1
|
Awad RM, De Vlaeminck Y, Meeus F, Ertveldt T, Zeven K, Ceuppens H, Goyvaerts C, Verdonck M, Salguero G, Raes G, Devoogdt N, Breckpot K. In vitro modelling of local gene therapy with IL-15/IL-15Rα and a PD-L1 antagonist in melanoma reveals an interplay between NK cells and CD4 + T cells. Sci Rep 2023; 13:18995. [PMID: 37923822 PMCID: PMC10624833 DOI: 10.1038/s41598-023-45948-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery. Here, we modelled local delivery of cytokines and αPD-L1 therapeutics to immune cell-containing in vitro melanoma tumors. Three-dimensional tumor models consisting of 624-MEL cells were co-cultured with human peripheral blood lymphoid cells (PBLs) in presence of the cytokines IL-2, IL-7, IL-15, IL-21 and IFN-γ. To model local gene therapy, melanoma tumors were modified with lentiviral vectors encoding IL-15 fused to IL-15Rα (IL-15/IL-15Rα) and K2-Fc, a fusion of a human PD-L1 specific single domain antibody to immunoglobulin (Ig)G1 Fc. To evaluate the interplay between PBL fractions, NK cells, CD4+ T cells or CD8+ T cells were depleted. Tumor cell killing was followed up using real time imaging and immune cell expansion and activation was evaluated with flow cytometry. Among the tested cytokines, IL-15 was the most potent cytokine in stimulating tumor cell killing and expanding both natural killer (NK) cells and CD8+ T cells. Gene-based delivery of IL-15/IL-15Rα to tumor cells, shows expansion of NK cells, activation of NK cells, CD4+ and CD8+ T cells, and killing of tumor spheroids. Both NK cells and CD8+ T cells are necessary for tumor cell killing and CD4+ T-cell activation was reduced without NK cells. Co-delivery of K2-Fc improved tumor cell killing coinciding with increased activation of NK cells, which was independent of bystander T cells. CD4+ or CD8+ T cells were not affected by the co-delivery of K2-Fc even though NK-cell activation impacted CD4+ T-cell activation. This study demonstrates that gene-based delivery of IL-15/IL-15Rα to tumor cells effectively mediates anti-tumor activity and sensitizes the tumor microenvironment for therapy with αPD-L1 therapeutics mainly by impacting NK cells. These findings warrant further investigation of gene-based IL-15 and K2-Fc delivery in vivo.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium.
| | - Yannick De Vlaeminck
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Fien Meeus
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Thomas Ertveldt
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Hannelore Ceuppens
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Cleo Goyvaerts
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Magali Verdonck
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud-IDCBIS, 111611, Bogotá, Colombia
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050, Brussels, Belgium
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, 1050, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium.
| |
Collapse
|
2
|
Berger A, Colpitts SJ, Zych M, Paige CJ. Engineered murine IL-21-secreting leukemia cells induce granzyme B + T cells and CD4 +CD44 +CD62L - effector memory cells while suppressing regulatory T cells, leading to long-term survival. Cancer Immunol Immunother 2023:10.1007/s00262-023-03442-2. [PMID: 37061631 DOI: 10.1007/s00262-023-03442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023]
Abstract
We have explored the use of an IL-21 cell-based anti-leukemia treatment in a mouse model of acute lymphoblastic leukemia. 70Z/3 leukemia cells, engineered to secrete IL-21 and injected into the peritoneum of syngeneic mice, induced a strong anti-leukemia response resulting in 100% survival. Mice that mounted an IL-21-induced anti-leukemia immune response were immune to the parent cell line (no IL-21) when rechallenged.Above a certain threshold, IL-21 secretion correlated with improved survival compared to mice injected with parent 70Z/3 cells. IL-21 was detected in serum with peak levels on day 7, correlating with the maximum expansion of IL-21-secreting 70Z/3 cells which subsequently were eliminated. Mice injected with IL-21-secreting leukemia cells had elevated numbers of granzyme B+ CD4+ and CD8+ T cells in the peritoneum, compared to mice injected with the parent cell line. Regulatory T cells, which increased greatly in 70Z/3-injected mice, failed to do so in mice injected with IL-21-secreting cells. Upon rechallenge, IL-21-primed mice went through a secondary immune response, primarily requiring CD4+ T cells, triggering a significant increase of CD4+CD44+CD62L- effector memory T cells. Adoptive transfer of T cells from IL21-primed/rechallenged hosts into naïve mice was successful, indicating that IL-21-primed antigen-experienced T cells convey immunity to naïve mice.Our study shows that delivery of IL-21 in a cell-based anti-leukemia protocol has the potential to induce a potent immune response leading to cancer elimination and long-term immunity-properties which make IL-21 an attractive candidate for cancer immunotherapy. Protecting against tumor antigens as well as improving cancer immunity is justified, as current strategies are limited.
Collapse
Affiliation(s)
- Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada.
| | - Sarah J Colpitts
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Morgan Zych
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Yang W, Zhang W, Wang X, Tan L, Li H, Wu J, Wu Q, Sun W, Chen J, Yin Y. HCA587 Protein Vaccine Induces Specific Antitumor Immunity Mediated by CD4 + T-cells Expressing Granzyme B in a Mouse Model of Melanoma. Anticancer Agents Med Chem 2021; 21:738-746. [PMID: 32723258 DOI: 10.2174/1871520620666200728131951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The antigen HCA587 (also known as MAGE-C2), which is considered a cancer-testis antigen, exhibits upregulated expression in a wide range of malignant tumors with unique immunological properties, and may thus serve as a promising target for tumor immunotherapy. OBJECTIVE The study aimed to explore the antitumor effect of the HCA587 protein vaccine and the response of humoral and cell-mediated immunity. METHODS The HCA587 protein vaccine was formulated with adjuvants CpG and ISCOM. B16 melanoma cells were subcutaneously inoculated to C57BL/6 mice, followed by treatment with HCA587 protein vaccine subcutaneously. Mouse survival was monitored daily, and tumor volume was measured every 2 to 3 days. The tumor sizes, survival time and immune cells in tumor tissues were detected. And the vital immune cell subset and effector molecules were explored. RESULTS After treatment with HCA587 protein vaccine, the vaccination elicited significant immune responses, which delayed tumor growth and improved animal survival. The vaccination increased the proportion of CD4+ T cells expressing IFN-γ and granzyme B in tumor tissues. The depletion of CD4+T cells resulted in an almost complete abrogation of the antitumor effect of the vaccination, suggesting that the antitumor efficacy was mediated by CD4+ T cells. In addition, knockout of IFN-γ resulted in a decrease in granzyme B levels, which were secreted by CD4+ T cells, and the antitumor effect was also significantly attenuated. CONCLUSION The HCA587 protein vaccine may increase the levels of granzyme B expressed by CD4+ T cells, and this increase is dependent on IFN-γ, and the vaccine resulted in a specific tumor immune response and subsequent eradication of the tumor.
Collapse
Affiliation(s)
- Weiming Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Weiheng Zhang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Liming Tan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Hua Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Jiemin Wu
- Department of Clinical Laboratory, Wuyuan County People's Hospital, Wuyuan 333200, Jiangxi Province, China
| | - Qiong Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Wanlei Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Juanjuan Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang 330006, China
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
4
|
Kyte JA, Fåne A, Pule M, Gaudernack G. Transient redirection of T cells for adoptive cell therapy with telomerase-specific T helper cell receptors isolated from long term survivors after cancer vaccination. Oncoimmunology 2019; 8:e1565236. [PMID: 30906659 DOI: 10.1080/2162402x.2019.1565236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Adoptive cell therapy (ACT) with retargeted T cells has produced remarkable clinical responses against cancer, but also serious toxicity. Telomerase is overexpressed in most cancers, but also expressed in some normal cells, raising safety concerns. We hypothesize that ACT with T-helper cell receptors may overcome tumour tolerance, mobilize host immune cells and induce epitope spreading, with limited toxicity. From long term survivors after cancer vaccination, we have isolated telomerase-specific T cell receptors (TCRs) from T-helper cells. Herein, we report the development of transient retargeting of T cells with mRNA-based TCRs. This strategy allows for safer clinical testing and meaningful dose escalation. DP4 is the most common HLA molecule. We cloned two telomerase-specific, DP4-restricted TCRs into the mRNA expression vector pCIpA102, together with the sorter/marker/suicide gene RQR8. Donor T cells were electroporated with mRNA encoding TCR_RQR8. The results showed that both TCR_RQR8 constructs were expressed in >90% of T cells. The transfected T cells specifically recognized the relevant peptide, as well as naturally processed epitopes from a 177aa telomerase protein fragment, and remained functional for six days. A polyfunctional and Th1-like cytokine profile was observed. The TCRs were functional in both CD4+and CD8+recipient T cells, even though DP4-restricted. The findings demonstrate that the cloned TCRs confer recipient T cells with the desired telomerase-specificity and functionality. Preclinical experiments may provide limited information on the efficacy and toxicity of T-helper TCRs, as these mobilize the host immune system. We therefore intend to use the mRNA-based TCRs for a first-in-man trial.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Section for Cancer Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| | - Anne Fåne
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Martin Pule
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Gustav Gaudernack
- Section for Cancer Immunology, Cancer Research Institute, Oslo University Hospital, Oslo, Norway
| |
Collapse
|