regimen for dogs.
Collapse
Affiliation(s)
- Guanjie Li
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Japan;
- Correspondence: (T.O.); (Y.K.); Tel.: +81-55-924-0601 (T.O.); +81-22-717-8207 (Y.K.)
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan;
| | - Manabu Kawada
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi 410-0301, Japan;
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (G.L.); (M.S.); (H.S.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.K.K.); (J.T.)
- Correspondence: (T.O.); (Y.K.); Tel.: +81-55-924-0601 (T.O.); +81-22-717-8207 (Y.K.)
| |
Collapse
|
2
|
Kontermann RE, Ungerechts G, Nettelbeck DM. Viro-antibody therapy: engineering oncolytic viruses for genetic delivery of diverse antibody-based biotherapeutics. MAbs 2021; 13:1982447. [PMID: 34747345 PMCID: PMC8583164 DOI: 10.1080/19420862.2021.1982447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer therapeutics approved for clinical application include oncolytic viruses and antibodies, which evolved by nature, but were improved by molecular engineering. Both facilitate outstanding tumor selectivity and pleiotropic activities, but also face challenges, such as tumor heterogeneity and limited tumor penetration. An innovative strategy to address these challenges combines both agents in a single, multitasking therapeutic, i.e., an oncolytic virus engineered to express therapeutic antibodies. Such viro-antibody therapies genetically deliver antibodies to tumors from amplified virus genomes, thereby complementing viral oncolysis with antibody-defined therapeutic action. Here, we review the strategies of viro-antibody therapy that have been pursued exploiting diverse virus platforms, antibody formats, and antibody-mediated modes of action. We provide a comprehensive overview of reported antibody-encoding oncolytic viruses and highlight the achievements of 13 years of viro-antibody research. It has been shown that functional therapeutic antibodies of different formats can be expressed in and released from cancer cells infected with different oncolytic viruses. Virus-encoded antibodies have implemented direct tumor cell killing, anti-angiogenesis, or activation of adaptive immune responses to kill tumor cells, tumor stroma cells or inhibitory immune cells. Importantly, numerous reports have shown therapeutic activity complementary to viral oncolysis for these modalities. Also, challenges for future research have been revealed. Established engineering technologies for both oncolytic viruses and antibodies will enable researchers to address these challenges, facilitating the development of effective viro-antibody therapeutics.
Collapse
Affiliation(s)
- Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
ImmunoPET in Multiple Myeloma-What? So What? Now What? Cancers (Basel) 2020; 12:cancers12061467. [PMID: 32512883 PMCID: PMC7352991 DOI: 10.3390/cancers12061467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Despite constant progress over the past three decades, multiple myeloma (MM) is still an incurable disease, and the identification of new biomarkers to better select patients and adapt therapy is more relevant than ever. Recently, the introduction of therapeutic monoclonal antibodies (mAbs) (including direct-targeting mAbs and immune checkpoint inhibitors) appears to have changed the paradigm of MM management, emphasizing the opportunity to cure MM patients through an immunotherapeutic approach. In this context, immuno-positron emission tomography (immunoPET), combining the high sensitivity and resolution of a PET camera with the specificity of a radiolabelled mAb, holds the capability to cement this new treatment paradigm for MM patients. It has the potential to non-invasively monitor the distribution of therapeutic antibodies or directly monitor biomarkers on MM cells, and to allow direct observation of potential changes over time and in response to various therapeutic interventions. Tumor response could, in the future, be anticipated more effectively to provide individualized treatment plans tailored to patients according to their unique imaging signatures. This work explores the important role played by immunotherapeutics in the management of MM, and focuses on some of the challenges for this drug class and the significant interest of companion imaging agents such as immunoPET.
Collapse
|
4
|
Deonarain MP, Yahioglu G, Stamati I, Pomowski A, Clarke J, Edwards BM, Diez-Posada S, Stewart AC. Small-Format Drug Conjugates: A Viable Alternative to ADCs for Solid Tumours? Antibodies (Basel) 2018; 7:E16. [PMID: 31544868 PMCID: PMC6698822 DOI: 10.3390/antib7020016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) have been through multiple cycles of technological innovation since the concept was first practically demonstrated ~40 years ago. Current technology is focusing on large, whole immunoglobulin formats (of which there are approaching 100 in clinical development), many with site-specifically conjugated payloads numbering 2 or 4. Despite the success of trastuzumab-emtansine in breast cancer, ADCs have generally failed to have an impact in solid tumours, leading many to explore alternative, smaller formats which have better penetrating properties as well as more rapid pharmacokinetics (PK). This review describes research and development progress over the last ~10 years obtained from the primary literature or conferences covering over a dozen different smaller format-drug conjugates from 80 kDa to around 1 kDa in total size. In general, these agents are potent in vitro, particularly more recent ones incorporating ultra-potent payloads such as auristatins or maytansinoids, but this potency profile changes when testing in vivo due to the more rapid clearance. Strategies to manipulate the PK properties, whilst retaining the more effective tumour penetrating properties could at last make small-format drug conjugates viable alternative therapeutics to the more established ADCs.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Ioanna Stamati
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Anja Pomowski
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - James Clarke
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Bryan M Edwards
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Soraya Diez-Posada
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Ashleigh C Stewart
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| |
Collapse
|
5
|
Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36:506-520. [DOI: 10.1016/j.biotechadv.2018.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
|
6
|
Molecular Simulation of Receptor Occupancy and Tumor Penetration of an Antibody and Smaller Scaffolds: Application to Molecular Imaging. Mol Imaging Biol 2017; 19:656-664. [DOI: 10.1007/s11307-016-1041-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Yeang CH, Beckman RA. Long range personalized cancer treatment strategies incorporating evolutionary dynamics. Biol Direct 2016; 11:56. [PMID: 27770811 PMCID: PMC5075220 DOI: 10.1186/s13062-016-0153-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/21/2016] [Indexed: 02/07/2023] Open
Abstract
Background Current cancer precision medicine strategies match therapies to static consensus molecular properties of an individual’s cancer, thus determining the next therapeutic maneuver. These strategies typically maintain a constant treatment while the cancer is not worsening. However, cancers feature complicated sub-clonal structure and dynamic evolution. We have recently shown, in a comprehensive simulation of two non-cross resistant therapies across a broad parameter space representing realistic tumors, that substantial improvement in cure rates and median survival can be obtained utilizing dynamic precision medicine strategies. These dynamic strategies explicitly consider intratumoral heterogeneity and evolutionary dynamics, including predicted future drug resistance states, and reevaluate optimal therapy every 45 days. However, the optimization is performed in single 45 day steps (“single-step optimization”). Results Herein we evaluate analogous strategies that think multiple therapeutic maneuvers ahead, considering potential outcomes at 5 steps ahead (“multi-step optimization”) or 40 steps ahead (“adaptive long term optimization (ALTO)”) when recommending the optimal therapy in each 45 day block, in simulations involving both 2 and 3 non-cross resistant therapies. We also evaluate an ALTO approach for situations where simultaneous combination therapy is not feasible (“Adaptive long term optimization: serial monotherapy only (ALTO-SMO)”). Simulations utilize populations of 764,000 and 1,700,000 virtual patients for 2 and 3 drug cases, respectively. Each virtual patient represents a unique clinical presentation including sizes of major and minor tumor subclones, growth rates, evolution rates, and drug sensitivities. While multi-step optimization and ALTO provide no significant average survival benefit, cure rates are significantly increased by ALTO. Furthermore, in the subset of individual virtual patients demonstrating clinically significant difference in outcome between approaches, by far the majority show an advantage of multi-step or ALTO over single-step optimization. ALTO-SMO delivers cure rates superior or equal to those of single- or multi-step optimization, in 2 and 3 drug cases respectively. Conclusion In selected virtual patients incurable by dynamic precision medicine using single-step optimization, analogous strategies that “think ahead” can deliver long-term survival and cure without any disadvantage for non-responders. When therapies require dose reduction in combination (due to toxicity), optimal strategies feature complex patterns involving rapidly interleaved pulses of combinations and high dose monotherapy. Reviewers This article was reviewed by Wendy Cornell, Marek Kimmel, and Andrzej Swierniak. Wendy Cornell and Andrzej Swierniak are external reviewers (not members of the Biology Direct editorial board). Andrzej Swierniak was nominated by Marek Kimmel. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0153-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Robert A Beckman
- Departments of Oncology and of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
8
|
Cheng AL, Kang YK, He AR, Lim HY, Ryoo BY, Hung CH, Sheen IS, Izumi N, Austin T, Wang Q, Greenberg J, Shiratori S, Beckman RA, Kudo M. Safety and efficacy of tigatuzumab plus sorafenib as first-line therapy in subjects with advanced hepatocellular carcinoma: A phase 2 randomized study. J Hepatol 2015; 63:896-904. [PMID: 26071796 DOI: 10.1016/j.jhep.2015.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/21/2015] [Accepted: 06/02/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Tigatuzumab is a humanized monoclonal antibody that acts as a death receptor-5 agonist and exerts tumour necrosis factor-related apoptosis-inducing ligand-like activity. In this phase II study, safety and tolerability of the combination of tigatuzumab and sorafenib was evaluated in patients with advanced hepatocellular carcinoma. METHODS Adults with advanced hepatocellular carcinoma, measurable disease, and an Eastern Cooperative Oncology Group performance score⩽1 were enrolled. Eligible subjects were randomly assigned 1:1:1 to tigatuzumab (6 mg/kg loading, 2 mg/kg/week maintenance) plus sorafenib 400 mg twice daily; tigatuzumab (6 mg/kg loading, 6 mg/kg/week maintenance) plus sorafenib 400 mg twice daily; or sorafenib 400 mg twice daily. The primary end point was time to progression. Secondary end points included overall survival and safety. RESULTS 163 subjects were randomized to treatment. Median time to progression was 3.0 months in the tigatuzumab 6/2 mg/kg combination group (p=0.988 vs. sorafenib), 3.9 months in the tigatuzumab 6/6 mg/kg combination group (p=0.586 vs. sorafenib), and 2.8 months in the sorafenib alone group. Median overall survival was 12.2 months in the tigatuzumab 6/6 mg/kg combination group (p=0.659 vs. sorafenib), vs. 8.2 months in both other treatment groups (p=0.303, tigatuzumab 6/2 mg/kg combination vs. sorafenib). The most common treatment-emergent adverse events were palmar-plantar erythrodysesthesia syndrome, diarrhea, and decreased appetite. CONCLUSIONS Tigatuzumab combined with sorafenib vs. sorafenib alone in adults with advanced hepatocellular carcinoma did not meet its primary efficacy end point, although tigatuzumab plus sorafenib is well tolerated in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Aiwu Ruth He
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ho Yeong Lim
- Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chao-Hung Hung
- Chang Gung Medical Foundation-Kaohsiung, Kaohsiung, Taiwan
| | - I-Shyan Sheen
- Chang Gung Medical Foundation-Linkuo, Taoyaun, Taiwan
| | - Namiki Izumi
- Japan Red Cross Musashino Hospital, Tokyo, Japan
| | - TaShara Austin
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Qiang Wang
- Daiichi Sankyo Pharma Development, Edison, NJ, USA
| | | | | | - Robert A Beckman
- Department of Oncology, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA; Department of Biostatistics, Bioinformatics, and Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|
9
|
Beckman RA, Yeang CH. Nonstandard personalized medicine strategies for cancer may lead to improved patient outcomes. Per Med 2014; 11:705-719. [PMID: 29764056 DOI: 10.2217/pme.14.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is an evolutionary process that is driven by mutation and selection. Tumors are genetically unstable, and research has shown that this is the most efficient way for cancers to evolve. Genetic instability leads to genetic heterogeneity and dynamic change within a single individual's tumor, in turn leading to therapeutic resistance. Cancer treatment has also evolved from an empirical science of killing dividing cells to the current era of 'personalized medicine', exquisitely targeting the molecular features of individual cancers. However, current personalized medicine regards a single individual's cancer as largely uniform and static. Moreover, from a strategic perspective, current personalized medicine thinks primarily of the immediate therapy selection. Ongoing research suggests that new, nonstandard personalized treatment strategies that plan further ahead and consider intratumoral heterogeneity and the evolving nature of cancer (due to genetic instability) may lead to the next level of therapeutic benefit beyond current personalized medicine.
Collapse
Affiliation(s)
- Robert A Beckman
- Center for Evolution & Cancer, Helen Diller Family Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Chen-Hsiang Yeang
- Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, Taiwan
| |
Collapse
|
10
|
Stasi I, Cappuzzo F. Profile of bavituximab and its potential in the treatment of non-small-cell lung cancer. LUNG CANCER-TARGETS AND THERAPY 2014; 5:43-50. [PMID: 28210141 PMCID: PMC5217514 DOI: 10.2147/lctt.s37981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bavituximab is a an unconjugated, chimeric immunoglobulin G1 (IgG1) monoclonal antibody directed against the phosphatidylserine (PS) expressed on tumor endothelium, with a specific mechanism of action. PS is an anionic membrane phospholipid, physiologically restricted to the internal membrane leaflet; various pathophysiologic processes cause the exposure of PS on the external membrane leaflet. Bavituximab, once bound, starts up host effector activities, such as antibody dependent cellular cytotoxicity, causing vessel destruction and enhancing antitumor immunity. Phase I clinical trials of bavituximab administered as monotherapy or in combination with other chemotherapeutic agents in adults with pretreated solid tumors have been accomplished, indicating that bavituximab can be safely dispensed weekly, with a recommended dose of 1 and 3 mg/kg. A Phase II randomized, placebo-controlled trial of bavituximab plus docetaxel, in the second-line therapy setting of locally advanced or metastatic non-small-cell lung cancer, has been conducted and recently presented, suggesting a clinical benefit of the combination, with an overall response rate of 17% and median overall survival of more than 11 months. A Phase III trial is currently ongoing. Bavituximab has been studied in combination with platinum-based doublets with promising results. In the present paper we summarize the preclinical development and clinical experience with bavituximab in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Irene Stasi
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy
| | - Federico Cappuzzo
- Medical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, Italy
| |
Collapse
|
11
|
Engineered antibodies for molecular imaging of cancer. Methods 2013; 65:139-47. [PMID: 24091005 DOI: 10.1016/j.ymeth.2013.09.015] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Antibody technology has transformed drug development, providing robust approaches to producing highly targeted and active therapeutics that can routinely be advanced through clinical evaluation and registration. In parallel, there is an emerging need to access similarly targeted agents for diagnostic purposes, including non-invasive imaging in preclinical models and patients. Antibody engineering enables modification of key properties (immunogenicity, valency, biological inertness, pharmacokinetics, clearance route, site-specific conjugation) in order to produce targeting agents optimized for molecular imaging. Expanded availability of positron-emitting radionuclides has led to a resurgence of interest and applications of immunoPET (immuno-positron emission tomography). Molecular imaging using engineered antibodies and fragments provides a general approach for assessing cell surface phenotype in vivo and stands to play an increasingly important role in cancer diagnosis, treatment selection, and monitoring of molecularly targeted therapeutics.
Collapse
|
12
|
Boswell CA, Bumbaca D, Fielder PJ, Khawli LA. Compartmental tissue distribution of antibody therapeutics: experimental approaches and interpretations. AAPS JOURNAL 2012; 14:612-8. [PMID: 22648903 DOI: 10.1208/s12248-012-9374-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/16/2012] [Indexed: 01/12/2023]
Abstract
Monoclonal antibodies have provided many validated and potential new therapeutic candidates for various diseases encompassing the realms of neurology, ophthalmology, immunology, and especially oncology. The mechanism of action for these biological molecules typically involves specific binding to a soluble ligand or cell surface protein in order to block or alter a molecular pathway, induce a desired cellular response, or deplete a target cell. Many antigens reside within the interstitial space, the fluid-filled compartment that lies between the outer endothelial vessel wall and the plasma membranes of cells. This mini-review examines the concepts relevant to the kinetics and behavior of antibodies within the interstitium with a special emphasis on radiometric measurement of quantitative pharmacology. Molecular probes are discussed to outline chemical techniques, selection criteria, data interpretation, and relevance to the study of antibody pharmacokinetics. The importance of studying the tissue uptake of antibodies at a compartmental level is highlighted, including a brief overview of receptor occupancy and its interpretation in radiotracer studies. Experimental methods for measuring the spatial composition of tissues are examined in terms of relative vascular, interstitial, and cellular volumes using solid tumors as a representative example. Experimental methods and physiologically based pharmacokinetic modeling are introduced as distinct approaches to distinguish between free and bound fractions of interstitial antibody. Overall, the review outlines the available methods for pharmacokinetic measurements of antibodies and physiological measurements of the compartments that they occupy, while emphasizing that such approaches may not fully capture the complexities of dynamic, heterogeneous tumors and other tissues.
Collapse
Affiliation(s)
- C Andrew Boswell
- Genentech Research and Early Development, South San Francisco, California 94080, USA.
| | | | | | | |
Collapse
|
13
|
Gerber DE, Stopeck AT, Wong L, Rosen LS, Thorpe PE, Shan JS, Ibrahim NK. Phase I safety and pharmacokinetic study of bavituximab, a chimeric phosphatidylserine-targeting monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res 2011; 17:6888-96. [PMID: 21989064 DOI: 10.1158/1078-0432.ccr-11-1074] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Bavituximab is a chimeric immunoglobulin G1 phosphatidylserine-targeting monoclonal antibody that triggers vascular disruption and enhances antitumor immune response. This phase I study assessed the safety and pharmacokinetics of bavituximab in patients with advanced solid tumors. EXPERIMENTAL DESIGN Patients with refractory advanced solid tumors were enrolled into four sequential dose-escalation cohorts (0.1, 0.3, 1, or 3 mg/kg bavituximab weekly) with two dosing schedules. Patients in the 0.1 and 0.3 mg/kg cohorts received bavituximab on days 0, 28, 35, and 42. Patients in the 1 and 3 mg/kg cohorts were administered bavituximab on days 0, 7, 14, and 21. Safety, pharmacokinetics, and tumor response were assessed. RESULTS Twenty-six patients were accrued. No maximum tolerated dose was reached. Six serious adverse events occurred in five patients, including one pulmonary embolism at 3 mg/kg, which was the only dose-limiting toxicity (DLT) in the study. Bavituximab half-life ranged from 37 to 47 hours, with no accumulation seen following administration of multiple doses. Activated partial thromboplastin time was modestly prolonged in vitro at the highest dose tested. As assessed on day 56, a total of 18 patients were evaluable for efficacy, of whom 10 had disease progression and none had an objective response. CONCLUSIONS Bavituximab was well tolerated at doses ranging up to 3 mg/kg weekly. Pharmacokinetic studies support a weekly dosing regimen. Additional phase I and II clinical trials are in progress to investigate bavituximab in combination with chemotherapy and other molecularly targeted agents.
Collapse
Affiliation(s)
- David E Gerber
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
|