1
|
Li H, Zhao B, Li Y, Wang J, Deng T, Zhou Q, Wang J, Lan X, Zhang H, Qing S, Zhang Y, Wang Y. Leukemia inhibitory factor supplementation during in vitro maturation enhances bovine oocyte maturation and somatic cloned embryo development. Anim Reprod Sci 2025; 277:107855. [PMID: 40378568 DOI: 10.1016/j.anireprosci.2025.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Somatic cell nuclear transfer (SCNT) plays a crucial role in animal reproduction and genetic engineering, especially in the breeding of high-yield dairy cows. However, the application of SCNT technology faces numerous challenges, particularly the low efficiency and high abortion rates during the in vitro maturation phase. These issues lead to reduced implantation rates of cloned embryos, affecting overall reproductive efficiency. Therefore, enhancing the quality of in vitro maturation media has become an essential approach to improve in vitro production efficiency. This study aimed to investigate the effects of leukemia inhibitory factor (LIF) on bovine oocyte maturation and cloned embryo implantation rates. We observed a significant increase in oocyte maturation rates by supplementing 25 ng/mL LIF into the maturation medium. Subsequently, we generated SCNT embryos using LIF-treated oocytes and conducted activation and culture experiments. The results indicated that LIF could enhance the differentiation capabilities of SCNT embryos and exert an anti-apoptotic effect during early embryonic development. Specifically, the supplementation of LIF not only improved the nuclear maturation rates of oocytes but also enhanced cytoplasmic maturation characteristics, such as mitochondrial membrane potential and endoplasmic reticulum distribution. Furthermore, LIF-treated oocytes exhibited higher cell numbers and lower apoptosis rates in SCNT embryos, indicating its crucial role in embryo quality control. Ultimately, we found that LIF significantly improved the implantation efficiency of cloned embryos, particularly during the early stages of pregnancy following embryo transfer. This finding provides new insights into improving the success rates of SCNT technology and lays the groundwork for future research, especially in exploring the effects of other growth factors and cytokines on oocyte maturation and embryo development.
Collapse
Affiliation(s)
- Heqiang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Baobao Zhao
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yang Li
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jingya Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tingting Deng
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Zhou
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jieyu Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinrui Lan
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Han Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Suzhu Qing
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Deviri D, Safran SA. Balance of osmotic pressures determines the nuclear-to-cytoplasmic volume ratio of the cell. Proc Natl Acad Sci U S A 2022; 119:e2118301119. [PMID: 35580183 PMCID: PMC9173802 DOI: 10.1073/pnas.2118301119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/05/2022] [Indexed: 01/06/2023] Open
Abstract
The volume of the cell nucleus varies across cell types and species and is commonly thought to be determined by the size of the genome and degree of chromatin compaction. However, this notion has been challenged over the years by much experimental evidence. Here, we consider the physical condition of mechanical force balance as a determining condition of the nuclear volume and use quantitative, order-of-magnitude analysis to estimate the forces from different sources of nuclear and cytoplasmic pressure. Our estimates suggest that the dominant pressure within the nucleus and cytoplasm of nonstriated muscle cells originates from the osmotic pressure of proteins and RNA molecules that are localized to the nucleus or cytoplasm by out-of-equilibrium, active nucleocytoplasmic transport rather than from chromatin or its associated ions. This motivates us to formulate a physical model for the ratio of the cell and nuclear volumes in which osmotic pressures of localized proteins determine the relative volumes. In accordance with unexplained observations that are a century old, our model predicts that the ratio of the cell and nuclear volumes is a constant, robust to a wide variety of biochemical and biophysical manipulations, and is changed only if gene expression or nucleocytoplasmic transport is modulated.
Collapse
Affiliation(s)
- Dan Deviri
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovet 76100, Israel
| | - Samuel A. Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovet 76100, Israel
| |
Collapse
|
3
|
Effect of ACY-1215 on cytoskeletal remodeling and histone acetylation in bovine somatic cell nuclear transfer embryos. Theriogenology 2022; 183:98-107. [DOI: 10.1016/j.theriogenology.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
4
|
Lorber D, Volk T. Evaluation of chromatin mesoscale organization. APL Bioeng 2022; 6:010902. [PMID: 35071965 PMCID: PMC8758204 DOI: 10.1063/5.0069286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Chromatin organization in the nucleus represents an important aspect of transcription regulation. Most of the studies so far focused on the chromatin structure in cultured cells or in fixed tissue preparations. Here, we discuss the various approaches for deciphering chromatin 3D organization with an emphasis on the advantages of live imaging approaches.
Collapse
Affiliation(s)
- Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Bridger JM, Pereira RT, Pina C, Tosi S, Lewis A. Alterations to Genome Organisation in Stem Cells, Their Differentiation and Associated Diseases. Results Probl Cell Differ 2022; 70:71-102. [PMID: 36348105 DOI: 10.1007/978-3-031-06573-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The organisation of the genome in its home, the cell nucleus, is reliant on a number of different aspects to establish, maintain and alter its functional non-random positioning. The genome is dispersed throughout a cell nucleus in specific chromosome territories which are further divided into topologically associated domains (TADs), where regions of the genome from different and the same chromosomes come together. This organisation is both controlled by DNA and chromatin epigenetic modification and the association of the genome with nuclear structures such as the nuclear lamina, the nucleolus and nuclear bodies and speckles. Indeed, sequences that are associated with the first two structures mentioned are termed lamina-associated domains (LADs) and nucleolar-associated domains (NADs), respectively. The modifications and nuclear structures that regulate genome function are altered through a cell's life from stem cell to differentiated cell through to reversible quiescence and irreversible senescence, and hence impacting on genome organisation, altering it to silence specific genes and permit others to be expressed in a controlled way in different cell types and cell cycle statuses. The structures and enzymes and thus the organisation of the genome can also be deleteriously affected, leading to disease and/or premature ageing.
Collapse
Affiliation(s)
- Joanna M Bridger
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Rita Torres Pereira
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Cristina Pina
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Sabrina Tosi
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Annabelle Lewis
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
6
|
Su G, Wang L, Gao G, Wu S, Yang L, Wu M, Liu X, Yang M, Wei Z, Bai C, Li G. C23 gene regulates the nucleolin structure and biosynthesis of ribosomes in bovine intraspecific and interspecific somatic cell nuclear transfer embryos. FASEB J 2021; 35:e21993. [PMID: 34670005 DOI: 10.1096/fj.202100737rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells to produce individual animals, thus having advantages in animal breeding and chromatin reprogramming. Interspecies SCNT (iSCNT) provides extreme cases of reprogramming failure that can be used to understand the basic biological mechanism of genome reprogramming. It is important to understand the possible mechanisms for the failure of zygotic genome activation (ZGA) in iSCNT embryos in order to improve the efficiency of SCNT embryos. In the present study, we compared the development of bovine-bovine (B-B), ovine-ovine (O-O) SCNT, and ovine-bovine (O-B) iSCNT embryos and found that a developmental block existed in the 8-cell stage in O-B iSCNT embryos. RNA sequencing and q-PCR analysis revealed that the large ribosomal subunit genes (RPL) or the small ribosomal subunit genes (RPS) were expressed at lower levels in the O-B iSCNT embryos. The nucleolin (C23) gene that regulates the ribosomal subunit generation was transcribed at a lower level during embryonic development in O-B iSCNT embryos. In addition, the nucleolin exhibited a clear circular-ring structure in B-B 8-cell stage embryos, whereas this was shell-like or dot-like in the O-B embryos. Furthermore, overexpression of C23 could increase the blastocyst rate of both SCNT and iSCNT embryos and partly rectify the ring-like nucleolin structure and the expression of ribosomal subunit related genes were upregulation, while knockdown of C23 increased the shell-like nucleolin-structure in B-B cloned embryos and downregulated the expression of ribosomal subunit related genes. These results implied that abnormal C23 and ribosome subunit gene expression would lead to the developmental block of iSCNT embryos and ZGA failure. Overexpression of the C23 gene could partly improve the blastocyst development and facilitate the nucleolin structure in bovine preimplantation SCNT embryos.
Collapse
Affiliation(s)
- Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lina Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangqi Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Meiling Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Miaomiao Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
7
|
Amiad-Pavlov D, Lorber D, Bajpai G, Reuveny A, Roncato F, Alon R, Safran S, Volk T. Live imaging of chromatin distribution reveals novel principles of nuclear architecture and chromatin compartmentalization. SCIENCE ADVANCES 2021; 7:7/23/eabf6251. [PMID: 34078602 PMCID: PMC8172175 DOI: 10.1126/sciadv.abf6251] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/15/2021] [Indexed: 05/12/2023]
Abstract
Live imaging of chromatin in an intact organism reveals a novel mode of mesoscale chromatin organization at nuclear periphery.
Collapse
Affiliation(s)
- Daria Amiad-Pavlov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gaurav Bajpai
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Alon
- Department of Immunology Weizmann Institute of Science, Rehovot, Israel
| | - Samuel Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Bajpai G, Amiad Pavlov D, Lorber D, Volk T, Safran S. Mesoscale phase separation of chromatin in the nucleus. eLife 2021; 10:e63976. [PMID: 33942717 PMCID: PMC8139833 DOI: 10.7554/elife.63976] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Intact-organism imaging of Drosophila larvae reveals and quantifies chromatin-aqueous phase separation. The chromatin can be organized near the lamina layer of the nuclear envelope, conventionally fill the nucleus, be organized centrally, or as a wetting droplet. These transitions are controlled by changes in nuclear volume and the interaction of chromatin with the lamina (part of the nuclear envelope) at the nuclear periphery. Using a simple polymeric model that includes the key features of chromatin self-attraction and its binding to the lamina, we demonstrate theoretically that it is the competition of these two effects that determines the mode of chromatin distribution. The qualitative trends as well as the composition profiles obtained in our simulations compare well with the observed intact-organism imaging and quantification. Since the simulations contain only a small number of physical variables we can identify the generic mechanisms underlying the changes in the observed phase separations.
Collapse
|
9
|
Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int J Mol Sci 2020; 22:ijms22010236. [PMID: 33379395 PMCID: PMC7794987 DOI: 10.3390/ijms22010236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleus of a differentiated cell can be reprogrammed to a totipotent state by exposure to the cytoplasm of an enucleated oocyte, and the reconstructed nuclear transfer embryo can give rise to an entire organism. Somatic cell nuclear transfer (SCNT) has important implications in animal biotechnology and provides a unique model for studying epigenetic barriers to successful nuclear reprogramming and for testing novel concepts to overcome them. While initial strategies aimed at modulating the global DNA methylation level and states of various histone protein modifications, recent studies use evidence-based approaches to influence specific epigenetic mechanisms in a targeted manner. In this review, we describe-based on the growing number of reports published during recent decades-in detail where, when, and how manipulations of the epigenome of donor cells and reconstructed SCNT embryos can be performed to optimize the process of molecular reprogramming and the outcome of nuclear transfer cloning.
Collapse
|
10
|
Cremer T, Cremer M, Hübner B, Silahtaroglu A, Hendzel M, Lanctôt C, Strickfaden H, Cremer C. The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. Bioessays 2020; 42:e1900132. [PMID: 31994771 DOI: 10.1002/bies.201900132] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Indexed: 12/11/2022]
Abstract
This article focuses on the role of the interchromatin compartment (IC) in shaping nuclear landscapes. The IC is connected with nuclear pore complexes (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that the IC provides routes for imported transcription factors to target sites, for export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the intranuclear passage of regulatory RNAs from sites of transcription to remote functional sites (IC hypothesis). IC channels are lined by less-compacted euchromatin, called the perichromatin region (PR). The PR and IC together form the active nuclear compartment (ANC). The ANC is co-aligned with the inactive nuclear compartment (INC), comprising more compacted heterochromatin. It is postulated that the INC is accessible for individual transcription factors, but inaccessible for larger macromolecular aggregates (limited accessibility hypothesis). This functional nuclear organization depends on still unexplored movements of genes and regulatory sequences between the two compartments.
Collapse
Affiliation(s)
- Thomas Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Marion Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Barbara Hübner
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Asli Silahtaroglu
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, Byg.18.03, 2200, Copenhagen N, Denmark
| | - Michael Hendzel
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christian Lanctôt
- Integration Santé, 1250 Avenue de la Station local 2-304, Shawinigan, Québec, G9N 8K9, Canada
| | - Hilmar Strickfaden
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christoph Cremer
- Institute of Molecular Biology (IMB) Ackermannweg 4, 55128 Mainz, Germany, and Institute of Pharmacy & Molecular Biotechnology (IPMB), University Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Vastenhouw NL, Cao WX, Lipshitz HD. The maternal-to-zygotic transition revisited. Development 2019; 146:146/11/dev161471. [PMID: 31189646 DOI: 10.1242/dev.161471] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of animal embryos is initially directed by maternal gene products. Then, during the maternal-to-zygotic transition (MZT), developmental control is handed to the zygotic genome. Extensive research in both vertebrate and invertebrate model organisms has revealed that the MZT can be subdivided into two phases, during which very different modes of gene regulation are implemented: initially, regulation is exclusively post-transcriptional and post-translational, following which gradual activation of the zygotic genome leads to predominance of transcriptional regulation. These changes in the gene expression program of embryos are precisely controlled and highly interconnected. Here, we review current understanding of the mechanisms that underlie handover of developmental control during the MZT.
Collapse
Affiliation(s)
- Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
12
|
Cremer M, Cremer T. Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes Chromosomes Cancer 2019; 58:427-436. [DOI: 10.1002/gcc.22714] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marion Cremer
- Biocenter, Department Biology II; Ludwig Maximilians-Universität (LMU Munich); Munich Germany
| | - Thomas Cremer
- Biocenter, Department Biology II; Ludwig Maximilians-Universität (LMU Munich); Munich Germany
| |
Collapse
|
13
|
Cremer T, Cremer M, Cremer C. The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context. BIOCHEMISTRY (MOSCOW) 2018; 83:313-325. [PMID: 29626919 DOI: 10.1134/s000629791804003x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.
Collapse
Affiliation(s)
- T Cremer
- Biocenter, Department of Biology II, Ludwig Maximilian University (LMU), Munich, Germany.
| | | | | |
Collapse
|
14
|
Bonnet-Garnier A, Kiêu K, Aguirre-Lavin T, Tar K, Flores P, Liu Z, Peynot N, Chebrout M, Dinnyés A, Duranthon V, Beaujean N. Three-dimensional analysis of nuclear heterochromatin distribution during early development in the rabbit. Chromosoma 2018; 127:387-403. [PMID: 29666907 PMCID: PMC6096579 DOI: 10.1007/s00412-018-0671-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 01/29/2023]
Abstract
Changes to the spatial organization of specific chromatin domains such as constitutive heterochromatin have been studied extensively in somatic cells. During early embryonic development, drastic epigenetic reprogramming of both the maternal and paternal genomes, followed by chromatin remodeling at the time of embryonic genome activation (EGA), have been observed in the mouse. Very few studies have been performed in other mammalian species (human, bovine, or rabbit) and the data are far from complete. During this work, we studied the three-dimensional organization of pericentromeric regions during the preimplantation period in the rabbit using specific techniques (3D-FISH) and tools (semi-automated image analysis). We observed that the pericentromeric regions (identified with specific probes for Rsat I and Rsat II genomic sequences) changed their shapes (from pearl necklaces to clusters), their nuclear localizations (from central to peripheral), as from the 4-cell stage. This reorganization goes along with histone modification changes and reduced amount of interactions with nucleolar precursor body surface. Altogether, our results suggest that the 4-cell stage may be a crucial window for events necessary before major EGA, which occurs during the 8-cell stage in the rabbit.
Collapse
Affiliation(s)
| | - Kiên Kiêu
- UR341 MaIAGE, INRA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | | | - Krisztina Tar
- Present Address: Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- BioTalentum Ltd., Aulich Lajos str. 26, Gödöllő, 2100 Hungary
| | - Pierre Flores
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Zichuan Liu
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
- Present Address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos str. 26, Gödöllő, 2100 Hungary
| | | | - Nathalie Beaujean
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
- Present Address: Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRA, Stem Cell and Brain Research Institute U1208, USC1361, 69500 Bron, France
| |
Collapse
|
15
|
Szczurek A, Klewes L, Xing J, Gourram A, Birk U, Knecht H, Dobrucki JW, Mai S, Cremer C. Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic Acids Res 2017; 45:e56. [PMID: 28082388 PMCID: PMC5416826 DOI: 10.1093/nar/gkw1301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions.
Collapse
Affiliation(s)
| | - Ludger Klewes
- University of Manitoba, Cancer Care Manitoba, Winnipeg R3E 0V9, Canada
| | - Jun Xing
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Amine Gourram
- Institute of Molecular Biology, 55128 Mainz, Germany.,Physics Department University Mainz (JGU), 55128 Mainz, Germany
| | - Udo Birk
- Institute of Molecular Biology, 55128 Mainz, Germany.,Physics Department University Mainz (JGU), 55128 Mainz, Germany
| | - Hans Knecht
- Département de Médecine, CHUS, Université de Sherbrooke, 3001-12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada.,Department of Medicine, Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Road, Montreal, Québec H3T 1E2, Canada
| | - Jurek W Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Sabine Mai
- University of Manitoba, Cancer Care Manitoba, Winnipeg R3E 0V9, Canada
| | - Christoph Cremer
- Institute of Molecular Biology, 55128 Mainz, Germany.,Physics Department University Mainz (JGU), 55128 Mainz, Germany.,Kirchhoff Institute of Physics (KIP), and Institute of Pharmacy & Molecular Biotechnology (IPMB), University Heidelberg, Germany
| |
Collapse
|
16
|
Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics Chromatin 2017; 10:39. [PMID: 28784182 PMCID: PMC5547466 DOI: 10.1186/s13072-017-0146-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. RESULTS Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). CONCLUSIONS Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.
Collapse
|
17
|
Botchkarev VA. The Molecular Revolution in Cutaneous Biology: Chromosomal Territories, Higher-Order Chromatin Remodeling, and the Control of Gene Expression in Keratinocytes. J Invest Dermatol 2017; 137:e93-e99. [PMID: 28411854 DOI: 10.1016/j.jid.2016.04.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/05/2016] [Accepted: 04/15/2016] [Indexed: 12/16/2022]
Abstract
Three-dimensional organization of transcription in the nucleus and mechanisms controlling the global chromatin folding, including spatial interactions between the genes, noncoding genome elements, and epigenetic and transcription machinery, are essential for establishing lineage-specific gene expression programs during cell differentiation. Spatial chromatin interactions in the nucleus involving gene promoters and distal regulatory elements are currently considered major forces that drive cell differentiation and genome evolution in general, and such interactions are substantially reorganized during many pathological conditions. During terminal differentiation of the epidermal keratinocytes, the nucleus undergoes programmed transformation from highly active status, associated with execution of the genetic program of epidermal barrier formation, to a fully inactive condition and finally becomes a part of the keratinized cells of the cornified epidermal layer. This transition is accompanied by marked remodeling of the three-dimensional nuclear organization and microanatomy, including changes in the spatial arrangement of lineage-specific genes, nuclear bodies, and heterochromatin. This mini-review highlights the important landmarks in the accumulation of our current knowledge on three-dimensional organization of the nucleus, spatial arrangement of the genes, and their distal regulatory elements, and it provides an update on the mechanisms that control higher-order chromatin remodeling in the context of epidermal keratinocyte differentiation in the skin.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
18
|
Transcription-dependent radial distribution of TCF7L2 regulated genes in chromosome territories. Chromosoma 2017; 126:655-667. [PMID: 28343235 DOI: 10.1007/s00412-017-0629-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
Human chromosomes occupy distinct territories in the interphase nucleus. Such chromosome territories (CTs) are positioned according to gene density. Gene-rich CTs are generally located in the center of the nucleus, while gene-poor CTs are positioned more towards the nuclear periphery. However, the association between gene expression levels and the radial positioning of genes within the CT is still under debate. In the present study, we performed three-dimensional fluorescence in situ hybridization experiments in the colorectal cancer cell lines DLD-1 and LoVo using whole chromosome painting probes for chromosomes 8 and 11 and BAC clones targeting four genes with different expression levels assessed by gene expression arrays and RT-PCR. Our results confirmed that the two over-expressed genes, MYC on chromosome 8 and CCND1 on chromosome 11, are located significantly further away from the center of the CT compared to under-expressed genes on the same chromosomes, i.e., DLC1 and SCN3B. When CCND1 expression was reduced after silencing the major transcription factor of the WNT/β-catenin signaling pathway, TCF7L2, the gene was repositioned and mostly detected in the interior of the CT. Thus, we suggest a non-random distribution in which over-expressed genes are located more towards the periphery of the respective CTs.
Collapse
|
19
|
Schmid VJ, Cremer M, Cremer T. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. Methods 2017; 123:33-46. [PMID: 28323041 DOI: 10.1016/j.ymeth.2017.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/16/2017] [Accepted: 03/10/2017] [Indexed: 01/20/2023] Open
Abstract
Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data.
Collapse
Affiliation(s)
- Volker J Schmid
- BioImaging Group, Department of Statistics, Ludwig Maximilians-Universität München, Ludwigstrasse 33, 80539 Munich, Germany.
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilians-Universität München, Großhadernerstrasse 2, 82152 Martinsried, Germany.
| | - Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilians-Universität München, Großhadernerstrasse 2, 82152 Martinsried, Germany.
| |
Collapse
|
20
|
Skinner BM, Johnson EEP. Nuclear morphologies: their diversity and functional relevance. Chromosoma 2017; 126:195-212. [PMID: 27631793 PMCID: PMC5371643 DOI: 10.1007/s00412-016-0614-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022]
Abstract
Studies of chromosome and genome biology often focus on condensed chromatin in the form of chromosomes and neglect the non-dividing cells. Even when interphase nuclei are considered, they are often then treated as interchangeable round objects. However, different cell types can have very different nuclear shapes, and these shapes have impacts on cellular function; indeed, many pathologies are linked with alterations to nuclear shape. In this review, we describe some of the nuclear morphologies beyond the spherical and ovoid. Many of the leukocytes of the immune system have lobed nuclei, which aid their flexibility and migration; smooth muscle cells have a spindle shaped nucleus, which must deform during muscle contractions; spermatozoa have highly condensed nuclei which adopt varied shapes, potentially associated with swimming efficiency. Nuclei are not passive passengers within the cell. There are clear effects of nuclear shape on the transcriptional activity of the cell. Recent work has shown that regulation of gene expression can be influenced by nuclear morphology, and that cells can drastically remodel their chromatin during differentiation. The link between the nucleoskeleton and the cytoskeleton at the nuclear envelope provides a mechanism for transmission of mechanical forces into the nucleus, directly affecting chromatin compaction and organisation.
Collapse
Affiliation(s)
- Benjamin M Skinner
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
| | - Emma E P Johnson
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| |
Collapse
|
21
|
Pálfy M, Joseph SR, Vastenhouw NL. The timing of zygotic genome activation. Curr Opin Genet Dev 2017; 43:53-60. [PMID: 28088031 DOI: 10.1016/j.gde.2016.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/20/2022]
Abstract
After fertilization, the embryonic genome is inactive until transcription is initiated during the maternal-to-zygotic transition. How the onset of transcription is regulated in a precisely timed manner, however, is a long standing question in biology. Several mechanisms have been shown to contribute to the temporal regulation of genome activation but none of them can fully explain the general absence of transcription as well the gene specific onset that follows. Here we review the work that has been done toward elucidating the mechanisms underlying the temporal regulation of transcription in embryos.
Collapse
Affiliation(s)
- Máté Pálfy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shai R Joseph
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Nadine L Vastenhouw
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
22
|
Borsos M, Torres-Padilla ME. Building up the nucleus: nuclear organization in the establishment of totipotency and pluripotency during mammalian development. Genes Dev 2016; 30:611-21. [PMID: 26980186 PMCID: PMC4803048 DOI: 10.1101/gad.273805.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In mammals, epigenetic reprogramming, the acquisition and loss of totipotency, and the first cell fate decision all occur within a 3-d window after fertilization from the one-cell zygote to the formation of the blastocyst. These processes are poorly understood in molecular detail, yet this is an essential prerequisite to uncover principles of stem cells, chromatin biology, and thus regenerative medicine. A unique feature of preimplantation development is the drastic genome-wide changes occurring to nuclear architecture. From studying somatic and in vitro cultured embryonic stem cells (ESCs) it is becoming increasingly established that the three-dimensional (3D) positions of genomic loci relative to each other and to specific compartments of the nucleus can act on the regulation of gene expression, potentially driving cell fate. However, the functionality, mechanisms, and molecular characteristics of the changes in nuclear organization during preimplantation development are only now beginning to be unraveled. Here, we discuss the peculiarities of nuclear compartments and chromatin organization during mammalian preimplantation development in the context of the transition from totipotency to pluripotency.
Collapse
Affiliation(s)
- Máté Borsos
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U964, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale F-67404 Illkirch, France; Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München D-81377 München, Germany
| | - Maria-Elena Torres-Padilla
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, U964, Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale F-67404 Illkirch, France; Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München D-81377 München, Germany
| |
Collapse
|
23
|
Ben-Yishay R, Ashkenazy AJ, Shav-Tal Y. Dynamic Encounters of Genes and Transcripts with the Nuclear Pore. Trends Genet 2016; 32:419-431. [DOI: 10.1016/j.tig.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/20/2016] [Indexed: 01/04/2023]
|
24
|
Żurek-Biesiada D, Szczurek AT, Prakash K, Mohana GK, Lee HK, Roignant JY, Birk UJ, Dobrucki JW, Cremer C. Localization microscopy of DNA in situ using Vybrant ® DyeCycle™ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution. Exp Cell Res 2016; 343:97-106. [DOI: 10.1016/j.yexcr.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/27/2015] [Accepted: 08/30/2015] [Indexed: 12/17/2022]
|
25
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
26
|
Popken J, Schmid VJ, Strauss A, Guengoer T, Wolf E, Zakhartchenko V. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development. J Reprod Dev 2015; 62:127-35. [PMID: 26640117 PMCID: PMC4848569 DOI: 10.1262/jrd.2015-100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear
invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified
the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine
early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of
cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large
volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations
but not vice versa, indicating a different underlying mechanism. Large- and small-volume
nuclear envelope invaginations required the presence of chromatin, as they were restricted to
chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and
large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with
NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage.
At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas
free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic,
randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number
until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a
maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome
activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand
production. NUP153 association with chromatin is initiated during metaphase before the initiation of the
regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major
remodeling of the nuclear envelope and its underlying lamina during rabbit preimplantation development.
Collapse
Affiliation(s)
- Jens Popken
- Division of Anthropology and Human Genetics, Biocenter, LMU Munich, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Popken J, Dahlhoff M, Guengoer T, Wolf E, Zakhartchenko V. 3D structured illumination microscopy of mammalian embryos and spermatozoa. BMC DEVELOPMENTAL BIOLOGY 2015; 15:46. [PMID: 26610350 PMCID: PMC4661982 DOI: 10.1186/s12861-015-0092-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/31/2015] [Indexed: 11/10/2022]
Abstract
Background Super-resolution fluorescence microscopy performed via 3D structured illumination microscopy (3D-SIM) is well established on flat, adherent cells. However, blastomeres of mammalian embryos are non-adherent, round and large. Scanning whole mount mammalian embryos with 3D-SIM is prone to failure due to the movement during scanning and the large distance to the cover glass. Results Here we present a highly detailed protocol that allows performing 3D-SIM on blastomeres of mammalian embryos with an image quality comparable to scans in adherent cells. This protocol was successfully tested on mouse, rabbit and cattle embryos and on rabbit spermatozoa. Conclusions Our protocol provides detailed instructions on embryo staining, blastomere isolation, blastomere attachment, embedding, correct oil predictions, scanning conditions, and oil correction choices after the first scan. Finally, the most common problems are documented and solutions are suggested. To our knowledge, this protocol presents for the first time a highly detailed and practical way to perform 3D-SIM on mammalian embryos and spermatozoa.
Collapse
Affiliation(s)
- Jens Popken
- Division of Anthropology and Human Genetics, Biocenter, LMU Munich, Grosshaderner Str. 2, D-82152, Planegg-Martinsried, Germany. .,Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377, Munich, Germany.
| | - Maik Dahlhoff
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377, Munich, Germany.
| | - Tuna Guengoer
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377, Munich, Germany.
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377, Munich, Germany.
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377, Munich, Germany. .,Chair for Molecular Animal Breeding and Biotechnology, LMU Munich, Hackerstr. 27, D-85764, Oberschleissheim, Germany.
| |
Collapse
|
28
|
Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, Cremer M, Cremer T. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenetics Chromatin 2015; 8:47. [PMID: 26579212 PMCID: PMC4647504 DOI: 10.1186/s13072-015-0038-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
Background Previous studies of higher order chromatin organization in nuclei of mammalian species revealed both structural consistency and species-specific differences between cell lines and during early embryonic development. Here, we extended our studies to nuclear landscapes in the human myelopoietic lineage representing a somatic cell differentiation system. Our longterm goal is a search for structural features of nuclei, which are restricted to certain cell types/species, as compared to features, which are evolutionary highly conserved, arguing for their basic functional roles in nuclear organization. Results Common human hematopoietic progenitors, myeloid precursor cells, differentiated monocytes and granulocytes analyzed by super-resolution fluorescence microscopy and electron microscopy revealed profound differences with respect to global chromatin arrangements, the nuclear space occupied by the interchromatin compartment and the distribution of nuclear pores. In contrast, we noted a consistent organization in all cell types with regard to two co-aligned networks, an active (ANC) and an inactive (INC) nuclear compartment delineated by functionally relevant hallmarks. The ANC is enriched in active RNA polymerase II, splicing speckles and histone signatures for transcriptionally competent chromatin (H3K4me3), whereas the INC carries marks for repressed chromatin (H3K9me3). Conclusions Our findings substantiate the conservation of the recently published ANC-INC network model of mammalian nuclear organization during human myelopoiesis irrespective of profound changes of the global nuclear architecture observed during this differentiation process. According to this model, two spatially co-aligned and functionally interacting active and inactive nuclear compartments (ANC and INC) pervade the nuclear space. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Hübner
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany ; School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | - Mariana Lomiento
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Fabiana Mammoli
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Doris Illner
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany ; Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Yolanda Markaki
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Marion Cremer
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| | - Thomas Cremer
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| |
Collapse
|
29
|
Kirmes I, Szczurek A, Prakash K, Charapitsa I, Heiser C, Musheev M, Schock F, Fornalczyk K, Ma D, Birk U, Cremer C, Reid G. A transient ischemic environment induces reversible compaction of chromatin. Genome Biol 2015; 16:246. [PMID: 26541514 PMCID: PMC4635527 DOI: 10.1186/s13059-015-0802-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cells detect and adapt to hypoxic and nutritional stress through immediate transcriptional, translational and metabolic responses. The environmental effects of ischemia on chromatin nanostructure were investigated using single molecule localization microscopy of DNA binding dyes and of acetylated histones, by the sensitivity of chromatin to digestion with DNAseI, and by fluorescence recovery after photobleaching (FRAP) of core and linker histones. Results Short-term oxygen and nutrient deprivation of the cardiomyocyte cell line HL-1 induces a previously undescribed chromatin architecture, consisting of large, chromatin-sparse voids interspersed between DNA-dense hollow helicoid structures 40–700 nm in dimension. The chromatin compaction is reversible, and upon restitution of normoxia and nutrients, chromatin transiently adopts a more open structure than in untreated cells. The compacted state of chromatin reduces transcription, while the open chromatin structure induced upon recovery provokes a transitory increase in transcription. Digestion of chromatin with DNAseI confirms that oxygen and nutrient deprivation induces compaction of chromatin. Chromatin compaction is associated with depletion of ATP and redistribution of the polyamine pool into the nucleus. FRAP demonstrates that core histones are not displaced from compacted chromatin; however, the mobility of linker histone H1 is considerably reduced, to an extent that far exceeds the difference in histone H1 mobility between heterochromatin and euchromatin. Conclusions These studies exemplify the dynamic capacity of chromatin architecture to physically respond to environmental conditions, directly link cellular energy status to chromatin compaction and provide insight into the effect ischemia has on the nuclear architecture of cells. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0802-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ina Kirmes
- Institute for Molecular Biology, 55128, Mainz, Germany
| | | | - Kirti Prakash
- Institute for Molecular Biology, 55128, Mainz, Germany.,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | | | | | | | - Karolina Fornalczyk
- Institute for Molecular Biology, 55128, Mainz, Germany.,Department of Molecular Biophysics, University of Łódź, Łódź, Poland
| | - Dongyu Ma
- Institute for Molecular Biology, 55128, Mainz, Germany.,Centre for Biomedicine and Medical Technology Mannheim (CBTM), University of Heidelberg, 68167, Mannheim, Germany
| | - Udo Birk
- Institute for Molecular Biology, 55128, Mainz, Germany
| | - Christoph Cremer
- Institute for Molecular Biology, 55128, Mainz, Germany. .,Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - George Reid
- Institute for Molecular Biology, 55128, Mainz, Germany.
| |
Collapse
|
30
|
Popken J, Koehler D, Brero A, Wuensch A, Guengoer T, Thormeyer T, Wolf E, Cremer T, Zakhartchenko V. Positional changes of a pluripotency marker gene during structural reorganization of fibroblast nuclei in cloned early bovine embryos. Nucleus 2015; 5:542-54. [PMID: 25495180 PMCID: PMC4615807 DOI: 10.4161/19491034.2014.970107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cloned bovine preimplantation embryos were generated by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts with a silent copy of the pluripotency reporter gene GOF, integrated at a single site of a chromosome 13. GOF combines the regulatory Oct4/Pou5f1 sequence with the coding sequence for EGFP. EGFP expression served as a marker for pluripotency gene activation and was consistently detected in preimplantation embryos with 9 and more cells. Three-dimensional radial nuclear positions of GOF, its carrier chromosome territory and non-carrier homolog were measured in nuclei of fibroblasts, and of day 2 and day 4 embryos, carrying 2 to 9 and 15 to 22 cells, respectively. We tested, whether transcriptional activation was correlated with repositioning of GOF toward the nuclear interior either with a corresponding movement of its carrier chromosome territory 13 or via the formation of a giant chromatin loop. A significant shift of GOF away from the nuclear periphery was observed in day 2 embryos together with both carrier and non-carrier chromosome territories. At day 4, GOF, its carrier chromosome territory 13 and the non-carrier homolog had moved back toward the nuclear periphery. Similar movements of both chromosome territories ruled out a specific GOF effect. Pluripotency gene activation was preceded by a transient, radial shift of GOF toward the nuclear interior. The persistent co-localization of GOF with its carrier chromosome territory rules out the formation of a giant chromatin loop during GOF activation.
Collapse
Key Words
- (bovine) preimplantation embryos, chromosome territories, nuclear architecture, nuclear reprogramming, pluripotency gene activation, somatic cell nuclear transfer
- BFF, bovine fetal fibroblasts; BTA, Bos taurus; CLSM, confocal laser scanning microscopy; CT, chromosome territory; eADS, enhanced absolute 3D distances to surfaces; IVF, in vitro fertilization; MGA, major embryonic genome activation; GOF, Oct4/Pou5f1-EGF
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics Biocenter ; LMU Munich ; Martinsried , Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Graf A, Krebs S, Blum H, Zakhartchenko V, Wolf E, Cremer T. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2015; 5:555-89. [PMID: 25482066 PMCID: PMC4615760 DOI: 10.4161/19491034.2014.979712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.
Collapse
Key Words
- 3D-CLSM, 3-dimensional confocal laser scanning microscopy
- 3D-SIM, 3-dimensional structured illumination microscopy
- B23, nucleophosmin B23
- BTA, Bos taurus
- CDC, chromatin domain cluster
- CT, chromosome territory
- EM, electron microscopy
- ENC, embryonic nuclei with conventional nuclear architecture
- ENP, embryonic nuclei with peripheral CT distribution
- H3K4me3
- H3K4me3, histone H3 with tri-methylated lysine 4
- H3K9me3
- H3K9me3, histone H3 with tri-methylated lysine 9
- H3S10p, histone H3 with phosphorylated serine 10
- IC, interchromatin compartment
- IVF, in vitro fertilization
- MCB, major chromatin body
- PR, perichromatin region
- RNA polymerase II
- RNA polymerase II-S2p, RNA polymerase II with phosphorylated serine 2 of its CTD domain
- RNA polymerase II-S5p, RNA polymerase II with phosphorylated serine 5 of its CTD domain
- SC-35, splicing factor SC-35
- SCNT, somatic cell nuclear transfer.
- bovine preimplantation development
- chromatin domain
- chromosome territory
- embryonic genome activation
- in vitro fertilization (IVF)
- interchromatin compartment
- major EGA, major embryonic genome activation
- somatic cell nuclear transfer (SCNT)
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics ; Biocenter; LMU Munich ; Munich , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cavusoglu T, Popken J, Guengoer T, Yilmaz O, Uyanikgil Y, Ates U, Baka M, Oztas E, Zakhartchenko V. Ultra-Structural Alterations in In Vitro Produced Four-Cell Bovine Embryos Following Controlled Slow Freezing or Vitrification. Anat Histol Embryol 2015; 45:291-307. [PMID: 26293816 DOI: 10.1111/ahe.12197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/09/2015] [Indexed: 11/30/2022]
Abstract
Cryopreservation is the process of freezing and preserving cells and tissues at low temperatures. Controlled slow freezing and vitrification have successfully been used for cryopreservation of mammalian embryos. We investigated the effect of these two cryopreservation methods on in vitro produced four-cell stage bovine embryos which were classified according to their quality and separated into three groups. The first group was maintained as untreated controls (n = 350). Embryos of the second (n = 385) and the third (n = 385) groups were cryopreserved either by controlled slow freezing or by vitrification. Embryos in groups 2 and 3 were thawed after 1 day. Hundred embryos were randomly selected from the control group, and 100 morphologically intact embryos from the second and third group were thawed after 1 day and cultured to observe the development up to the blastocyst stage. The blastocyst development rate was 22% in the control group, 1% in the slow-freezing group and 3% in the vitrification group. Remaining embryos of all three groups were examined by light microscopy, transmission electron microscopy and immunofluorescence confocal microscopy with subsequent histological staining procedures. Cryopreservation caused degenerative changes at the ultra-structural level. Compared with vitrification, slow freezing caused an increased mitochondrial degeneration, cytoplasmic vacuolization, disruption of the nuclear and plasma membrane integrity, organelle disintegration, cytoskeletal damage, a reduced thickness of the zona pellucida and a formation of fractures in the zona pellucida. Further studies are required to understand and decrease the harmful effects of cryopreservation.
Collapse
Affiliation(s)
- T Cavusoglu
- Department of Histology and Embryology, Ege University, 35100, Izmir, Turkey.,Cord Blood, Cell-Tissue Application and Research Center, Ege University, 35100, Izmir, Turkey
| | - J Popken
- Division of Anthropology and Human Genetics, Biocenter, Ludwig-Maximilian-University of Munich, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | - T Guengoer
- Department of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian-University of Munich, Hackerstr. 27, 85764, Oberschleissheim, Germany
| | - O Yilmaz
- Department of Histology and Embryology, Ege University, 35100, Izmir, Turkey.,Cord Blood, Cell-Tissue Application and Research Center, Ege University, 35100, Izmir, Turkey
| | - Y Uyanikgil
- Department of Histology and Embryology, Ege University, 35100, Izmir, Turkey.,Cord Blood, Cell-Tissue Application and Research Center, Ege University, 35100, Izmir, Turkey
| | - U Ates
- Department of Histology and Embryology, Bilim University School of Medicine, 34349, Istanbul, Turkey
| | - M Baka
- Department of Histology and Embryology, Ege University, 35100, Izmir, Turkey.,Cord Blood, Cell-Tissue Application and Research Center, Ege University, 35100, Izmir, Turkey
| | - E Oztas
- Department of Histology and Embryology, Gulhane Military Medical Academy, 06010, Ankara, Turkey
| | - V Zakhartchenko
- Department of Molecular Animal Breeding and Biotechnology, Ludwig-Maximilian-University of Munich, Hackerstr. 27, 85764, Oberschleissheim, Germany
| |
Collapse
|
33
|
Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C. The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 2015; 589:2931-43. [PMID: 26028501 DOI: 10.1016/j.febslet.2015.05.037] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Recent methodological advancements in microscopy and DNA sequencing-based methods provide unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear machineries. We discuss a model of the underlying functional nuclear organization derived mostly from electron and super-resolved fluorescence microscopy studies. It is based on two spatially co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the compact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the interchromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and export functions. The ANC is the major site of RNA synthesis. It is highly enriched in epigenetic marks for transcriptionally competent chromatin and RNA Polymerase II. Marks for silent chromatin are enriched in the INC. Multi-scale cross-correlation spectroscopy suggests that nuclear architecture resembles a random obstacle network for diffusing proteins. An increased dwell time of proteins and protein complexes within the ANC may help to limit genome scanning by factors or factor complexes to DNA exposed within the ANC.
Collapse
Affiliation(s)
- Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany.
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Barbara Hübner
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Hilmar Strickfaden
- University of Alberta, Cross Cancer Institute Dept. of Oncology, Edmonton, AB, Canada
| | - Daniel Smeets
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Jens Popken
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Michael Sterr
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Yolanda Markaki
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) & BioQuant Center, Research Group Genome Organization & Function, Heidelberg, Germany.
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Mainz and Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany.
| |
Collapse
|
34
|
Popken J, Graf A, Krebs S, Blum H, Schmid VJ, Strauss A, Guengoer T, Zakhartchenko V, Wolf E, Cremer T. Remodeling of the Nuclear Envelope and Lamina during Bovine Preimplantation Development and Its Functional Implications. PLoS One 2015; 10:e0124619. [PMID: 25932910 PMCID: PMC4416817 DOI: 10.1371/journal.pone.0124619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.
Collapse
Affiliation(s)
- Jens Popken
- Division of Anthropology and Human Genetics, Biocenter, LMU Munich, Planegg-Martinsried, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- * E-mail: (JP); (EW); (TC)
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | | | - Axel Strauss
- Division of Genetics, Biocenter, LMU Munich, Planegg-Martinsried, Germany
| | - Tuna Guengoer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
- * E-mail: (JP); (EW); (TC)
| | - Thomas Cremer
- Division of Anthropology and Human Genetics, Biocenter, LMU Munich, Planegg-Martinsried, Germany
- * E-mail: (JP); (EW); (TC)
| |
Collapse
|
35
|
Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 2014; 7:8. [PMID: 25057298 PMCID: PMC4108088 DOI: 10.1186/1756-8935-7-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.
Collapse
Affiliation(s)
- Daniel Smeets
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Volker J Schmid
- Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany
| | - Felix Kraus
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Andrea Cerase
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Sterr
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Susanne Fiedler
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Justin Demmerle
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jens Popken
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Heinrich Leonhardt
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Lothar Schermelleh
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marion Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| |
Collapse
|